2013届高考物理基础知识梳理专项复习22
- 格式:ppt
- 大小:730.50 KB
- 文档页数:46
物理重要知识点归纳学好物理要记住:最基本的知识、方法才是最重要的。
秘诀:“想”学好物理重在理解........(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件)A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩!对联: 概念、公式、定理、定律。
(学习物理必备基础知识)对象、条件、状态、过程。
(解答物理题必须明确的内容)力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。
说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。
答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。
“容易题不丢分,难题不得零分。
“该得的分一分不丢,难得的分每分必争”,“会做⇒做对⇒不扣分”在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。
受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。
再分析运动过程(即运动状态及形式,动量变化及能量变化等)。
最后分析做功过程及能量的转化过程;然后选择适当的力学基本规律进行定性或定量的讨论。
强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律.............)是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零,③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振;⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动;⑩带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动Ⅲ。
高中物理知识点总结一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 . (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态. (3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x =0,∑F y =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
第二章相互作用第 1 课时力、重力、弹力基础知识归纳1.力的概念(1)力的概念:力是物体对物体的作用.(2)力的基本特征:①物质性:力不能脱离物体而独立存在.②相互性:力的作用是相互的.③矢量性:既有大小,又有方向,其运算法则为平行四边形定则.④独立性:一个力作用在某一物体上产生的效果与这个物体是否同时受到其他力的作用无关.⑤同时性:物体间的相互作用总是同时产生,同时变化,同时消失.(3)力的作用效果:使物体发生形变或使物体的运动状态发生改变(即产生加速度).(4)力的表示可用力的图示或力的示意图表示,其中力的图示包含力的大小、方向和作用点三要素.(5)力的分类①按性质分:重力、弹力、摩擦力、分子力、电磁力、核力等.②按效果分:压力、支持力、拉力、动力、阻力、向心力、回复力等.③按研究对象分:内力和外力.2.重力(1)重力的产生:由于地球的吸引而产生的.地球周围的物体,无论与地球接触与否,运动状态如何,都要受到地球的吸引力,因此任何物体都要受到重力的作用.(2)方向:总是竖直向下.(3)大小:G=mg.(4)重心:重力的等效作用点.重心的位置与物体的形状和质量的分布有关.重心不一定在物体上.质量分布均匀、形状规则的物体的重心在几何中心上.薄板类物体的重心可用悬挂法确定.3.弹力(1)定义:发生弹性形变的物体,对跟它接触的物体产生力的作用,这种力叫弹力.(2)产生条件:两物体直接接触、接触处有弹性形变;两者缺一不可,并且弹力和形变同时产生,同时消失.(3)方向:与施力物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.(4)大小:弹簧类物体在弹性限度内遵循胡克定律:F=kx.非弹簧类弹力大小应由平衡条件或动力学规律求解.重点难点突破一、弹力有无的判断方法1.根据弹力产生的条件直接判断根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.2.利用假设法判断对形变不明显的情况,可假设两个物体间弹力不存在,看物体还能否保持原有的状态,若运动状态不变,则此处不存在弹力,若运动状态改变,则此处一定存在弹力.3.根据物体的运动状态分析根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.二、弹力方向的判断方法1.根据物体产生形变的方向判断物体所受弹力方向与施力物体形变的方向相反,与自身(受力物体)形变方向相同.2.根据物体的运动状态判断由状态分析弹力,即物体的受力必须与物体的运动状态符合,依据物体的运动状态,由共点力的平衡条件或牛顿第二定律列方程,确定弹力方向.1.胡克定律:弹簧弹力大小的计算.弹簧弹力的计算从物体的形变特征入手,通过分析形变情况,利用胡克定律求解.2.牛顿运动定律法:其他弹力大小的计算.弹力是被动力,其大小与物体所受的其他力的作用以及物体的运动状态有关.所以解决这类问题时要从弹力产生的原因入手,通过分析物体的受力情况和运动状态,利用平衡条件或牛顿运动定律求解.典例精析1.弹力有无的判断【例1】如图所示,用轻质细杆连接的A 、B 两物体正沿着倾角为θ的斜面匀速下滑,已知斜面的粗糙程度是均匀的,A 、B 两物体与斜面的接触情况相同.试判断A 和B之间的细杆上是否有弹力.若有弹力,求出该弹力的大小;若无弹力,请说明理由.【解析】以A 、B 两物体及轻杆为研究对象,当它们沿斜面匀速下滑时,有(m A +m B )g sin θ-μ(m A +m B )g cos θ=0解得μ=tan θ再以B 为研究对象,设轻杆对B 的弹力为F ,则m B g sin θ+F -μmg cos θ=0将μ=tan θ代入上式,可得F=0,即细杆上没有弹力.【思维提升】本题在解答过程中,是假设弹力存在,并假设弹力的方向,然后根据假设的前提条件去定量计算,从而判断弹力是否存在.2.弹力的方向【例2】如图甲所示,小车沿水平面向右做加速直线运动,车上固定的硬杆和水平面的夹角为θ,杆的顶端固定着一个质量为m的小球.当车运动的加速度逐渐增大时,杆对小球的作用力(F1至F4变化)的受力图形(OO′沿杆方向)可能是图乙中的()【解析】小球所受重力与杆对小球的作用力的合力水平向右,画出平行四边形或三角形如图,可知只有C图正确.【答案】C【思维提升】杆对球的弹力方向与球的运动状态有关,并不一定沿杆的方向,我们在解题时一定要注意.思考一下:小车的加速度怎样时,杆对球的的弹力才沿杆的方向?(a=g cot θ,水平向右).【拓展1】如图所示,滑轮本身的质量可忽略不计,滑轮轴O安装在一根轻木杆B上,一根轻绳AC绕过滑轮,绳与滑轮间的摩擦不计,A端固定在墙上,且绳保持水平,C端下面挂一个重物,BO与竖直方向夹角θ=45°,系统保持平衡.若保持滑轮的位置不变,改变θ的大小,则滑轮受到木杆的弹力大小变化的情况是( D )A.只有角θ变小,弹力才变小B.只有角θ变大,弹力才变大C.不论角θ变大或变小,弹力都变大D.不论角θ变大或变小,弹力都不变【解析】绳A和绳C的拉力大小与方向均不变,所以其合力不变,对滑轮而言,杆的作用力必与两绳拉力的合力平衡,所以杆的弹力大小与方向均不变,D正确.3.弹力的大小【例3】如图所示,物块质量为M,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k1和k2,起初甲处于自由伸长状态.现用手将弹簧甲上端A缓缓上提,使乙产生的弹力的大小变为原来的1/3,则手提甲的上端A应向上移动()A.(k1+k2)Mg/3k1k2B.2(k1+k2)Mg/3k1k2C.4(k1+k2)Mg/3k1k2D.5(k1+k2)Mg/3k1k2【解析】问题中强调的是“大小”变为原来的1/3,没有强调乙是处于压缩状还是拉伸状.若乙处于压缩状,ΔF=2F0/3;若乙处于拉伸状,ΔF′=4F0/3,F0=Mg.两弹簧串接,受力的变化相等,由胡克定律,ΔF=kΔx、Δx甲=ΔF/k1、Δx乙=ΔF/k2、两弹簧长度总变化Δx =Δx甲+Δx乙.所以B、C正确.【答案】BC【思维提升】要注意弹簧的形变有拉伸和缩短两种情况.处理弹簧伸长、缩短问题,变抽象为具体的另一方法是恰当比例地、规范地画出弹簧不受力情况的原长情形图,画出变化过程状态图,进行对比观察,在图中找到不变的因素或位置不动的端点(弹簧的上端或下端).将一切变化的因素或变化的端点与不变的因素或不动的端点对比“看齐”,从而确定变化的量.易错门诊【例4】如图所示,一根质量不计的横梁A端用铰链固定在墙壁上,B端用细绳悬挂在墙壁上的C点,使得横梁保持水平状态.已知细绳与竖直墙壁之间的夹角为60°,当用另一段轻绳在B点悬挂一个质量为M=6 kg的重物时,求轻杆对B点的弹力和绳BC的拉力各为多大?(g取10 m/s2) 【错解】设杆对B点的弹力为F1,根据平行四边形定则作F2、G的合力F3,则F1与F3为平衡力,两者大小相等、方向相反,如图所示.因为∠F2BG=120°,所以F1=F2=F3=G=60 N【错因】绳的拉力特点掌握不好,认为两段轻绳在B点相连,其拉力大小相等,所以绳BC的拉力F2等于重物的重力Mg.要能区分两类模型:①绳与杆的一端连接为结点,如本题,此时BC绳的拉力不等于重力;②绳跨过光滑滑轮,如图,此时BC绳的拉力等于重力.【正解】设杆对B点的弹力为F1,绳BC对B点的拉力为F2,由于B点静止,B点所受的向下的拉力大小恒定为重物的重力,根据受力平衡的特点,杆的弹力F1与绳BC对B点的拉力F2的合力一定竖直向上,大小为Mg,如图所示.根据以上分析可知弹力F1与拉力F2的合力大小F=G=Mg=60 N由几何知识可知F1=F tan 60°=603NF=120 NF2=sin30即轻杆对B点的弹力为603N,绳BC的拉力为120 N.【思维提升】求解有关弹力问题时,一定要注意对物理模型的理解和应用.第 2 课时摩擦力基础知识归纳1.摩擦力当一个物体在另一个物体的表面上发生相对运动或有相对运动趋势时,受到阻碍相对运动或相对运动趋势的力,叫做摩擦力.摩擦力可分为滑动摩擦力和静摩擦力.重点难点突破一、如何判断静摩擦力的方向1.假设法:假设接触面光滑(即无摩擦力)时,看物体是否发生相对运动.若发生相对运动,则说明物体间有相对运动趋势,且假设接触面光滑后物体发生相对运动的方向即为相对运动趋势的方向,从而确定静摩擦力的方向.也可以先假设静摩擦力沿某方向,再分析物体运动状态是否出现跟已知条件相矛盾的结果,从而对假设方向做出取舍.2.状态法:根据二力平衡条件、牛顿第二定律或牛顿第三定律,可以判断静摩擦力的方向.假如用一水平力推桌子,若桌子在水平地面上静止不动,这时地面会对桌子施一静摩擦力.根据二力平衡条件可知,该静摩擦力的方向与推力的方向相反.加速状态时物体所受的静摩擦力可由牛顿第二定律确定.3.利用牛顿第三定律(即作用力与反作用力的关系)来判断.此法的关键是抓住“力是成对出现的”,先确定受力较少的物体受到的静摩擦力的方向,再根据“反向”确定另一物体受到的静摩擦力.二、摩擦力大小的计算1.在确定摩擦力的大小之前,必须首先分析物体所处的状态,分清摩擦力的性质:静摩擦力或滑动摩擦力.2.滑动摩擦力由公式F=μF N计算.最关键的是对相互挤压力F N 的分析,它跟研究物体在垂直于接触面方向的受力密切相关.3.静摩擦力(1)其大小、方向都跟产生相对运动趋势的外力密切相关,但跟接触面相互挤压力F N无直接关系.因而静摩擦力具有大小、方向的可变性,变化性强是它的特点,其大小只能依据物体的运动状态进行计算,若为平衡状态,静摩擦力将由平衡条件建立方程求解;若为非平衡状态,可由动力学规律建立方程求解.(2)最大静摩擦力F m是物体将要发生相对滑动这一临界状态时的摩擦力,它的数值与F N成正比,在F N不变的情况下,滑动摩擦力略小于F m,而静摩擦力可在0~F m间变化.三、滑动摩擦力的方向判定滑动摩擦力的方向与物体间的相对运动的方向相反.因此,判断摩擦力方向时一定明确“相对”的含义,“相对”既不是“对地”,也不是“对观察者”.“相对”的是跟它接触的物体,所以滑动摩擦力的方向可能与物体运动方向相反,也可能相同,也可能与物体运动方向成一定的夹角.典例精析1.静摩擦力的方向【例1】如图所示,物体A、B在力F作用下一起以相同速度沿F方向做匀速运动,关于物体A所受的摩擦力,下列说法正确的是()A.甲、乙两图中A均受摩擦力,且方向均与F相同B.甲、乙两图中A均受摩擦力,且方向均与F相反C.甲、乙两图中A均不受摩擦力D.甲图中A不受摩擦力,乙图中A受摩擦力,方向与F相同【解析】用假设法分析:甲图中,假设A受摩擦力,其合力不为零,与A做匀速运动在水平方向受力为零不符,所以A不受摩擦力.乙图中,假设A不受摩擦力,A将相对于B沿斜面向下运动,从而A 受沿斜面向上的摩擦力.故D为正确选项.【答案】D【思维提升】假设分析法是判断静摩擦力是否存在及其方向最常用、最方便的方法,特别应注意,当物体所处环境及所受其他外力变化时,静摩擦力的大小、方向也可能发生变化.【拓展1】如图所示,在平直公路上,有一辆汽车,车上有一木箱,试判断下列情况中,木箱所受摩擦力的方向.(1)汽车由静止开始加速运动时(木箱和车无相对滑动);(2)汽车刹车时(二者无相对滑动);(3)汽车匀速运动时(二者无相对滑动);【解析】根据物体的运动状态,由牛顿运动定律不难判断出:(1)汽车加速时,木箱所受的静摩擦力方向向右;(2)汽车刹车时,木箱所受的静摩擦力方向向左;(3)汽车匀速运动时,木箱不受摩擦力作用.2.摩擦力的大小【例2】把一重为G的物体,用一水平推力F=kt(k为恒量,t为时间)压在竖直的足够高的平整墙上.那么,在下图中,能正确反映从t=0开始物体所受摩擦力F f随t变化关系的图象是()【解析】物体对墙壁的压力在数值上等于水平推力F,即F N=F =kt.沿墙壁下滑过程中所受的滑动摩擦力F f=μF N=μkt.开始阶段F f<G,物体加速下滑,F f随时间t成正比增加,物体向下的合力减小,加速度减小,然而速度却逐渐增大;当F f=G时物体的合力、加速度为零,速度达到最大值;由于惯性,此后物体将继续向下运动,F f 也继续随时间t正比增加,直到F f>G.物体的合力、加速度方向向上,且大小逐渐增大,物体做减速运动;当速度减小为零时,物体处于静止状态,物体受到的滑动摩擦力也“突变”为静摩擦力,根据平衡条件可得静摩擦力的大小为F f=G【答案】B【思维提升】解题时要分清是静摩擦力还是滑动摩擦力,然后根据前述方法确定.本题中,抓住动、静转化点(速度减小为零的瞬间)解题方向便豁然开朗.【拓展2】用轻弹簧竖直悬挂的质量为m的物体,静止时弹簧伸长量为l0,现用该弹簧沿固定斜面方向拉住质量为2m的物体,系统静止时弹簧伸长量也为l0,斜面倾角为30°,如图所示,则物体所受摩擦力( A )mg,方A.等于0B.大小为2向沿斜面向下3mg,方向沿斜面向上 D.大小为mg,方向C.大小为2沿斜面向上【解析】物体受到重力为2mg ,还有弹簧施加的弹力,由于弹簧的伸长量为l 0,与静止时悬挂一个质量为m 的物体时的伸长量相同,因此,弹簧的弹力F 等于mg ,物体还受到斜面施加的支持力的作用,受力示意图如图所示.将重力正交分解,重力沿斜面方向的分力等于mg ,与弹簧的弹力相等,因此,物体不受摩擦力的作用.易错门诊3.滑动摩擦力的方向【例3】如图所示,质量为m 的工件置于水平放置的钢板C 上,二者间动摩擦因数为μ.由于光滑导槽A 、B的控制,工件只能沿水平导槽运动,现使钢板以速度v 1向右运动,同时用力F 拉动工件(F 方向与导槽平行)使其以速度v 2沿导槽运动,则F 的大小为( )A.等于μmgB.大于μmgC.小于μmgD.不能确定【错解】滑动摩擦力的方向与v 2方向相反,由平衡条件得出F=F f =μmg .A 选项正确.【错因】v 2为工件相对地面的运动方向,而非相对钢板运动方向.【正解】工件所受摩擦力大小为F f =μmg ,为钢板C 所施加,而工件相对钢板C 的相对运动方向,根据运动的合成可知,与导槽所成夹角α=arctan 21v v .因此,所施拉力F =F f •cos α<μmg ,选项C 正确. 【答案】C【思维提升】滑动摩擦力的方向与相对运动方向相反,这是解此题的关键,也是此题的易错点.第 3 课时 力的合成与分解基础知识归纳1.合力与分力几个力同时作用的共同 效果 与某一个力单独作用的 效果相同,这一个力为那几个力的合力,那几个力为这一个力的分力.合力与它的分力是力的 效果 上的一种 等效替代 关系,而不是力的本质上的替代.2.力的合成和力的分解:求几个力的合力叫力的合成;求一个已知力的分力叫力的分解.2.力的合成与分解的法则力的合成和分解只是一种研究问题的方法,互为逆运算,遵循平行四边形定则.(1)力的平行四边形定则求两个互成角度的共点力F 1、F 2的合力,可以以力的图示中F 1、F 2的线段为 邻边 作 平行四边形 .该两邻边间的 对角线 即表示合力的大小和方向,如图甲所示.(2)力的三角形定则把各个力依次 首尾 相接,则其合力就从第一个力的 末端 指向最后一个力的 始端 .高中阶段最常用的是此原则的简化,即三角形定则,如图乙所示.3.合力的大小范围(1)两个力合力大小的范围|F 1-F 2|≤F ≤ F 1+F 2 .(2)0≤F ≤|F 1+F 2+…+F n |.4.正交分解法把一个力分解为 互相垂直 的两个分力,特别是物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求每个方向上力的 代数和 ,把复杂的矢量运算转化为互相垂直方向上的简单的代数运算.其方法如下.(1)正确选择直角坐标系,通过选择 各力的作用线交点 为坐标原点,直角坐标系的选择应使尽量多的力在坐标轴上.(2)正交分解各力,即分别将各力 投影 在坐标轴上,然后求各力在x 轴和y 轴上的分力的合力F x 和F y :F x =F 1x +F 2x +F 3x +…,F y =F 1y +F 2y +F 3y +…(3)合力大小F = 22y x F F .合力的方向与x 夹轴角为θ=arctanx y F F .重点难点突破 一、受力分析要注意的问题受力分析就是指把指定物体(研究对象)在特定的物理情景中所受到的所有外力找出来,并画出受力图.受力分析时要注意以下五个问题:(1)研究对象的受力图,通常只画出根据性质命名的力,不要把按效果分解的力或合成的力分析进去.受力图完成后再进行力的合成和分解,以免造成混乱.(2)区分内力和外力:对几个物体组成的系统进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把其中的某一物体单独隔离分析时,原来的内力变成外力,要画在受力图上.(3)防止“添力”:找出各力的施力物体,若没有施力物体,则该力一定不存在.(4)防止“漏力”:严格按照重力、弹力、摩擦力、其他力的步骤进行分析是防止“漏力”的有效办法.(5)受力分析还要密切注意物体的运动状态,运用平衡条件或牛顿运动定律判定未知力的有无及方向.二、正交分解法正交分解法:将一个力(矢量)分解成互相垂直的两个分力(分矢量),即在直角坐标系中将一个力(矢量)沿着两轴方向分解,如图F 分解成F x 和F y ,它们之间的关系为:F x =F •cos φF y =F •sin φF = 22y x F Ftan φ=x yF F正交分解法是研究矢量常见而有用的方法,应用时要明确两点:(1)x 轴、y 轴的方位可以任意选择,不会影响研究的结果,但若方位选择得合理,则解题较为方便;(2)正交分解后,F x 在y 轴上无作用效果,F y 在x 轴上无作用效果,因此F x 和F y 不能再分解.三、力的图解法根据平行四边形定则,利用邻边及其夹角跟对角线长短的关系分析力的大小变化情况的方法,通常叫做图解法.也可将平行四边形定则简化成三角形定则处理,更简单.图解法具有直观、简便的特点,多用于定性研究.应用图解法时应注意正确判断某个分力方向的变化情况及其空间范围.用矢量三角形定则分析最小力的规律:(1)当已知合力F 的大小、方向及一个分力F 1的方向时,另一个分力F 2的最小条件是:两个分力垂直,如图甲.最小的F 2=F sin α.(2)当已知合力F 的方向及一个分力F 1的大小、方向时,另一个分力F 2最小的条件是:所求分力F 2与合力F 垂直,如图乙.最小的F 2=F 1sin α.(3)当已知合力F 的大小及一个分力F 1的大小时,另一个分力F 2最小的条件是:已知大小的分力F 1与合力F 同方向.最小的F 2=|F -F 1|.典例精析1.受力分析【例1】如图所示,物体b 在水平推力F 作用下,将物体a 挤压在竖直墙壁上.a 、b 处于静止状态,对于a ,b 两物体的受力情况,下列说法正确的是( )A.a 受到两个摩擦力的作用B.a 共受到四个力的作用C.b 共受到三个力的作用D.a 受到墙壁的摩擦力的大小不随F 的增大而增大【解析】要使b 处于平衡状态,a 须对b 产生一个竖直向上的摩擦力,则a 受到b 的摩擦力向下(大小等于b 的重力),a 要处于平衡状态,还要受到墙壁竖直向上的摩擦力,由整体受力平衡知此力大小不变.分析a 、b 的受力知它们分别受到5个、4个力的作用,综上所述可知A 、D 正确.【答案】 AD【思维提升】在受力分析时,有些力的大小和方向不能确定,必须根据已经确定的几个力的情况和物体所处的状态判断出未确定的力的情况,以确保受力分析时不漏力、不添力、不错力.【拓展1】如图所示,位于斜面上的物体M 在沿斜面向上的力F 作用下而处于静止状态,对M 的受力情况,下列说法正确的是( AB )A.可能受三个力作用B.可能受四个力作用C.一定受三个力作用D.一定受四个力作用【解析】对M 进行分析,受重力.M 与斜面、外界F 接触,与斜面挤压,F 推M .与斜面挤压处是否有摩擦,是沿斜面向上还是沿斜面向下由F 与mg sin α决定.所以A 、B 正确.2.正交分解法【例2】已知共面的三个力F 1=20 N ,F 2=30 N ,F 3=40 N ,作用在物体的同一点上,三力之间的夹角都是120°,求合力的大小和方向.【解析】建立如图所示的平面直角坐标系.则F x =F 1x +F 2x +F 3=-F 1sin 30°-F 2sin 30°+F 3=(-20×21-30×21+40) N =15 N F y =F 1y +F 2y =-F 1cos 30°+F 2cos 30°=(-20×23+30×23) N =53 N 由图得F =2222)35(15+=+y x F F N=103 N α=arctan x yF F =arctan 1535=30°【思维提升】用正交分解法求多个力的合力的基本思路是:先将所有的力沿两个互相垂直的方向分解,求出这两个方向上的合力,再合成所得合力就是所有力的合力.【拓展2】三段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳( A )A.必定是OAB.必定是OBC.必定是OCD.可能是OA ,也可能是OC3.平行四边形定则的应用【例3】曲柄压榨机在食品工业、皮革制造等领域有着广泛的应用.如图是一曲柄压榨机的示意图.在压榨铰链A 处作用的水平力为F ,OB 是铅垂线,OA 、AB 与铅垂线所夹锐角均为θ,假设杆重和活塞重可以忽略不计,求货物M 在此时所受的压力为多大?【解析】在图中铰链A 处施加水平力F 时,力F 有两个作用效果,一是使杆AO 受沿AO 方向的压力F AO ,二是使杆AB 受沿AB 方向的压力F AB ,如图所示.FAB =F AO ,2F AB sin θ=F ,所以F AB =θ sin 2F 再将F AB 分解为水平向左的分力F x 和竖直向下的分力F y ,则F y 的大小就是物体M 所受压力的大小.F y =F AB cos θ=θ sin 2F cos θ=2F •cot θ 【思维提升】根据力产生的实际效果,分别对铰链A 处和杆AB 所受的力进行分解,求出物体M 上所受的压力表达式.易错门诊4.矢量图解法【例4】如图所示,物体静止于光滑水平面上,力F 作用于物体O 点,现要使物体沿着OO ′方向做加速运动(F 和OO ′都在水平面内).那么,必须同时再加一个力F ′,这个力的最小值是( )A.F cos θB.F sin θC.F tan θD.F cot θ【错解】当F ′与F 垂直时,F ′最小,且F ′=F cot θ,所以选项D 正确.【错因】上述错误的原因是机械地套用两力垂直时力最小,而实际上本题中合力大小不定,方向确定. 【正解】根据题意可知,F 和F ′的合力沿OO ′方向,作出其矢量三角形,如图所示.由图可知,由F 矢端向OO ′作垂线,此垂线段即为F ′的最小值,故F ′的最小值为F sin θ.【答案】B【思维提升】作出矢量三角形是解决此类问题的关键,同时要注意哪些力方向不变,哪些力大小、方向都不变.这类问题解决的方法是:大小和方向都改变的力向方向不变的力作垂线,该垂线长即为所求最小力.实际上也可以以F 的矢端为圆心,以分力F ′的大小为半径作圆,当圆与另一方向不变的力相切时,该半径即为所求力的最小值.。