2018届高考数学文科总复习课时跟踪检测试卷(56)用样本估计总体(含解析)
- 格式:doc
- 大小:289.00 KB
- 文档页数:8
课时跟踪检测(五十六)[高考基础题型得分练]1.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123C.137 D.167答案:C解析:初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.2.如图是一容量为100的样本的质量的频率分布直方图,样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A.10 B.20C.30 D.40答案:B解析:由题意得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,所以样本质量在[15,20]内的频率为1-0.3-0.5=0.2,频数为100×0.2=20,故选B.3.[2017·河北邢台摸底]样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为()A.105 B.305C. 2D.2 答案:D解析:依题意得m=5×1-(0+1+2+3)=-1,样本方差s2=15(12+02+12+22+22)=2,即所求的样本方差为2.4.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A. x ,s 2+1002B. x +100,s 2+1002C. x ,s 2D. x +100,s 2答案:D解析:x =x 1+x 2+…+x 1010, s 2=110[(x 1-x )2+(x 2-x )2+…+(x 10-x )2], 月工资增加100元后:x ′=(x 1+100)+(x 2+100)+…+(x 10+100)10 =x 1+x 2+…+x 1010+100=x +100, s ′2=110[(x 1+100-x ′)2+(x 2+100-x ′)2+…+(x 10+100-x ′)2]=s 2.故选D.5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m o ,平均值为x ,则( )A .m e =m o =x B.m e =m o <x C .m e <m o <xD.m o <m e <x解析:30个数中第15个数是5,第16个数是6,所以中位数m e=5+62=5.5,众数m o=5,平均值x=3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930.∴m o<m e<x.6.如图所示,茎叶图记录了甲、乙两组各4名学生完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组学生的平均成绩相同,乙组某个数据的个位数字模糊,记为x,则下列命题正确的是()A.甲组学生的成绩比乙组稳定B.乙组学生的成绩比甲组稳定C.两组学生的成绩有相同的稳定性D.无法判断甲、乙两组学生的成绩的稳定性答案:A解析:x甲=14×(9+9+11+11)=10,x乙=14×(8+9+10+x+12)=10,又s2甲=14×[(9-10)2+(9-10)2+(11-10)2+(11-10)2]=1,s2乙=14×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=52,∴s2甲<s2乙,∴甲组学生的成绩比乙组稳定.故选A.7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是________.答案:甲解析:由茎叶图可知甲监测点的数据较为集中,乙监测点的数据较为分散,所以甲地的方差较小.8.[2017·安徽安庆二模]某学校高二年级共有女生300人,现调查她们每天的课外运动时间,发现她们的课外运动时间介于30分钟到90分钟之间,如图是统计结果的频率分布直方图,则她们的平均运动时间大约是________分钟.答案:56.5解析:平均数为35×0.1+45×0.1+55×0.5+65×0.2+75×0.05+85×0.05=56.5.9.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:答案:25解析:由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,方差s 2=15(1+0+0+1+0)=25.[冲刺名校能力提升练]1.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)频率分布直方图如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.2.某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a,若某住户某月用电量不超过a 度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过a度,则超出部分按议价b(单位:元/度)计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户住户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值a;(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达a 度的住户用电量保持不变,月用电量超过a度的住户节省“超出部分”的60%,试估计全市每月节约的电量;(3)在(1)(2)条件下,若出台“阶梯电价”前后全市缴纳电费总额不变,求议价b.解:(1)由频率分布直方图,可算得各组数据对应的频率及频数,如下表:由表可知,在区间[0,80)内的频率总和恰为0.7,由样本估计总体,可得临界值a的值为80.(2)由(1)知,月用电量在[0,80)内的70户住户在“阶梯电价”出台前后用电量不变,节电量为0度;月用电量在[80,100)内的25户住户,平均每户用电90度,超出部分为10度,根据题意,每户每月节电10×60%=6(度),25户每月共节电6×25=150(度);月用电量在[100,120]内的5户住户,平均每户用电110度,超出部分为30度,根据题意,每户每月节电30×60%=18(度),5户每月共节电18×5=90(度).故样本中100户住户每月共节电150+90=240(度),用样本估计总体,得全市每月节电量约为240×200 000100=480 000(度).(3)由题意,全市缴纳电费总额不变,由于“未超出部分”的用电量在“阶梯电价”前后不发生改变,故“超出部分”对应的总电费也不变.由(1)(2)可知,在100户住户组成的样本中,每月用电量的“超出部分”共计10×25+30×5=400(度),实行“阶梯电价”之后,“超出部分”节约了240度,剩余160度,因为“阶梯电价”前后电费总额不变,所以400×0.5=160×b ,解得b =1.25.。
课时跟踪检测(五)[高考基础题型得分练]1.[2017·广东珠海摸底]下列函数中,定义域是R 且为增函数的是( )A .y =2-xB .y =xC .y =log 2 xD .y =-1x答案:B解析:由题知,只有y =2-x 与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞)答案:A解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知,函数的单调递减区间是[1,2].3.[2017·吉林长春质量检测]已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)答案:A解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1.4.[2017·安徽师大附中第二次月考]函数f (x )=x 1-x在( )A.(-∞,1)∪(1,+∞)上是增函数B.(-∞,1)∪(1,+∞)上是减函数C.(-∞,1)和(1,+∞)上是增函数D.(-∞,1)和(1,+∞)上是减函数答案:C解析:函数f(x)的定义域为{x|x≠1}.f(x)=x1-x=11-x-1,根据函数y=-1x的单调性及有关性质可知,f(x)在(-∞,1)和(1,+∞)上是增函数.5.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1] B.[3,+∞)C.(-∞,-1] D.[1,+∞)答案:B解析:设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞).6.已知函数f(x)=log2x+11-x,若x1∈(1,2),x2∈(2,+∞),则()A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D .f (x 1)>0,f (x 2)>0 答案:B解析:因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.7.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎫0,13 C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,1 答案:C解析:当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13. 此时,log a x 是减函数,符合题意.8.如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( )A .2B .3C .4D .-1 答案:C解析:根据f (1+x )=f (-x )可知,函数f (x )的图象关于直线x =12对称.又函数f (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,故f (x )在⎝ ⎛⎦⎥⎤-∞,12上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4.9.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.答案:(-3,-1)∪(3,+∞)解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).10.[2017·福建厦门质检]函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案:3解析:由于y =⎝ ⎛⎭⎪⎫13x 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案:1解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x是减函数,∴h (x )在x =2时,取得最大值h (2)=1.[冲刺名校能力提升练]1.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数答案:D解析:由题意知a <1,又函数g (x )=x +ax -2a , ∴g ′(x )=1-ax 2,∴g ′(x )在(1,+∞)上大于0, ∴g (x )在(1,+∞)为增函数.故选D.2.[2017·上海浦东一模]如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]答案:D解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数.又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3 ]上单调递减,故“缓增区间”I 为[1, 3 ].3.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0g (x )=x 2f (x -1),则函数g (x )的递减区间是________.答案:[0,1)解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 4.已知f (x )=x 2+2x +ax ,x ∈[1,+∞). (1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解:(1)当a =12时,f (x )=x +12x +2,任取1≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)+⎝ ⎛⎭⎪⎫12x 1-12x 2=(x 1-x 2)(2x 1x 2-1)2x 1x 2, ∵1≤x 1<x 2,∴x 1x 2>1,∴2x 1x 2-1>0. 又x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在[1,+∞)上是增函数, ∴f (x )在[1,+∞)上的最小值为f (1)=72.(2)在区间[1,+∞)上,f (x )=x 2+2x +ax>0恒成立, 则⎩⎪⎨⎪⎧ x 2+2x +a >0,x ≥1⇒⎩⎪⎨⎪⎧a >-(x 2+2x ),x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.φ(x )=-(x +1)2+1在[1,+∞)上递减, ∴当x =1时,φ(x )取最大值为φ(1)=-3. ∴a >-3,故实数a 的取值范围是(-3,+∞).。
课时作业60 用样本估计总体一、选择题1.容量为20的样本数据,分组后的频数如下表:A.0.35 B.0.45C.0.55 D.0.65解析:求得该频数为2+3+4=9,样本容量是20,所以频率为920=0.45.答案:B2.重庆市2013年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是( )A.19 B.20C.21.5 D.23解析:根据茎叶图可知,这组数据从小到大依次是8,9,12,15,18,20,20,23,23,28,31,32,处于正中间的两个数都是20,故中位数是20.答案:B3.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35)、[35,40)、[40,45]的网民人数成递减的等差数列,则年龄在[35,40)的网民出现的频率为( )A .0.04B .0.06C .0.2D .0.3解析:由题意得,年龄在[20,25)的网民出现的频率为0.01×5=0.05,[25,30)的网民出现的频率为0.07×5=0.35,又[30,35)、[35,40)、[40,45]的网民人数成递减的等差数列,则其频率也成等差数列,又[30,35]的频率为1-0.05-0.35=0.6,则年龄在[35,40)的网民出现的频率为0.2.答案:C4.从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x 甲、x 乙,中位数分别为m甲,m 乙,则( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙解析:由茎叶图知m 甲=22+182=20,m 乙=27+312=29,∴m 甲<m 乙;x 甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516,x 乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716,∴x 甲<x乙.答案:B5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析:由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9,所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错. 答案:C6.某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x ,s 2+1002B.x +100,s 2+1002C.x ,s 2D.x +100,s 2解析:由题意,得x =x 1+x 2+…+x 1010,s 2=110[(x 1-x )2+(x 2-x )2+…+(x 10-x )2].因为下月起每位员工的月工资增加100元, 所以下月工资的均值为x 1++x 2++…+x 10+10=x 1+x 2+…+x 10+10×10010=x +100下月工资的方差为110[(x 1+100-x -100)2+(x 2+100-x -100)2+…+(x 10+100-x -100)2]=110[(x 1-x )2+(x 2-x )2+…+(x 10-x )2]=s 2,故选D.答案:D 二、填空题7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是________.解析:由茎叶图可知甲监测点的数据较为集中,乙监测点的数据较为分散,所以甲地的方差较小.答案:甲8.(2017·南昌一模)在一次演讲比赛中,6位评委对一名选手打分的茎叶图如图所示,若去掉一个最高分和一个最低分,得到一组数据x i (1≤i ≤4),在如图所示的程序框图中,x 是这4个数据的平均数,则输出的v 的值为________.解析:根据题意得到的数据为78,80,82,84,则x=81.该程序框图的功能是求以上数据的方差,故输出的v的值为-2+-2+-2+-2=5.4答案:5三、解答题9.为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单位:小时)如下:248 256 232 243 188 268 278 266 289 312274 296 288 302 295 228 287 217 329 283(1)完成下面的频率分布表,并作出频率分布直方图;(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.解:(1)频率分布表及频率分布直方图如下所示:(2)由题意可得8×(0.30+0.10+0.05)=3.6,所以估计8万台电风扇中有3.6万台无故障连续使用时限不低于280小时.(3)由频率分布直方图可知x=190×0.05+210×0.05+230×0.10+250×0.15+270×0.20+290×0.30+310×0.10+330×0.05=269(小时),所以样本的平均无故障连续使用时限为269小时.10.(2016·北京卷)某市居民用水拟实行阶梯水价.每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(Ⅰ)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解:(Ⅰ)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(Ⅱ)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).1.如图是某位篮球运动员8场比赛得分的茎叶图,其中一个数据染上污渍用x 代替,那么这位运动员这8场比赛的得分平均数不小于得分中位数的概率为( )A.15B.310C.35D.710解析:由茎叶图可知0≤x ≤9且x ∈N ,中位数是10+7+x 2=27+x 2,这位运动员这8场比赛的得分平均数为18(7+8+7+9+x +3+1+10×4+20×2)=18(x +115),由18(x +115)≥27+x2,得3x ≤7,即x =0,1,2,所以这位运动员这8场比赛的得分平均数不小于得分中位数的概率为310,故选B.答案:B2.农场种植的甲、乙两种水稻,在面积相等的两块稻田中连续6年的平均产量如下(单位:500 g),产量比较稳定的是( )C .一样D .无法确定解析:x 甲=16×(900+920+900+850+910+920)=900,x 乙=16×(890+960+950+850+860+890)=900;s 2甲=16×(202+502+102+202)≈567;s 2乙=16×(102+602+502+502+402+102)≈1 733,因为s 2甲<s 2乙,所以甲的产量波动小,所以甲种水稻的产量比较稳定.答案:A3.为组织好市运动会,组委会征集了800名志愿者,现对他们的年龄抽样统计后,得到如图所示的频率分布直方图,但是年龄在[25,30)内的数据不慎丢失,依据此图可得:(1)年龄在[25,30)内对应小长方形的高度为________; (2)这800名志愿者中年龄在[25,35)内的人数为________.解析:(1)因为各个小长方形的面积之和为1,所以年龄在[25,30)内对应小长方形的高度为15[1-(5×0.01+5×0.07+5×0.06+5×0.02)]=0.04.(2)年龄在[25,35)内的频率为0.04×5+0.07×5=0.55,人数为0.55×800=440. 答案:(1)0.04 (2)4404.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数; (2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为y =⎩⎪⎨⎪⎧3,96≤x <98,5,98≤x <104,4,104≤x ≤106,求这批产品平均每个的利润.解:(1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n .∵样本中产品净重小于100克的个数是36,∴36n=0.300,∴n=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150,∴其相应的频数分别为120×0.1=12,120×0.75=90,120×0.150=18,∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元).。
考点43 随机抽样、用样本估计总体一、选择题1.(2018·全国卷I高考理科·T3)同(2018·全国卷I高考文科·T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解题指南】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出符合题意的选项.【解析】选A.设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项符合题意;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项不符合题意;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项不符合题意;新农村建设后,养殖收入与第三产业收入的总和占经济收入为30%+28%=58%>50%,所以超过了经济收入的一半,所以D项不符合题意.二、填空题2.(2018·全国Ⅲ高考文科·T14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.【命题意图】考查统计与概率知识中的随机抽样,意在考查抽样方法的选择,培养学生的实际应用能力、逻辑推理能力,体现了数学抽象、数学建模、数据分析的数学素养.【解析】根据题干中有大量客户,且不同年龄段客户对其服务的评价有较大差异,可知最合适的抽样方法是分层抽样.答案:分层抽样3.(2018·江苏高考·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.8999011【解析】=90.答案:90 二、解答题4.(12分)(2018·全国卷I 高考文科·T19)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图.(2)估计该家庭使用节水龙头后,日用水量小于0.35m 3的概率.(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.) 【解析】(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天的日用水量的平均数为=(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天的日用水量的平均数为=(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).。
课时跟踪检测 (五十六) 用样本估计总体一抓基础,多练小题做到眼疾手快1.某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.b>c>aC.c>a>b D.c>b>a解析:选D 把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a=110×(10+12+14+14+15+15+16+17+17+17)=14.7,中位数b=15+152=15,众数c=17,则a<b<c.2.(2017·山西省第二次四校联考)某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是( )A.45 B.50C.55 D.60解析:选B ∵[20,40),[40,60)的频率为(0.005+0.01)×20=0.3,∴该班的学生人数是150.3=50.3.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,5组数据中最大频率为0.32,则a的值为( )A.64 B.54C.48 D.27解析:选B 前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组为38.所以第三组频数为22.又最大频率为0.32的最大频数为0.32×100=32.所以a =22+32=54.4.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.解析:由茎叶图可知甲的平均数为x 甲=19+18+20+21+23+22+20+31+31+3510=24.乙的平均数为x 乙=19+17+11+21+24+22+24+30+32+3010=23.答案:24 235.(2016·江苏高考)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.解析:5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1二保高考,全练题型做到高考达标1.(2017·内江模拟)某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[11,20),[20,30),[30,39]时,所作的频率分布直方图是( )解析:选B 由直方图的纵坐标是频率/组距,排除C和D;又第一组的频率是0.2,直方图中第一组的纵坐标是0.02,排除A,故选B.2.(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60C.120 D.140解析:选D 由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.3.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A.0.04 B.0.06C.0.2 D.0.3解析:选C 由频率分布直方图的知识得,年龄在[20,25)的频率为0.01×5=0.05,[25,30)的频率为0.07×5=0.35,设年龄在[30,35),[35,40),[40,45]的频率为x ,y ,z ,又x ,y ,z 成等差数列,所以可得⎩⎪⎨⎪⎧x +y +z =1-0.05-0.35,x +z =2y ,解得y =0.2,所以年龄在[35,40)的网民出现的频率为0.2.4.一个样本a,3,5,7的平均数是b ,且a ,b 是方程x 2-5x +4=0的两根,则这个样本的方差是( )A .3B .4C .5D .6解析:选C 由x 2-5x +4=0的两根分别为1,4,得⎩⎪⎨⎪⎧a =1,b =4或⎩⎪⎨⎪⎧a =4,b =1.又a,3,5,7的平均数是b . 即a +3+5+74=b ,所以⎩⎪⎨⎪⎧a =1,b =4符合题意,则方差s 2=14[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.5.(2016·贵州省适应性考试)一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为________.解析:由频率分布直方图可得第一组的频率是0.08,第二组的频率是0.32,第三组的频率是0.36,则中位数在第三组内,估计样本数据的中位数为10+0.10.36×4=1009.答案:10096.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x 的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.解析:(1)由频率分布直方图总面积为1,得(0.001 2+0.002 4×2+0.003 6+x +0.006 0)×50=1,解得x =0.004 4.(2)用电量在[100,250)内的频率为(0.003 6+0.004 4+0.006 0)×50=0.7,故所求户数为100×0.7=70.答案:(1)0.004 4 (2)707.已知x 是1,2,3,x,5,6,7这七个数据的中位数且1,2,x 2,-y 这四个数据的平均数为1,则y -1x的最小值为________.解析:由题意1+2+x 2-y =4,所以y =x 2-1.由中位数定义知,3≤x ≤5,所以y -1x =x 2-1-1x .当x ∈[3,5]时,函数y =x 2-1与y =-1x 均为增函数,所以y =x 2-1-1x在[3,5]上为增函数,所以⎝ ⎛⎭⎪⎫y -1x min =8-13=233. 答案:2338.某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值.(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,根据频率分布直方图,估计这100名学生语文成绩的平均分.(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如表所示,求数学成绩在[50,90)之外的人数.005.(2)估计这次语文成绩的平均分x=55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100名学生语文成绩的平均分为73分.(3)分别求出语文成绩在分数段[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为5,20,40,25.所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人).9.(2017·张掖重点中学联考)张掖市旅游局为了了解大佛寺景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,问题是“大佛寺是几A级旅游景点?”统计结果如下图表.(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人;(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.解:(1)由频率表中第4组数据可知,第4组总人数为90.36=25,再结合频率分布直方图可知n =250.025×10=100,所以a =100×0.01×10×0.5=5,b =100×0.03×10×0.9=27, x =18100×0.02×10=0.9,y =3100×0.015×10=0.2.(2)因为第2,3,4组回答正确的共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:1854×6=2;第3组:2754×6=3;第4组:954×6=1. (3)设第2组的2人为A 1,A 2;第3组的3人为B 1,B 2,B 3;第4组的1人为C 1. 则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1),共15种,其中恰好没有第3组人的共3种,所以所抽取的人中恰好没有第3组人的概率P =315=15.三上台阶,自主选做志在冲刺名校1.已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于________.解析:这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4,又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=17(9d 2+4d 2+d 2+0+d 2+4d 2+9d 2)=1, 即4d 2=1,解得d =±12.答案:±122. (2016·开封市第一次模拟)甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数的个位数字模糊,在茎叶图中用c 表示.(把频率当作概率)8 4 2 1 8 0 0 35 5 390 2 c(1)假设c =5,现要从甲、乙两人中选派一人参加数学竞赛,从统计学的角度,你认为派哪位学生参加比较合适?(2)假设数字c 的取值是随机的,求乙的平均分高于甲的平均分的概率. 解:(1)若c =5,则派甲参加比较合适,理由如下:x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x 甲=x 乙,s 2甲<s 2乙,∴两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适. (2)若x 乙>x 甲,则18(75+80×4+90×3+3+5+2+c )>85,∴c >5,∴c =6,7,8,9,又c 的所有可能取值为0,1,2,3,4,5,6,7,8,9, ∴乙的平均分高于甲的平均分的概率为25.。
1.对于一组数据x i(i=1,2,3,…,n),如果将它们改变为x i+C(i=1,2,3,…,n),其中C≠0,则下列结论正确的是( )A.平均数与方差均不变B.平均数变,方差保持不变C.平均数不变,方差变D.平均数与方差均发生变化2.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x甲,x乙,则下列判断正确的是( )A.x甲>x乙;甲比乙成绩稳定B.x甲>x乙;乙比甲成绩稳定C.x甲<x乙;甲比乙成绩稳定D.x甲<x乙;乙比甲成绩稳定3.容量为100的样本数据,按从小到大的顺序分为8组,如下表:A.14和0.14 B.0.14和14C.114和0.14 D.13和1144.(2016·全国丙卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个5.某班级统计一次数学测试后的成绩,并制成了如下的频率分布表,根据该表估计该班级的数学测试平均分为( )A.80C.82 D.836.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8C.12 D.187.为了了解某校九年级1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据直方图的数据,下列结论错误的是( )A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5C.该校九年级学生1分钟仰卧起坐的次数超过30次的约有320人D.该校九年级学生1分钟仰卧起坐的次数少于20次的约有32人8.(2016·揭阳一模)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为( )A.9 B.10C.11 D.12二、填空题9.某商场在庆元宵促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.10.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组数据的频数和为62,设视力在4.6到4.8之间的学生人数为a,最大频率为0.32,则a的值为________.+n=________.12.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22 ℃.”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2.则肯定进入夏季的地区有________个.答案精析1.B [由平均数的定义,可知每个个体增加C ,则平均数也增加C ,方差不变.故选B.] 2.D [x 甲=16+17+28+30+345=25,x 乙=15+28+28+26+335=26,x 甲<x 乙,s 2甲=15[(16-25)2+(17-25)2+(28-25)2+(30-25)2+(34-25)2]=52,s 2乙=15[(15-26)2+(28-26)2+(26-26)2+(28-26)2+(33-26)2]=35.6,s 2甲>s 2乙,所以乙稳定,故选D.]3.A [x =100-10-13-14-15-13-12-9=14, 所以频数为14,频率为14100=0.14.]4.D [由题意知,平均最高气温高于20 ℃的有七月,八月,故选D.] 5.C [平均分x =65×0.1+75×0.3+85×0.4+95×0.2=82,故选C.] 6.C [依据频率分布直方图及频率公式求解. 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.]7.D [频率分布直方图中,中位数是频率为0.5的分界点的横坐标,由频率分布直方图可知,前2组的频率和为(0.02+0.06)×5=0.4,因此中位数出现在第3组.设中位数为x ,则(x -25)×0.08=0.1,x =26.25,所以A 正确;众数是指样本中出现频率最高的数,在频率分布直方图中通常取纵坐标最高的一组区间的中点,所以众数为25+302=27.5,所以B 正确;仰卧起坐次数超过30次的频率为0.04×5=0.2,所以频数为1 600×0.2=320,所以C 正确;仰卧起坐的次数少于20次的人数约有0.02×5×1 600=160,所以D 错误,故选D.]8.B [不妨设样本数据x 1,x 2,x 3,x 4,x 5,且x 1<x 2<x 3<x 4<x 5,则由样本方差为4,知(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20.若5个整数的平方和为20,则这5个整数的平方只能在0,1,4,9,16中选取(每个数最多出现2次),当这5个整数的平方中最大的数为16时,分析可知,总不满足和为20;当这5个整数的平方中最大的数为9时,0,1,1,9,9这组数满足要求,此时对应的样本数据为x 1=4,x 2=6,x 3=7,x 4=8,x 5=10;当这5个整数的平方中最大的数不超过4时,总不满足要求,因此不存在满足条件的另一组数据.故选B.] 9.10解析 依题意,注意到9时至10时与11时至12时相应的频率之比为0.10∶0.40=1∶4,因此11时至12时的销售额为2.5×4=10(万元). 10.54解析 前三组人数为100-62=38,第三组人数为38-(1.1+0.5)×0.1×100=22, 则a =22+0.32×100=54. 11.9解析 根据茎叶图,可得甲组数据的中位数为20+222=21,根据甲、乙两组数据的中位数相等,得乙组数据的中位数为21=20+n ,解得n =1.又甲组数据的平均数为10+m +20+22+284=80+m 4,乙组数据的平均数为19+21+263=22,所以80+m4=22,解得m =8,所以m +n =9.12.2解析 甲地肯定进入夏季,因为众数为22,所以22 ℃至少出现两次,若有一天低于22 ℃,则中位数不可能为24;丙地肯定进入,10.2×5-(32-26)2≥(26-x )2, ∴15≥(26-x )2,若x ≤22不成立;乙地不一定进入, 如13,23,27,28,29,故答案为2.。
课时跟踪检测(五十六) 统计1.(2019·福州质检)下面抽样方法是简单随机抽样的是( )A .从平面直角坐标系中抽取5个点作为样本B .可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C .某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D .从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号) 解析:选D 平面直角坐标系中有无数个点,这与简单随机抽样中要求总体中的个体数有限不相符,故A 错误;一次性抽取不符合简单随机抽样逐个抽取的特点,故B 错误;50名战士是最优秀的,不符合简单随机抽样的等可能性,故C 错误.故选D.2.(2019·北大附中期末)某学院A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本,已知该学院的A 专业有380名学生,B 专业有420名学生,则应在该学院的C 专业抽取的学生人数为( )A .30B .40C .50D .60解析:选B C 专业的学生有1 200-380-420=400名,由分层抽样知应抽取120×4001 200=40名.故选B.3.从2 015名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样方法从2 015人中剔除15人,剩下的2 000人再按系统抽样的方法抽取,则每人入选的概率( )A .不全相等B .均不相等C .都相等,且为502 015D .都相等,且为140解析:选C 因为简单随机抽样和系统抽样都是等可能抽样,从N 个个体中抽取M 个个体,则每个个体被抽到的概率都等于M N,故从2 015名学生中选取50名学生参加全国数学联赛,每人入选的概率都相等,且为502 015.故选C. 4.(2019·广西南宁毕业班摸底)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .200,10D .100,10解析:选B 由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以高中生的近视人数为40×50%=20,故选B.5.(2019·福州质检)某学校共有师生4 000人,现用分层抽样的方法从所有师生中抽取一个容量为200的样本,调查师生对学校食堂餐饮问题的建议,已知从学生中抽取的人数为190,那么该校的教师人数为( )A .100B .150C .200D .250解析:选C 设教师人数为x ,由题意知:2004 000=200-190x,解得x =200,故选C. 6.(2019·南昌模拟)我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n 粒,若这批米合格,则n 不超过( )A .6B .7C .8D .9解析:选B 由题意得,n235×100%≤3%,解得n ≤7.05,所以若这批米合格,则n 不超过7.故选B.7.某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )A .该校初三学生1分钟仰卧起坐的次数的中位数为25B .该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8解析:选C 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误.第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误.1分钟仰卧起坐的次数超过30的频率为0.04×5=0.2,∴超过30次的人数为400×0.2=80,故C正确.1分钟仰卧起坐的次数少于20的频率为0.02×5=0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.8.(2019·黄陵中学期末)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄在17~18岁的男生体重(kg),将他们的体重按[54.5,56.5),[56.5,58.5),…,[74.5,76.5]分组,得到的频率分布直方图如图所示.由图可知这100名学生中体重在[56.5,64.5)的学生人数是( )A.20 B.30C.40 D.50解析:选C 由频率分布直方图可得体重在[56.5,64.5)的学生的频率为(0.03+0.05+0.05+0.07)×2=0.4,则这100名学生中体重在[56.5,64.5)的学生人数为100×0.4=40.故选C.9.(2019·广西五市联考)如图是2018年第一季度五省GDP情况图,则下列陈述正确的是( )①2018年第一季度GDP总量和增速均居同一位的省只有1个;②与去年同期相比,2018年第一季度五个省的GDP总量均实现了增长;③去年同期的GDP总量前三位是D省、B省、A省;④2017年同期A省的GDP总量也是第三位.A.①② B.②③④C .②④D .①③④解析:选B ①2018年第一季度GDP 总量和增速均居同一位的省有2个,B 省和C 省的GDP 总量和增速分别居第一位和第四位,故①错误;由图知②正确;由图计算2017年同期五省的GDP 总量,可知前三位为D 省、B 省、A 省,故③正确;由③知2017年同期A 省的GDP 总量是第三位,故④正确.故选B.10.如图是一容量为100的样本重量的频率分布直方图,则由图可估计样本重量的平均数与中位数分别为( )A .13,12B .12,12C .11,11D .12,11解析:选B 平均重量为7.5×5×0.06+12.5×5×0.1+17.5×(1-5×0.06-5×0.1)=12,设中位数为x ,则(x -10)×0.1=0.5-5×0.06,解得x =12.故选B.11.(2019·榆林二中模拟)某学校为了调查学生在学科教辅书方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,则n 的值为________.解析:由频率分布直方图可得支出的钱数在[30,40)的同学有0.038×10n =0.38n 个,支出的钱数在[10,20)的同学有0.012×10n =0.12n 个,又支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,所以0.38n -0.12n =0.26n =26,解得n =100.答案:10012.(2019·河南高三联考)某班学生A ,B 在高三8次月考的化学成绩用茎叶图表示如图,其中学生A 的平均成绩与学生B 的成绩的众数相等,则m =________.解析:由题意,得73+79+82+85+80+m +83+92+938=84,解得m =5. 答案:513.(2019·沈阳期末联考)为了了解2 000名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,若第一组抽出的号码为11,则第五组抽出的号码为________.解析:采用系统抽样的方法从2 000名学生中抽取容量为100的样本,则先分成100组,每组20人,即号码间隔为20,若第一组抽出的号码为11,则第五组抽出的号码为11+20×(5-1)=91.答案:9114.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.解析:设5个数据分别为x 1,x 2,x 3,x 4,x 5.∵平均数为7,∴x 1+x 2+x 3+x 4+x 55=7.又∵样本方差为4,∴4=15[(x 1-7)2+(x 2-7)2+…+(x 5-7)2],∴20=x 21+x 22+x 23+x 24+x 25-2×7×(x 1+x 2+x 3+x 4+x 5)+72×5,∴x 21+x 22+x 23+x 24+x 25=265.又∵42+62+72+82+102=265,∴样本数据中的最大值为10.答案:1015.(2019·湖南长郡中学选拔考试)据了解,大学英语四级改革的一项重要内容就是总分改为710分,每个考生会有一个成绩,不再颁发“合格证”,这也意味着,不再有“及格”一说.大学英语四级考试成绩在425分及以上的考生可以报考大学英语六级考试,英语四级成绩在550分及以上的考生可以报考口语考试.如图是从某大学数学专业40人的英语四级成绩中随机抽取8人的成绩的茎叶图.(1)通过这8人的英语四级成绩估计该大学数学专业英语四级考试成绩的平均数和中位数;(2)在这8人中,从可以报考大学英语六级考试的学生中任取2人,求这2人都可以报考口语考试的概率.解:(1)这8人的英语四级成绩的平均数为(386+410+450+485+520+564+575+610)÷8=500(分),这8人的英语四级成绩的中位数为(485+520)÷2=502.5(分),由此可估计该大学数学专业英语四级考试成绩的平均数为500分,中位数为502.5分.(2)设可以报考大学英语六级考试但不能报考口语的3人为A 1,A 2,A 3,可以报考口语的3人为B 1,B 2,B 3,从这6人中任取2人,全部情况为(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共15种.这2人都可以报考口语考试的情况为(B 1,B 2),(B 1,B 3),(B 2,B 3),共3种,则这2人都可以报考口语考试的概率P =315=15. 16.(2019·新乡一模)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.解:(1)甲厂10个轮胎宽度的平均值: x 甲=110×(195+194+196+193+194+197+196+195+193+197)=195(mm), 乙厂10个轮胎宽度的平均值: x 乙=110×(195+196+193+192+195+194+195+192+195+193)=194(mm).(2)甲厂10个轮胎中宽度在[194,196]内的数据为195,194,196,194,196,195,平均数:x 1=16×(195+194+196+194+196+195)=195, 方差:s 21=16×[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2]=23, 乙厂10个轮胎中宽度在[194,196]内的数据为195,196,195,194,195,195,平均数:x 2=16×(195+196+195+194+195+195)=195, 方差:s 22=16×[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2]=13, ∵两厂标准轮胎宽度的平均数相等,但乙厂的方差更小,∴乙厂的轮胎相对更好.。
课时规范练49 用样本估计总体基础巩固组1.一组数据分别为12,16,20,23,20,15,28,23,则这组数据的中位数是()A.19B.20C.21.5D.232.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是()A.甲B.乙C.丙D.丁3.(2017广西南宁一模)某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组〚导学号24190795〛4.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2B.3C.4D.55.在某次测量中得到的甲样本数据如下:42,43,46,52,42,50,若乙样本数据恰好是甲样本每个数据都减5后所得数据,则甲、乙两个样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数6.若数据x1,x2,…,x n的平均数为,方差为s2,则2x1+3,2x2+3,…,2x n+3的平均数和方差分别为()A.和s2B.2+3和4s2C.2+3和s2D.2+3和4s2+12s+97.(2017辽宁大连一模,文13)某班级有50名同学,一次数学测试平均成绩是92,如果学号为1号到30号的同学平均成绩为90,那么学号为31号到50号同学的平均成绩为.8.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是.〚导学号24190796〛9.某市运动会期间30名志愿者年龄数据如下表:(1)求这30名志愿者年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这30名志愿者年龄的茎叶图;(3)求这30名志愿者年龄的方差.综合提升组10.若一组数据2,4,6,8的中位数、方差分别为m ,n ,且ma+nb=1(a>0,b>0),则的最小值为( ) A.6+2 B.4+3C.9+4D.2011.已知样本(x 1,x 2,…,x n )的平均数为,样本(y 1,y 2,…,y m )的平均数为),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数=α+(1-α),其中0<α<,则n ,m 的大小关系为( ) A.n<m B.n>m C.n=mD.不能确定12.(2017山西晋中一模)设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =2x i -1(i=1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为 .13.(2017河北邯郸二模,文18)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.分数[50,60) [60,70) [70,80) [80,90)〚导学号24190797〛创新应用组14.某学校随机抽取20个班,调查各班有网上购物经历的人数,所得数据的茎叶图如图所示,以5为组距将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()〚导学号24190798〛15.(2017河北邯郸一模,文18)某校为指导学生合理选择文理科的学习,根据数理综合测评成绩,按6分为满分进行折算后,若学生成绩小于m分建议选择文科,不低于m分则建议选择理科(这部分学生称为候选理科生).现从该校高一随机抽取500名学生的数理综合成绩作为样本,整理得到分数的频率分布直方图(如图所示).(1)求直方图中t的值;(2)根据此次测评,为使80%以上的学生选择理科,整数m至多定为多少?(3)若m=4,试估计该校高一学生中候选理科学生的平均成绩.(精确到0.01)答案:1.B把该组数据按从小到大的顺序排列如下:12,15,16,20,20,23,23,28,排在中间的两个数是20,20,故这组数据的中位数为=20.故选B.2.C由题目表格中数据可知,丙的平均环数最高,且方差最小,说明丙的技术稳定,且成绩好,故选C.3.B由题图可得,前第四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,即中位数落在第4组,故选B.4.B依题意可得10×(0.005+0.01+0.02+a+0.035)=1,则a=0.03.所以身高在[120,130),[130,140),[140,150]三组内的学生人数比例为3∶2∶1.所以从身高在[140,150]内的学生中选取的人数应为×18=3.5.B设样本甲中的数据为x i(i=1,2,…,6),则样本乙中的数据为y i=x i-5(i=1,2,…,6),则样本乙中的众数、平均数和中位数与甲中的众数、平均数和中位数都相差5,只有标准差没有发生变化,故选B.6.B原数据乘2加上3得到一组新数据,则由平均数、方差的性质可知得到的新数据的平均数、方差分别是2+3和4s2.7.95设学号为31号到50号同学的平均成绩为x,则92×50=90×30+20x,解得x=95,故答案为95.8.54成绩在[16,18]的学生人数所占比例为,所以成绩在[16,18]的学生人数为120×=54.9.解 (1)众数为19,极差为21.(2)茎叶图如图.(3)年龄的平均数为=29,故这30名志愿者年龄的方差为[(19-29)2×7+2×(21-29)2+3×(28-29)2+4×(30-29)2+(31-29)2×5+(32-29)2×3+(40-29)2×6]=.10.D∵数据2,4,6,8的中位数是5,方差是(9+1+1+9)=5,∴m=5,n=5.∴ma+nb=5a+5b=1(a>0,b>0).∴(5a+5b)=5≥20(当且仅当a=b时等号成立),故选D.11.A由题意知样本(x1,…,x n,y1,…,y m)的平均数为.又=α+(1-α),即α=,1-α=.因为0<α<,所以0<,即2n<m+n,所以n<m,故选A.12.16根据题意,设样本数据x1,x2,…,x2 017的平均数为,又由其方差为4,则[(x1-)2+(x2-)2+(x3-)2+…+(x2 017-)2]=4.对于数据y i=2x i-1(i=1,2,…,2 017),其平均数(y1+y2+…+y2 017)=[(2x1-1)+(2x2-1)+…+(2x2 017-1)]=2-1,其方差[(y1-)2+(y2-)2+(y3-)2+…+(y2 017-)2]=[(x1-)2+(x2-)2+(x3-)2+…+(x2 017-)2]=16,故答案为16.13.解 (1)依题意,得10(2a+0.02+0.03+0.04)=1,解得a=0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分).(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:100×0.4×=20,数学成绩在[70,80)的人数为:100×0.3×=40,数学成绩在[80,90)的人数为:100×0.2×=25,所以数学成绩在[50,90)之外的人数为:100-5-20-40-25=10.14.A由组距可知选项C,D不对;由茎叶图可知[0,5)有1人,[5,10)有1人,故第一、二小组频率相同,频率分布直方图中矩形的高应相等,可排除B.故选A.15.解 (1)根据频率分布直方图,得0.15×1+t×1+0.30×1+t×1+0.15×1=1,解得t=0.2.(2)为使80%以上的学生选择理科,则0.15+0.2+0.3<0.8<0.15+0.2+0.3+0.2,故满足条件的m值为2.(3)当m=4时,≈4.93,估计该校高一学生中候选理科学生的平均成绩为4.93分.百度文库是百度发布的供网友在线分享文档的平台。
课时跟踪检测 (五十六) 用样本估计总体一抓基础,多练小题做到眼疾手快1.某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解析:选D 把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a =110×(10+12+14+14+15+15+16+17+17+17)=14.7,中位数b =15+152=15,众数c =17,则a <b <c .2.(2017·山西省第二次四校联考)某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60解析:选B ∵[20,40),[40,60)的频率为(0.005+0.01)×20=0.3,∴该班的学生人数是150.3=50.3.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,5组数据中最大频率为0.32,则a 的值为( )A .64B .54C .48D .27解析:选B 前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组为38.所以第三组频数为22.又最大频率为0.32的最大频数为0.32×100=32.所以a =22+32=54.4.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.解析:由茎叶图可知甲的平均数为x 甲=19+18+20+21+23+22+20+31+31+3510=24.乙的平均数为x 乙=19+17+11+21+24+22+24+30+32+3010=23.答案:24 235.(2016·江苏高考)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 解析:5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1二保高考,全练题型做到高考达标1.(2017·内江模拟)某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[11,20),[20,30),[30,39]时,所作的频率分布直方图是( )解析:选B 由直方图的纵坐标是频率/组距,排除C 和D ;又第一组的频率是0.2,直方图中第一组的纵坐标是0.02,排除A ,故选B .2.(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140解析:选D 由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D .3.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A .0.04B .0.06C .0.2D .0.3解析:选C 由频率分布直方图的知识得,年龄在[20,25)的频率为0.01×5=0.05,[25,30)的频率为0.07×5=0.35,设年龄在[30,35),[35,40),[40,45]的频率为x ,y ,z ,又x ,y ,z 成等差数列,所以可得⎩⎪⎨⎪⎧x +y +z =1-0.05-0.35,x +z =2y ,解得y =0.2,所以年龄在[35,40)的网民出现的频率为0.2.4.一个样本a,3,5,7的平均数是b ,且a ,b 是方程x 2-5x +4=0的两根,则这个样本的方差是( )A .3B .4C .5D .6解析:选C 由x 2-5x +4=0的两根分别为1,4,得⎩⎪⎨⎪⎧ a =1,b =4或⎩⎪⎨⎪⎧a =4,b =1.又a,3,5,7的平均数是b .即a +3+5+74=b ,所以⎩⎪⎨⎪⎧a =1,b =4符合题意,则方差s 2=14[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.5.(2016·贵州省适应性考试)一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为________.解析:由频率分布直方图可得第一组的频率是0.08,第二组的频率是0.32,第三组的频率是0.36,则中位数在第三组内,估计样本数据的中位数为10+0.10.36×4=1009.答案:10096.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x 的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.解析:(1)由频率分布直方图总面积为1,得(0.001 2+0.002 4×2+0.003 6+x +0.006 0)×50=1,解得x =0.004 4.(2)用电量在[100,250)内的频率为(0.003 6+0.004 4+0.006 0)×50=0.7,故所求户数为100×0.7=70.答案:(1)0.004 4 (2)707.已知x 是1,2,3,x,5,6,7这七个数据的中位数且1,2,x 2,-y 这四个数据的平均数为1,则y -1x的最小值为________.解析:由题意1+2+x 2-y =4,所以y =x 2-1.由中位数定义知,3≤x ≤5,所以y -1x =x 2-1-1x .当x ∈[3,5]时,函数y =x 2-1与y =-1x 均为增函数,所以y =x 2-1-1x在[3,5]上为增函数,所以⎝⎛⎭⎫y -1x min =8-13=233. 答案:2338.某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值.(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,根据频率分布直方图,估计这100名学生语文成绩的平均分.(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如表所示,求数学成绩在[50,90)之外的人数.. (2)估计这次语文成绩的平均分x =55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100名学生语文成绩的平均分为73分.(3)分别求出语文成绩在分数段[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为5,20,40,25. 所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人).9.(2017·张掖重点中学联考)张掖市旅游局为了了解大佛寺景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,问题是“大佛寺是几A 级旅游景点?”统计结果如下图表.(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人;(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率. 解:(1)由频率表中第4组数据可知,第4组总人数为90.36=25, 再结合频率分布直方图可知n =250.025×10=100,所以a =100×0.01×10×0.5=5, b =100×0.03×10×0.9=27,x =18100×0.02×10=0.9,y =3100×0.015×10=0.2. (2)因为第2,3,4组回答正确的共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:1854×6=2;第3组:2754×6=3;第4组:954×6=1.(3)设第2组的2人为A 1,A 2;第3组的3人为B 1,B 2,B 3;第4组的1人为C 1. 则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1),共15种,其中恰好没有第3组人的共3种,所以所抽取的人中恰好没有第3组人的概率P =315=15.三上台阶,自主选做志在冲刺名校1.已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于________.解析:这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4,又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=17(9d 2+4d 2+d 2+0+d 2+4d 2+9d 2)=1,即4d 2=1,解得d =±12.答案:±122. (2016·开封市第一次模拟)甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数的个位数字模糊,在茎叶图中用c 表示.(把频率当作概率)(1)假设c =5派哪位学生参加比较合适?(2)假设数字c 的取值是随机的,求乙的平均分高于甲的平均分的概率. 解:(1)若c =5,则派甲参加比较合适,理由如下: x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x 甲=x 乙,s 2甲<s 2乙,∴两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适. (2)若x 乙>x 甲,则18(75+80×4+90×3+3+5+2+c )>85,∴c >5,∴c =6,7,8,9,又c 的所有可能取值为0,1,2,3,4,5,6,7,8,9, ∴乙的平均分高于甲的平均分的概率为25.。