solow model
- 格式:ppt
- 大小:970.00 KB
- 文档页数:87
第一章索洛经济增长模型The Solow Growth Model基本内容1 索洛模型的基本假定2 离散时间的索洛模型3离散时间索洛模型的过渡过程4连续时间的索洛模型5连续时间索洛模型的过渡过程6持久增长7带技术进步的索洛模型8比较动态分析1 索洛模型的基本假定● 一个分析经济增长和各国收入差异的基本框架.● 其核心假定是新古典总的生产函数.家庭与生产 I● 封闭经济,唯一的最终产品.● 离散时间,t = 0, 1, 2, ....● 该经济里有众多的家庭,暂时假定家庭没有优化行为.● 这也是索罗模型与新古典增长模型的主要区别.● 为了简化,假定各个家庭相同,可以用代表性家庭来表示.家庭与生产II● 假定家庭的储蓄率外生● 所有厂商具有相同的生产函数,可以用代表性厂商表示.● 对该经济中的唯一最终产品,生产函数为(1)Y T F K t L t A t()[(),(),()]●假定资本与最终产品相同(比如玉米),用于生产更多的产品.●()A t可以理解为技术.●主要假定: 技术是免费的; 具有非竞争性与非排他性.关键假设1Assumption 1 (连续性, 可微性, 边际产出为正且递减, 规模报酬不变) 生产函数3:F R R ++→ 关于 K 与 L 二阶连续可微, 且满足2222()()(,,)0 (,,)0()()(,,)0 (,,)0K L KK LL F F F K L A F K L A K L F F F K L A F K L A K L ∂⋅∂⋅≡>≡>∂∂∂⋅∂⋅≡<≡<∂∂ 同时, F 关于K 与 L 规模报酬不变.● 假定 F 关于K 与 L 规模报酬不变,即关于这两个变量线性齐次.复习定义 假定K 为整数,如果对任意的R λ+∈与K z R ∈,有(,,)(,,)m g x y z g x y z λλλ=,那么函数2:K g R R ++→为x R ∈与y R ∈的m 次齐次函数.定理 (欧拉定理Euler 's Theorem ) 假定函数2:K g R R ++→为x R ∈与y R ∈的m 次齐次函数,偏导数分别是x g 与y g ,那么对任意的x R ∈,y R ∈以及K z R ∈,有()()(),, ,,,,x y mg x y z g x y z x g x y z y =+同时,,(),x g x y z 与,(),y g x y z 是关于x 与y 的1m -次齐次式.市场结构与市场出清 I●假定市场是竞争的, 因此也可认为是竞争一般均衡模型. ●家庭拥有劳动, 供给无弹性.●经济中的劳动(力),)L t , 无论在什么价格下,劳动的供给量均为()L t .●劳动力市场出清条件:())L t L t =上式对所有的t 均成立 , ()L t 劳动需求 (也可视为就业水平). ●一般来说, 互补松弛条件的表述更为准确.●记 t 时期的工资率为 w (t), 于是劳动力市场出清条件可表示为()()),0(L t L t w t ≤≥ and (()()) (0)L t L t w t =-市场结构与市场出清II●假设 1 与竞争的劳动力市场意味着工资率必须严格为正. ●家庭拥有资本,并将其出租给厂商.●记t 期的资本租赁价格()R t .●资本市场出清条件:()()s d K t K t =LHS-家庭的行为决定;RHS-厂商的行为决定●假定家庭拥有的初始资本存量为()0K●()P t 为t 时期最终产品的价格, 将其标准化为1.●利率r(t)●折旧率δ●家庭得到的实际回报()() r t R t δ=-.厂商优化厂商优化 I●考虑代表性厂商的最大化问题:0)0,()([()()()],()()()(),.L t K t max F K t L t A t w t L t R t K t ≥≥--●注意:●上述最大化问题中的变量是总量.●在F 前面没有系数, 这是因为最终产品的价格已正规化为1.●假定要素市场完全竞争: 在厂商看来,()w t 与()R t 是给定的.●凹的问题,因为F 是凹的.厂商优化 II●由于 F 可微, 一阶条件(FOC )为:()[()()()],,,L w t F K t L t A t = (2)()[()()()] ,.,K R t F K t L t A t = (3)●在(2) 与(3)中, ()K t 与()L t 分别表示厂商对资本和劳动的需求量.●实际上,可以通过(2)与(3)求解()K t 与 ()L t ,它们是资本租赁价格()R t 和工资率()w t 的函数.厂商优化 III命题 假定假设1成立,那么均衡时厂商的利润为0,()()( )()() .Y t w t L t R t K t =+●证明: 可直接从欧拉定理得到(注意到1m =,即规模报酬不变).关键假设2假设2 (Inada conditions) F 满足 Inada 条件0 0 0 ()() K K K K lim F and lim F for all L all A →→∞⋅=∞⋅=> 00 0 ()() L L L L lim F and lim F for all L all A →→∞⋅=∞⋅=> ●保证内点解.生产函数Figure: Production functions and the marginal product of capital. The example in Panel A satisfies the Inada conditions in Assumption 2, while the example in Panel B does not.2 离散时间Solow 模型Solow模型的动态过程描述 I●K的折旧率为 , 于是1 1()((() ),)K t K t I t δ+=-+ (4) 其中, ()I t 是t 阶段的投资.●对于封闭经济, 产出等于消费与储蓄(投资)之和 ,()()()Y t C t I t =+ (5) ●注意,该模型没有家庭效用的最大化问题,因此此处难以讨论社会福利等方面的话题.Solow 模型的动态过程描述II●由于经济是封闭的 (同时不考虑政府支出),于是.()()()()S t I t Y t C t ==-●假定家庭的储蓄率是常数,则()(),S t sY t =(6) 1()()()C t s Y t =-(7) ●于是资本供给(家庭的行为决定储蓄率s )可表示为()()( 1 1 )()()()().s K t K t S t K t sY t δδ=-+=-+Solow 模型的动态过程描述 III●资本的供求相等 ()().s K t K t =●同时也有劳动力市场供求相等 ()().L t L t =●结合 (1) 与 (4), 可得 Solow 增长模型的动态方程: ()[()()1 ,, 1.()]()()K t sF K t L t A t K t δ+=+- (8) ●非线性差分方程.●Solow 增长模型的均衡由该方程以及 ()(())()L t or L t and A t 来刻画.定义均衡 I●没有家庭优化, 但仍然有厂商最大化行为以及要素市场的出清.定义 在Solow 模型中,对于给定的序列 {}0()(),t L t A t ∞= 以及初始资本存量()0K , {}0,,,()()()(,)()t K t Y t C t w t R t ∞=是资本、产出、消费、工资率、租赁价格的均衡路径,其中()K t 满足 (8), ()Y t 由(1)给出, ()C t 由 (7)给出, ()w t 与 ()R t 分别由 (2) 与 (3)给出.●注意,均衡是沿着时间的整条路径,而不是静态的点.不考虑人口增长与技术进步时的均衡不考虑人口增长与技术进步时的均衡I●进一步假定(稍后放松假定):●没有人口增长;假定总人口为常数 L > 0, 即() L t L =. ●假定没有技术进步,即() A t A =.●定义资本-劳动比率(人均资本)为 ((,))K t k t L ≡(9)●利用规模报酬不变, 人均产出) ()(/y t Y t L ≡可表示为,1, ()()(() ).K t y t F A L f k t ⎡⎤=⎢⎥⎣⎦≡ (10)不考虑人口增长与技术进步时的均衡 II ●注意()f k 依赖于A, 本可以将生产函数写成,()f k A ;但由于A 是常数,因此可以假定 A = 1.●由欧拉定理0 ()(())()(())()(())0.R t f k t w t f k t k t f k t -'=>'=> (11) ●由假设1可知(11)中的要素价格均为正.例子: Cobb-Douglas 生产函数 I●一类特殊的生产函数,但应用很广泛:1()[()()()]()( ,,,01)Y t F K t L t A t AK t L t ααα-==<<●满足假设1和 2.●两边同时除以()L t ,()() y t Ak t α=●由 (11)可得(1)()()()()Ak t R t Ak t k t ααα--∂==∂ ●由欧拉定理,()()() 1.()()()w t y t R t k t Ak t αα==--例子: Cobb ‐Douglas 生产函数II●或者直接从 Cobb-Douglas 生产函数有,()111()()() () ,R t AK t L t Ak t ααααα----==()()()()()()1 1 ,w t AK t L t A t k ααααα-=-=-直接可验证满足欧拉定理.不考虑人口增长与技术进步时的均衡 不考虑人口增长与技术进步时的均衡I●将 (8)的两端同时除以 L 可得人均量的表达式:()(()1 1).)(()k t sf k t k t δ+=+- (12) 定义 稳态均衡(steady-state equilibrium )* ()k t k =.该经济将趋于该稳态均衡(但在有限时间不能到达).稳态人均资本不考虑人口增长与技术进步时的均衡 II●上图实线代表 (12),虚线是45 线.●它们的(正的)交点*k 表示稳态人均资本 **.()f k k s δ=(13)●注意到还有另一交点0k =,因为已经假定0(0)f =.●忽略该稳态值:●如果资本不是必不可少的(essential ), ()0f 可能大于0 0k =可能变为稳态均衡点●本交点,即使存在,也不稳定。
Solow (1956)模型是整个经济增长的核心,所有的现代的增长模型都是在它的基础上拓展开来的。
Solow 模型的背景是完全竞争的市场经济,它由这样一些列假设出发——包括生产函数是一次齐次的,紧凑形式的生产函数f(k)是严格凹的,f(k)同时满足Inada条件,并且这个模型只考察了资本、劳动力和知识等生产要素,忽略了诸如土地、其他自然资源等要素。
根据假设,模型一般先是求解每单位有效劳动的资本存量k的动态方程,然后作出相关的相位图,则有这样的结论:当模型收敛到均衡点时,每有效劳力的资本、产出和消费保持不变;人均的资本、产出和消费以g 的速率增长;总资本、总产出和总消费以(n+g)的速率增长。
接来下考察储蓄率s变动对经济的影响及其相位图,得出改变储蓄率只有水平效应而没有增长效应。
第三,关于资本存量的黄金律。
第四,数量分析——包括对产出的影响和收敛速度。
对产出的影响在我看来无非就是求解储蓄率s关于人均有效产出y的弹性;收敛速度则是Taylor公式的一个应用。
第五,就是Solow模型所做的预言,发达经济体与不发达经济体最终将会“趋同”——这一点随着后续模型的发展将会被证伪。
第六,关于Solow 残差的计量求解。
Solow模型的结论无非就是实物资本的积累即不能解释世界范围的经济增长的显著部分,也不能解释国与国之间的差距。
这才有了后续的扩展。
扩展1. RCK 模型这是由Ramsey(1928)年首先做出来的,可惜这位短命的剑桥天才太“天才”了,用到了当时经济学家普遍不懂的变分法求解增长问题,以至于这么重要的一篇文章,当时都没有人读懂(八卦#^_^#:类似的还有von Nuemannn,这位伟大的数学家在1930S写出一篇关于多部门经济增长的模型,可惜也是数学太复杂,以及当时经济增长相关研究还不够,所以直到CGE研究大行其道,这篇文章的价值才被发掘出来)。
直到Cass(1965),Koopmans(1965)重新根据最优控制原理重新写出了Ramsey模型,其后才广为人所知。
古诺模型均衡条件1. 引言古诺模型(Solow Model)是经济学中一种描述经济增长的模型,由罗伯特·古诺(Robert Solow)于1956年提出。
该模型通过分析资本积累和技术进步对经济增长的影响,揭示了经济增长的动力机制。
在古诺模型中,均衡条件是指资本存量、劳动力供给、技术进步等因素之间达到一种稳定状态,使得经济能够以持续稳定的速度增长。
本文将详细介绍古诺模型均衡条件的内涵和求解方法。
2. 古诺模型基本框架古诺模型假设一个封闭经济体中存在以下几个要素:劳动力、资本和技术进步。
其中,劳动力供给总量为L,资本存量为K,产出为Y,投资为I。
根据马尔萨斯人口学说,劳动力供给呈现固定增长率n。
同时,假设技术进步以恒定比例a>0的速度发展。
根据生产函数理论,产出与劳动力供给和资本存量的乘积有关,即Y=AKαL1−α,其中A表示全要素生产率,α为资本的边际产出份额。
古诺模型的基本框架可以表示为以下方程组:K=I−δKL=nLA=aAY=AKαL1−α其中K、L和A分别表示资本存量、劳动力供给和技术进步的变化率;I表示投资;δ为资本折旧率。
3. 古诺模型均衡条件古诺模型的均衡条件是指使得经济能够以持续稳定的速度增长所需满足的条件。
根据古诺模型的基本框架,我们可以推导出古诺模型的均衡条件。
首先,考虑经济增长中资本存量和劳动力供给的变化。
根据上述方程组可知,劳动力供给总量L以固定增长率n增加,而资本存量则由投资I减去折旧δK。
因此,可以得到以下式子:K=I−δK=(sY−δK)−δK=sY−2δK其中s表示储蓄率,即投资占产出的比例。
另一方面,根据生产函数Y=AKαL1−α可知,产出Y与资本存量K和劳动力供给L有关。
因此,我们可以将上述方程进一步改写为:K=sAKαL1−α−2δK由于均衡状态下经济增长的速度为零(K=0),所以古诺模型的均衡条件可以表示为以下方程:sAKαL1−α−2δK=0此外,还需要考虑技术进步对经济增长的影响。
索洛模型假设1. 简介索洛模型(Solow model)是由美国经济学家罗伯特·索洛(Robert Solow)在1956年提出的一种经济增长模型。
该模型旨在解释国家经济增长的长期趋势,特别是在资本积累和技术进步的背景下。
索洛模型假设了一系列经济变量之间的关系,包括劳动力增长、资本积累、产出增长和经济收入分配等。
通过分析这些变量之间的相互作用,索洛模型试图解释为什么一些国家的经济增长速度比其他国家更快,以及如何实现持续的经济增长。
2. 假设内容索洛模型基于以下几个主要假设:2.1 假设一:劳动力增长索洛模型假设劳动力人口以固定的速度增长。
这意味着劳动力人口的增长率是恒定的,不受其他因素的影响。
这个假设基于人口增长通常较为缓慢的事实,尤其是相对于资本积累和技术进步而言。
2.2 假设二:资本积累索洛模型假设资本积累是经济增长的主要驱动力。
资本积累是指通过投资来增加生产资本,包括机器、设备、工厂等。
模型假设资本积累的速度是恒定的,与劳动力增长率相匹配。
2.3 假设三:产出增长索洛模型假设产出增长取决于资本积累和技术进步。
资本积累可以提高生产效率,而技术进步可以改善生产方法和生产工具。
模型假设产出增长的速度是资本积累和技术进步的函数,即产出增长率随着资本积累和技术进步的增加而增加。
2.4 假设四:经济收入分配索洛模型假设经济收入在劳动力和资本之间的分配是固定的。
即劳动力和资本的收入份额是恒定的,不受其他因素的影响。
这个假设基于历史上收入分配相对稳定的事实,尽管在现实中这个假设并不总是成立。
3. 模型解释基于上述假设,索洛模型可以用以下方程表示:Y=Kα⋅(AL)1−α其中,Y表示产出,K表示资本积累,A表示技术进步,L表示劳动力。
α是资本的边际产出份额,(1-α)是劳动力的边际产出份额。
根据这个方程,我们可以看到产出取决于资本积累、劳动力和技术进步。
资本积累和劳动力的增加会促进产出的增长,而技术进步可以提高产出的效率。
发展经济学索洛模型发展经济学是研究经济增长和经济发展的学科,它关注的核心问题是如何使一个经济体从贫穷落后状态向富裕先进状态转变。
在这个过程中,经济学家们提出了许多模型和理论来解释经济增长的动力和机制。
其中,索洛模型(Solow Model)是发展经济学中一个重要的经济增长模型,本文将对索洛模型进行详细阐述。
一、索洛模型简介索洛模型,又称新古典增长模型,是由美国经济学家罗伯特·索洛(Robert Solow)在20世纪50年代提出的。
该模型主要研究了资本积累、劳动力增长和技术进步对经济增长的影响。
索洛模型是一个动态一般均衡模型,它描述了在一个封闭经济中,资本、劳动力和技术如何相互作用,从而推动经济增长。
二、索洛模型的基本假设封闭经济:索洛模型假设经济体是一个封闭系统,不与外部世界进行贸易往来。
生产函数:生产函数表示在一定时期内,生产要素(资本和劳动力)的投入与产出之间的关系。
索洛模型通常采用柯布-道格拉斯生产函数(Cobb-Douglas production function),该函数具有资本和劳动力的规模报酬不变特性。
储蓄率:储蓄率是家庭部门储蓄占总收入的比例。
在索洛模型中,储蓄率是外生给定的,并且保持不变。
人口增长:劳动力数量以固定的外生速率增长。
资本折旧:资本在使用过程中会磨损和消耗,因此需要以一定的速率进行折旧。
技术进步:索洛模型中的技术进步是外生的,以固定的速率增长,它可以提高生产的效率。
三、索洛模型的动态过程索洛模型的动态过程主要包括资本积累和经济增长两个方面。
资本积累:在一个没有政府部门的封闭经济中,总投资等于总储蓄。
总投资用于增加资本存量,同时资本也会因为折旧而减少。
当经济达到稳态时,储蓄恰好等于为保持资本存量不变所需的投资(包括补偿折旧的投资和为新增加的劳动力配备按原有资本-劳动比率配备的资本)。
经济增长:在索洛模型中,经济增长主要来源于资本深化(即每个劳动力拥有的资本数量增加)和技术进步。