指数函数、对数函数和幂函数对比学习
- 格式:doc
- 大小:785.38 KB
- 文档页数:4
指数与对数函数幂函数知识点总结指数函数、对数函数和幂函数是高中数学中的重要内容,是数学中常见的数学函数类型。
下面将对这三种函数进行详细介绍和总结。
1.指数函数指数函数是以底数为常数,指数为自变量的函数。
通常表示为f(x)=a^x,其中a>0且不等于1、指数函数的特点有:-当a>1时,函数为增函数,曲线向上开口。
-当0<a<1时,函数为减函数,曲线向下开口。
-当x=0时,f(0)=1,即指数为0时,函数值等于1-当x为正无穷大时,函数趋于正无穷大;当x为负无穷大时,函数趋于0。
指数函数的应用广泛,例如在金融领域中的复利计算、生物学中的生长模型、物理学中的放射性衰变等都可以使用指数函数模型来描述。
2.对数函数对数函数是指输出的指数与给定的底数相等的函数,常用的对数函数有以e为底的自然对数函数ln(x)和以10为底的通用对数函数log(x)。
对数函数的特点有:-对数函数的定义域为正实数。
- 对数函数的基本性质是函数值等于对应的指数值,即log_a(a^x) = x。
- 自然对数函数ln(x)与指数函数e^x互为反函数。
-对数函数可以帮助解决指数方程和指数不等式等问题。
对数函数在数学中广泛应用,例如在科学计算、数据压缩、信号传输和信息论等领域都有应用。
3.幂函数幂函数是形如f(x)=a^x的函数,其中a是常数且大于0。
幂函数的特点有:-当a>1时,函数为增函数,曲线向上开口。
-当0<a<1时,函数为减函数,曲线向下开口。
-当x=0时,f(0)=1,即幂为0时,函数值等于1-当x为正无穷大时,函数趋于正无穷大;当x为负无穷大时,函数趋于0。
幂函数与指数函数相似,但是幂函数的底数是常数。
幂函数在自然科学领域中经常出现,例如在物理学中的速度、加速度和质量等计算中经常使用幂函数模型。
指数函数、对数函数和幂函数是数学中的基本函数类型,它们在实际问题中有着广泛的应用。
在学习指数函数、对数函数和幂函数时,需要熟练掌握其定义、性质和应用。
指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。
指数函数的一般形式为:$y=a^x$。
在指数函数中,底数$a$是一个正实数,且$a\ne q1$。
1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。
当底数$a$在0和1之间时,指数函数则呈现递减趋势。
指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。
根据底数$a$的不同,指数函数的值域也有所不同。
若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。
指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。
2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。
-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。
二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。
幂函数的一般形式为:$y=x^n$。
1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。
若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。
幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。
幂函数的值域则根据指数$n$的奇偶性而定。
若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。
《指数函数、幂函数、对数函数增长的比较》教学设计1.认识增长的概念,通过数表的直观,体会幂函数、指数函数、对数函数增长速度的差异. 2.通过函数增长的比较过程,学习比较的方法,积累选择直观方式和比较大小(快慢)的经验.重点:三类函数增长的结论,函数增长快慢比较的常用方法. 难点:通过数据分析表述函数增长快慢的理由.一、新课导入我们已经知道,给定常数a ,b ,c ,指数函数y =a x (a >1)、对数函数y =log b x (b >1)、幂函数y =x c (x >0,c >0)都是增函数;而且当x 的值趋近于正无穷大时,y 的值都是趋近于正无穷大的.那么,这3个增函数的函数值的增长快慢有什么差别呢?如果把自变量看作时间,我们来个函数增长快慢的赛跑,怎么样?设计意图:开门见山,永上启下,温故知新;以赛跑的生活化场景,拉近数学与生活的距离,增强趣味性和探究欲.二、新知探究问题1 怎么比较三个函数增长得快慢呢?(经过短时讨论,确定:先猜增长快慢的关系,再利用猜想的中间量,分别比较另外两个量,试图印证猜想.)猜想:三类函数的增长,指数函数最快,对数函数最慢. 追问 怎样实现两个函数增长的比较呢?经过短时讨论,一致认为要借助直观,要从具体的函数入手研究. 答案:图表是直观的,利用图表分析具体函数的增长. (1)先比较具体的y =x 12和y =log 2x ,观察下表. x 20 22 23 24 26 28 210 212 214 216 y =x 12 1 2 2√2 4 8 16 32 64 128 256 y =log 2x2346810121416(学生分析数表得出增长结论.)◆教学目标◆教学重难点 ◆◆教学过程结论:可以看出,当x的取值充分大时,幂函数y=x 12比对数函数y=log2x增长快,而且快很多.(2)再比较具体的y=2x和y=x100,观察下表:结论:可以看出,当x的取值充分大时,指数函数y=2x比幂函数y=x100增长快,而且快很多.设计意图:通过数形结合分析,形成全方位的直观感受.问题2:试着总结指数函数、对数函数、幂函数图象的特征.答案:追问:试对指数函数y=a x(a>1)、对数函数y=log b x(b>1) 、幂函数y=x c(x>0,c>0)的不同增长情况进行比较.答案:随着x的增大,y=a x的函数值增长远远大于y=x c的函数值增长;而y=x c的函数值增长又远远大于y=log b x的函数值增长.在区间(0,+∞)上,当a>1,c>0时,当x足够大时,随着x的增大,y=a x的增长速度越来越快,会超过并远远大于y=x c的增长速度,而y=log b x的增长速度则越来越慢.因此,总会存在一个x0,使得当x>x0时,一定有a x>x c>log b x,指数函数值增长非常快,因而常称这种现象为”指数爆炸”.总结:(1)当描述增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长很大时,常常选用对数函数模型.(3)函数值的大小不等同于增长速度快慢,数值大不一定增长速度快,增长速度体现在函数值的变化趋势上.三、应用举例例1 从前,有一个国王特别喜爱一项称为“国际象棋”的游戏,于是他决定奖赏国际象棋的发明者,满足他的一个心愿.“陛下,我深感荣幸,我的愿望是你赏我几粒米.”发明者说.“只是几粒米?”国王回答说.“是的,只要在棋盘的第一格放上一粒米,在第二格放上两粒米,在第三个加倍放上四粒米…,以此类推,每一格均是前一格的两倍,直到放慢棋盘为止,这就是我的愿望.”国王很高兴.“如此廉价便可以换的如此好的游戏,我的祖辈们一定是恩泽于我了."国王想.于是国王大声地说“好!把棋盘拿出来让我的臣子们一起见证我们的协议”.国王真的能够满足围棋发明者的愿望吗?解第x格放的米粒数显然符合指数函数f(x)=2x−1(x∈{1,2,3,…,64}),本题实际上是求64个函数值的和,我们不妨求f(64)=263≈9.22×1018.假定每1000颗麦子重40克,f(64)=3500亿吨.显然国王不能满足发明者的要求.例2 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?解令第x天,回报为y元方案一:y=40方案二:y=10x(x∈N+)方案三:y=2x−1∙0.4(x∈N+)投资7天及以下选择方案一投资8-10天选择方案二投资11天及以上选择方案三.)内恒成立,求实数m的取值范围.例3若不等式x2−log m x<0在(0,12解分析:由x2−log m x<0得x2<log m x,把不等式的两边分别看做两个函数,利用数形结合的方法,通过图像进行转化.在同一坐标系中作y=x2和y=log m x的图象,要使x2<log m x在(0,12)内恒成立,只需y=log m x在y=x2的图像的上方,于是0<m<1,∵x=12时,y=x2=14,∴只要x=12时,y=log m12⩾14=log m m14∴12⩽m14,即116⩽m,又0<m<1,所以116⩽m<1,故m取值范围为[116,1).四、课堂练习1.对于函数y=3x与y=x3:(1)通过计算或借助绘图工具求这两个函数图象的交点个数;(2)y=3x比y=x3增长得快,通过分析它们的图象解释其含义.参考答案:1.(1)通过软件绘图可以得到两个函数有两个交点.(2)这两个函数有两个交点,在第一个交点前,y=3x的图象一直在y=x3的图象上方,过了第一个交点直至第二个交点之间y=x3在y=3x的图象的上方,多了第二个交点后y=3x图象一直在y=x3的上面.五、课堂小结当b>l,c>0 时,即使b很接近于1,c很接近于0,都有y=x c比y=log b x增长快.当a>1,c>0时,即使a很接近于1,c很大,都有y=a x比y=x c增长快.y=a x(a>1) 随着自变量x的增大,y=a x的函数值增长远远大于y=x c的函数值增长;而y=x c的函数值增长又远远大于y=log b x的函数值增长.当a>1时指数函数值增长非常快,因而常称这种现象为”指数爆炸”.六、布置作业教材第113页习题4-3A 组第1-6题﹒。
幂函数指数函数和对数函数知识点梳理一、幂函数1.定义:幂函数是形如f(x)=x^n的函数,其中n为常数,x为自变量,n可以是整数、分数或实数。
2.性质:-当n为正偶数时,幂函数是单调递增函数,图像呈现开口向上的抛物线形状。
-当n为正奇数时,幂函数是单调递增函数,图像呈现开口向上的直线形状。
-当n为负偶数时,幂函数是单调递减函数,图像呈现开口向下的抛物线形状。
-当n为负奇数时,幂函数是单调递减函数,图像呈现开口向下的直线形状。
-当n=0时,幂函数f(x)=x^0恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。
3.应用:-幂函数常用于描述成比例关系,如面积和边长的关系、体积和边长的关系等。
-幂函数还用于经济学、物理学、化学等学科中的一些数学模型。
二、指数函数1.定义:指数函数是形如f(x)=a^x的函数,其中a为正实数且不等于1,x为自变量。
2.性质:-指数函数的值域为正实数,图像始终位于y轴的上方。
-当a>1时,指数函数是单调递增函数,图像呈现开口向上的曲线形状。
-当0<a<1时,指数函数是单调递减函数,图像呈现开口向下的曲线形状。
-当a=1时,指数函数f(x)=1^x恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。
3.应用:-指数函数常用于描述指数增长或指数衰减的情况,如人口增长、放射性物质衰变等。
-指数函数还用于描述复利、投资和经济增长等问题。
三、对数函数1. 定义:对数函数是形如f(x)=loga(x)的函数,其中a为正实数且不等于1,x为自变量。
2.性质:-对数函数的定义域为正实数,值域为实数。
-对数函数的图像呈现开口向右的曲线形状。
-对数函数关于直线y=x对称。
-对数函数的导数为1/x。
3.应用:-对数函数常用于解决指数方程和指数不等式,将复杂的指数问题转化为相对简单的对数问题。
-对数函数还广泛应用于科学、工程、经济等领域的数据处理和模型建立。
综上所述,幂函数、指数函数和对数函数是高中数学中的重要函数类型。
一、幂函数1、幂的有关概念正整数指数幂:...()nna a a a n N=∈零指数幂:01(0)a a=≠负整数指数幂:1(0,)ppa a p Na-=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n=>∈>且负分数指数幂的意义是:11(0,,,1) mnm n mna a m n N naa-==>∈>且2、幂函数的定义一般地,函数ay x=叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况).3、幂函数的图象幂函数ay x=当11,,1,2,332a=时的图象见左图;当12,1,2a=---时的图象见上图:由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质: (1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >). 1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-.log log n a a M n M =.(00M N >>,,0a >,1a ≠)( a, b > 0且均不为1)2.换底公式:log log log m a m NN a=( a > 0 , a ≠ 1 ;0,1m m >≠) 常用的推论:(1)log log 1a b b a ⨯= ; .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3), (4)对数恒等式.一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R ; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)b mnb a n am log log =1log log log =⋅⋅a c b c b a 01log =a 1log =a a N a N a =log()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。
§6指数函数、幂函数、对数函数增长的比较学习目标:1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性.(重点)2.会利用指数函数、幂函数和对数函数的图像对比研究函数的增长快慢.(难点)[自主预习·探新知]指数函数、幂函数、对数函数增长的比较阅读教材P98~P103有关内容,完成下列问题.1.三种函数的增长趋势当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x>0,n>1时,幂函数y=x n也是增函数,并且当x>1时,n越大,其函数值的增长就越快.思考1:在指数函数、对数函数、幂函数三类函数中,函数值增长最快的是哪个函数?[提示]指数函数2.三种函数的增长对比对数函数y=log a x(a>1)增长最慢,幂函数y=x n(n>0),指数函数y=a x(a>1)增长的快慢交替出现,当x足够大时,一定有a x>x n>log a x.思考2:在区间(0,+∞)上,当a>1,n>0时,是否总有log a x<x n<a n成立?[提示]不是,但总存在x0,使得当a>1,n>0,x>x0时,log a x<x n<a x成立.[基础自测]1.思考辨析(1)y =x 10比y =1.1x 的增长速度更快些.( )(2)对于任意的x >0,都有2x >log 2x .( )(3)对于任意的x ,都有2x >x 2.( )[答案] (1)× (2)√ (3)×2.若x ∈(1,2),则下列结论正确的是( )A .2x >x 12>lg xB .2x >lg x >x 12C .x 12>2x >lg xD .x 12>lg x >2xA3.如图3-6-1所示曲线反映的是________函数模型的增长趋势.图3-6-1对数4.当x >4时,a =4x ,b =log 4x ,c =x 4的大小关系是________.【导学号:60712318】a >c >b[合 作 探 究·攻 重 难]于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.图3-6-2(1)请指出示意图中曲线C 1,C 2分别对应哪一个函数;(2)结合函数图像,比较f (8),g (8),f (2 016),g (2 016)的大小.[思路探究]先观察图像,比较相关区域函数值的大小,最后得出结论.[解](1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)∵g(1)=1,f(1)=2,g(2)=8,f(2)=4,g(9)=729,f(9)=512,g(10)=1 000,f(10)=1 024,∴f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10).∴1<x1<2,9<x2<10.∴x1<8<x2<2 016.从图像上知,当x1<x<x2时,f(x)<g(x);当x>x2时,f(x)>g(x),且g(x)在(0,+∞)上是增函数.∴f(2 016)>g(2 016)>g(8)>f(8).[规律方法]三种函数模型的表达形式及其增长特点:(1)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”.(2)对数函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m≠0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(3)幂函数模型:能用幂型函数f(x)=axα+b(a,b,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.[跟踪训练]1.函数f(x)=lg x,g(x)=0.3x-1的图像如图3-6-3所示.图3-6-3(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图像交点为分界点,对f(x),g(x)的大小进行比较).【导学号:60712319】[解](1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,f(x)=g(x).方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?[思路探究]首先建立不同回报对应的函数模型,结合其图像解决问题.[解]设第x天所得回报是y元.由题意,方案一:y=40(x∈N+);方案二:y=10x(x∈N+);方案三:y=0.4×2x-1(x∈N+).作出三个函数的图像如图:由图可以看出,从每天回报看,在第1天到第3天,方案一最多,在第4天,方案一、二一样多,方案三最少,在第5天到第8天,方案二最多,第9天开始,方案三比其他两个方案所得回报多得多,经验证到第30天,所得回报已超过2亿元,∴若是短期投资可选择方案一或方案二,长期的投资则选择方案三.通过计算器计算列出三种方案的累积收入表.∴投资1天到6天,应选方案一,投资7天方案一、二均可,投资8天到10天应选方案二,投资11天及其以上,应选方案三.[规律方法]解决应用问题的关键是将应用问题转化成数学问题来解决,结合函数图像有助于直观认识函数间在不同范围的大小关系.[跟踪训练]2.有一种树木栽植五年后可成材.在栽植后五年内,年增加20%,如果不砍伐,从第六年到第十年,年增长10%,现有两种砍伐方案:甲方案:栽植五年后不砍伐,等到十年后砍伐.乙方案:栽植五年后砍伐重栽,再过五年再砍伐一次.请计算后回答:十年内哪一个方案可以得到较多的木材?(不考虑最初的树苗成本,只按成材的树木计算)【导学号:60712320】[解]设树林最初栽植量为a,甲方案在10年后树木产量为y1=a(1+20%)5(1+10%)5=a(1.2×1.1)5≈4a.乙方案在10年后树木产量为y2=2a(1+20%)5=2a·1.25≈4.98a.y1-y2=4a-4.98a<0,因此,乙方案能获得更多的木材.[1.如图3-6-4给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是什么?图3-6-4提示:由题中图像可知,该函数模型为指数模型.2.四个变量y1,y2,y3,y4随变量x变化的数据如下表:关于x 呈指数函数变化的变量是什么?提示:由表中的数据变化知,是指数函数变化的变量是y 2.20世纪90年代,气候变化专业委员会向各国政府提供的一项报告指出:全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中CO 2体积分数增加,据测,1990年,1991年,1992年大气中CO 2体积分数分别比1989年增加了1个可比单位,3个可比单位,6个可比单位,若用一个函数模拟20世纪90年代中每年CO 2体积分数增加的可比单位数y 与年份增加数x (即当年数与1989年的差)的关系,模拟函数可选用二次函数f (x )=px 2+qx +r (其中p ,q ,r 为常数),或g (x )=ab x +c (a ,b ,c 为常数且b >0,b ≠1).(1)根据题目中的数据,求f (x ),g(x )的解析式;(2)如果1994年大气中CO 2体积分数比1989年增加了16个可比单位,请问以上哪个函数作为模拟函数较好?并说明理由.【导学号:60712321】[思路探究] (1)列出方程组求系数,从而求解析式;(2)由x =5得出函数值,通过比较选择模拟函数.[解] (1)由题目中的数据得⎩⎪⎨⎪⎧ p +q +r =1,4p +2q +r =3,9p +3q +r =6,解得⎩⎪⎨⎪⎧p =12,q =12,r =0,由⎩⎪⎨⎪⎧ ab +c =1,ab 2+c =3,ab 3+c =6,解得⎩⎪⎨⎪⎧ a =83,b =32,c =-3,所以f (x )=12x 2+12x, g (x )=83·⎝ ⎛⎭⎪⎫32x-3. (2)因为f (5)=15,g (5)=17.25,f (5)更接近16,所以选用f (x )=12x 2+12x 作为模拟函数好.[规律方法] 解决函数应用题时的常用方法:(1)先依据给出的数据作出散点图,大体估计函数模型,设出函数模型,列出方程组求系数,即可确定出函数模型.(2)将求出的函数通过数据比较确定出最适合的函数模型.[跟踪训练]3.某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q (单位:元/102kg)与上市时间t (单位:天)的数据如下表:(1)Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.[解] (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选择Q =at 2+bt +c ,即⎩⎪⎨⎪⎧ 150=a ×502+b ×50+c ,108=a ×1102+b ×110+c ,150=a ×2502+b ×250+c .解得Q =1200t 2-32t +4252.(2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, 所以当t =150天时,西红柿的种植成本最低,为100元/102 kg.[当 堂 达 标·固 双 基]1.下列函数中,自变量x 充分大时,增长速度最快的是( )【导学号:60712322】A .y =6xB .y =log 6xC .y =x 6D .y =6x A2.以下四种说法中,正确的是( )A .幂函数增长的速度比一次函数增长的速度快B .对任意的x >0,x a >log a xC .对任意的x >0,a x >log a xD .一定存在x 0,使x >x 0,总有a x >x n >log a xD [对于A ,幂函数的增长速度受幂指数影响,幂指数与一次项系数不确定,增长速度不能比较,而B 、C 都受a 的影响.]3.三个变量y 1,y 2,y 3随自变量x 的变化情况如下表:其中关于x ,呈指数型函数变化的变量是________,呈幂函数型函数变化的变量是________.【导学号:60712323】y 3 y 2 y 1 [由表中数据可知,y 1随x 的增加成倍增加,属于幂函数型函数变化,y 2随x 的增加成“几何级数”增加,属于指数型函数变化,y 3随x 的增加增加越来越慢,属于对数函数变化.]4.某商场2016年一月份到十二月份销售额呈现先下降后上升的趋势,现有三种函数模型:①f (x )=p ·q x (q >0,q ≠1);②f (x )=log p x +q (p >0,p ≠1);③f (x )=x 2+px +q .能较准确反映商场月销售额f (x )与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f (1)=10,f (3)=2,则f (x )=________.③,x 2-8x +17 [①②均单调,③先减后增,故能较准确反映商场月销售额f (x )与月份x 关系的函数模型为③由f (1)=10,f (3)=2,得⎩⎪⎨⎪⎧1+p +q =109+3p +q =2, 解得p =-8,q =17,所以,f (x )=x 2-8x +17.]5.用模型f (x )=ax +b 来描述某企业每季度的利润f (x )(亿元)和生产成本投入x (亿元)的关系.统计表明,当每季度投入1(亿元)时利润y 1=1(亿元),当每季度投入2(亿元)时利润y 2=2(亿元),当每季度投入3(亿元)时利润y 3=2(亿元).又11 定义:当f (x )使[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2的数值最小时为最佳模型.(1)当b =23时,求相应的a 使f (x )=ax +b 成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y 4(亿元)的值.【导学号:60712324】[解] (1)b =23时 ,[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2=14⎝ ⎛⎭⎪⎫a -122+16, ∴a =12时,f (x )=12x +23为最佳模型.(2)f (x )=x 2+23,则y 4=f (4)=83.。
指数函数、对数函数和幂函数对比学习
1.指数
(1) n 次方根的定义
若n x a =,则称x 为a 的n 次方根,“n
”是方根的记号.
在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根.
(2)方根的性质
①当n 为奇数时,a a n
n
=. ②当n 为偶数时,a a n
n
==(0),
(0).
a a a
a ≥⎧⎨
-<⎩
(3) 分数指数幂的意义 ①m n
m
n
a a =; ②a 11
m n
m n
m
n
a a
a
-
=
=
(0a >,m 、n 都是正整数,1n >).
2. 指数函数
⑴ 指数函数的定义:一般地,函数x y a =(0a >且1a ≠)叫做指数函数. ⑵ 指数函数的图象及性质
1a >
01a <<
图 象
性
质 定义域 R 值域 (0,+∞)
过定点 过定点 (0,1) ,即0x =时,1y = 函数值的变化 当0x >时, 1y > ; 当0x <时,01y <<;
当0x >时,01y << ; 当0x <时,1y > ;
单调性 在R 上是增函数
在R 上是减函数
1.对数的概念 (1)对数的定义
如果x a N =(0a >且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数. (2)几种常见对数
对数形式
特点
记法
一般对数 底数为a (0a >且1a ≠) log a x N = 常用对数 底数为10 lg N 自然对数
底数为e
ln N
2.对数的性质与运算法则 (1)对数的性质
①log a N a N =;②log N a a N =(0a >且1a ≠). (2)对数的重要公式 ①换底公式:log log log c a c a
b b
=(a ,b ,c 均大于零且不等于1); ②1
log log a b b a
=
,推广log log log log a b c a b c d d ⋅⋅=. (3)对数的运算法则
如果0a >且1a ≠,0M >,0N >,那么 ①log ()log log a a a MN M N =+; ②log log log a
a a M
M N N
=-; ③log log ()n a a M n M n R =∈; ④log log m n a a n
M M m
=. 3.对数函数的图象与性质
1a > 01a <<
图象
性质
定义域:(0,+∞)
值域:R
过点(1,0)
当1x >时,0y > 当01x <<,0y <
当1x >时,0y < 当01x <<时,0y >
是(0,+∞)上的增函数 是(0,+∞)上的减函数
1.幂函数的定义
一般地,形如y x α=(R α∈)的函数称为幂函数,其中底数x 是自变量,α为常数.
2.幂函数的图象
在同一平面直角坐标系下,幂函数y x =,2
y x =,3y x =,1
2y x =,1y x -=的图
象分别如图.
3.幂函数的性质
y x =
2y x =
3
y x =
1
2
y x = 1y x -=
定义域 R R R
[0,+∞) }{|0x x R x ∈≠,且 值 域 R [0,+∞)
R [0,+∞) }{y |y 0R ∈≠,且y
奇偶性
奇
偶 奇
非奇非偶
奇
单调性 增
x ∈[0,
+∞)时,增 x ∈(-∞,0]时,减
增 增
x ∈(0,+∞)时,
减
x ∈(-∞,0)时,
减 定点 (0,0),(1,1)
(1,1)
例题讲解
例1、若函数1x y a b =+-(0a >且1a ≠)的图象经过二、三、四象限,则一定有
( ) A.01a <<且0b > B.1a >且0b > C.01a <<且0b < D.1a >且0b <
例2、函数⎪
⎭
⎫
⎝⎛=21y 2
22+-x x 的递增区间是___________.
例3、已知4()log (41)x f x =-; (1)求()f x 的定义域; (2)讨论()f x 的单调性;
(3)求()f x 在区间122⎡⎤
⎢⎥⎣⎦
,上的值域.
例4、已知函数2(3)1y mx m x =+-+的值域是[0,+∞),则实数m 的取值范围是________ .。