冀教版八年级上《第十二章分式和分式方程》单元测试含答案
- 格式:doc
- 大小:102.50 KB
- 文档页数:7
第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、方程=0的解是()A.无解B.x=1C.x=﹣1D.x=±12、计算(﹣)÷的结果为()A. B. C. D.3、在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:①甲班捐款2500元,乙班捐款2700元;②乙班平均每人捐款数比甲班平均每人捐款数多;③甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A. B. C. ×(1+)= D.4、若x=2012,则代数式的值为()A.2010B.2011C.2012D.15、若数使关于的分式方程的解为正数,且使关于的不等式组的解集为.则符合条件的所有整数的和为()A.8B.10C.12D.166、下列分式中,属于最简分式的是()A. B. C. D.7、若关于x的方程=0没有增根,则m的值不能是()A.3B.2C.1D.−18、下列各式错误的是()A. B. C.D.9、下列计算错误的是()A. =B. =C. =D. - =-10、化简=()A. B. C. D.11、下列从左边到右边的变形正确的是()A.8a 2b-4ab-12ab 2=4ab(2a-3b)B.x 2-x+ =(x- )2C. + =D. + =112、如果分式中,x、y的值都变为原来的一半,则分式的值()A.不变B.扩大2倍C.缩小2倍D.以上都不对13、在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A. - =10B. - =10C. -=10 D. - =1014、要使关于x的一元二次方程有两个实数根,且使关于x的分式方程的解为非负数的所有整数的个数为()A.5个B.6个C.7个D.8个15、函数中,自变量的取值范围是()A.x≥-1B.x>-1C.x≥-1且x≠0D.x>-1且x≠0二、填空题(共10题,共计30分)16、计算:=________17、计算:=________.18、如果分式的值为零,那么x=________.19、若关于x的方程有增根,则________.20、已知实数x满足4x2-4x+1=0,则代数式2x + 的值为________.21、已知,则的值等于________.22、甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?解:设甲队每天修路x米,用含x的代表式完成表格:甲队每天修路长度(单位:米) 乙队每天修路长度(单位:米)甲队修500米所用天数(单位:天)乙队修800米所用天数(单位:天)x ________ ________关系式:甲队修500米所用天数=乙队修800米所用天数根据关系式列方程为:________解得:________检验:________答:________23、约分:=________.24、分式无意义的条件是________.25、计算的结果为________.三、解答题(共5题,共计25分)26、(1)计算:()﹣2+﹣|﹣5|+(﹣2)0(2)先化简(1-)÷,再从有意义的范围内选取一个整数作为a的值代入求值.27、先化简,再求值:÷(x﹣2+),其中x=﹣1.28、解方程:+=5.29、如图,点A、B在数轴上,它们所对应的数分别是-4,,且点A、B到原点的距离相等.求x的值.30、先化简,再求值:﹣,然后在0,1,2,3中选一个你认为合适的x值,代入求值.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、C5、B6、B7、B8、A9、B10、A12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、30、。
第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、化简﹣1结果正确的是()A. B. C. D.2、若代数式有意义,则实数x的取值范围是( )A. 且B.C.D. 且3、若分式的值不为0,则x的值为().A.- 1B.0C.2D.不确定4、已知一个三角形三边的长分别为5,7,a,且关于y的分式方程的解是非负数,则符合条件的所有整数a的和为()A.24B.15C.12D.75、函数中,自变量x的取值范围是().A. x≠B. x≠1C. x>D. x≥6、要使分式的值为0,你认为x可取得数是( )A.9B.±3C.-3D.37、下列说法错误的是()A.当时,分式有意义B.当时,分式无意义C.不论取何值,分式都有意义D.当时,分式的值为08、若分式的值是负数,则的取值范围是( ).A. >B. <C. <0D.不能确定9、对于非零的两个实数a、b,规定a b=.若1(x+1)=1,则x的值为()A. B. C. D.10、要使分式有意义,则x的取值是()A.x≠±1B.x=±1C.x≠﹣2D.x=﹣211、下列式子正确的是()A.3a 2b+2ab 2=5a 3b 3B.2﹣C.(x﹣2)(﹣x+2)=x 2﹣4D.a 2•a 3+a 6=2a 612、分式方程的解为()A.1B.2C.3D.413、若实数x,y满足x2-2xy+y2+x-y-6=0,则x-y的值是( )A.-1B.6C.-2或3D.2或-314、分式方程 =1的解是()A.-1B.1C.8D.1515、下列式子中,x的取值范围为x≠3的是()。
A.x-3B.C.D.二、填空题(共10题,共计30分)16、若分式的值为0.则x=________ .17、把分式,,通分后,结果是________.18、分式方程的解是________ .19、分式与的最简公分母是________.20、若关于x的方程________;21、计算的结果等于________.22、,的最简公分母是________.23、已知x2﹣4x﹣5=0,则分式的值是________.24、函数y= 的自变量的取值范围是________.25、若分式的值为0,则的值是________.三、解答题(共5题,共计25分)26、化简:.27、化简求值:,其中x= .28、分别按照下列条件,求x的值:(1)分式的值等于零;(2)x2﹣2x﹣2=()0.29、甲、乙两辆客车分别从相距40千米的A、B两站同时出发,相向而行,相遇时乙车行驶了25千米,如果乙车每小时比甲车多走2千米,求甲、乙两车速度.30、列方程解应用题.随着人们环保意识的增强及科学技术的进步,各种绿色环保新产品进入千家万户,今年一月份小楠家将天然气热水器换成了太阳能热水器,减少天然气的用量,去年12月份小楠家的天然气费一共是96元,从今年一月份起天然气费价格每立方米上涨了25%,小楠家2月份的用气量比去年12月份少10立方米,2月份的天然气费一共是90元,请你求小楠家今年2月份用气量是多少?参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、B5、A6、D7、C8、A9、A11、B12、D13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、。
第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、化简的结果是()A.x+1B.x﹣1C.xD.﹣x2、如果分式的值为零,则的值是()A. B. C. D.3、若分式有意义,则满足的条件是()A. 或-2B.C.D.4、若代数式和的值相等,则x=()A.3B.7C.﹣4D.﹣35、若分式的值为零,则的值是()A.2或-2B.2C.-2D.46、若关于x的方程有增根,则m的值是()A.-2B.2C.5D.37、在式子,,,,,中,分式的个数是()A.2B.3C.4D.58、若分式无意义,则x的值为()A.0B.1C.-1D.29、解方程x2−x+2=时,如果设y=x2-x,那么原方程可变形为关于y的整式方程是()A.y 2-2y-1=0B.y 2-2y+1=0C.y 2+2y+1=0D.y 2+2y-1=010、关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.511、分式有意义,则x的取值范围是()A.x=3B.x≠3C.x≠﹣3D.x=﹣312、若分式的值为0,则x的值为()A.0B.2C.-2D.0和213、若分式在实数范围内有意义,则x的取值范围是()A. B. C. D.14、先化简,再求值:,小明的解题步骤如下:原式= 第一步= 第二步= 第三步= 第四步请你判断一下小明的解题过程从第几步开始出错( )A.第一步B.第二步C.第三步D.第四步15、已知x≠0,则等于()A. B. C. D.二、填空题(共10题,共计30分)16、计算:=________17、如果分式的值为零,那么x=________.18、已知x﹣=1,则的值为________.19、化简:=________.20、分式方程的解是________.21、化简:=________.22、计算= ________.23、分式方程的根是________.24、已知关于x的分式方程=1无解,则a=________.25、已知关于x的分式方程无解,则a=________三、解答题(共5题,共计25分)26、先化简,再求值:,其中x=2013.27、某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍求A,B两种口罩的单价各是多少元?28、先化简,再求值:(1﹣)÷,再从﹣2≤x<2中选一个合适的整数代入求值.29、七(1)班的大课间活动丰富多彩,小峰与小月进行跳绳比赛.在相同的时间内,小峰跳了100个,小月跳了140个.如果小月比小峰毎分钟多跳20个,试求出小峰毎分钟跳绳多少个?30、列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、C6、D8、C9、D10、A11、B12、B13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、分式中,当x=-a时,下列结论正确的是()A.分式的值为零;B.分式无意义C.若a≠- 时,分式的值为零;D.若a≠时,分式的值为零2、计算的结果为().A. B.﹣ C.﹣ D.3、已知⊙O1的半径r1=2,⊙O2的半径r2是方程的根,当两圆相内切时,⊙O1与⊙O2的圆心距为()A.5B.4C.1或5D.14、分式和的最简公分母是()A.a+bB.a﹣bC.a 2﹣b 2D.a 2+b 25、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A. B. C. D.6、化简的结果是( )A.x+1B.C.x-1D.7、解分式方程时,去分母后可得到A. B. C.D.8、化简﹣的结果是()A.m+3B.m﹣3C.D.9、已知抛物线y=﹣x2+(k﹣1)x+3,当x>2时,y随x的增大而减小,并且关于x的分式方程的解为正数.则符合条件的所有正整数k的和为()A.8B.10C.13D.1510、用换元法解方程﹣=3时,设=y,则原方程可化为()A.y= ﹣3=0B.y﹣﹣3=0C.y﹣+3=0D.y﹣+3=011、计算2x3÷的结果是()A.2x 2B.2x 4C.2xD.412、若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠113、方程=的解为()A.x=1B.x=﹣1C.x=2D.x=314、若关于x的分式方程+ =2有增根,则m的值是( )A.-1B.0C.3D. 0或315、下列运算正确的是()A.(2a 2)3=6a 6B.﹣a 2b 2•3ab 3=﹣3a 2b 5C. •=﹣1 D. + =﹣1二、填空题(共10题,共计30分)16、函数中自变量x的取值范围是________17、分式方程的解是________.18、学习了“分式的加法”的相关知识后,小明同学画出了如图:请问他画的图中①为________,②为________.19、若分式方程=2的一个解是x=1,则a=________.20、列分式方程的步骤:(1)审清题意,明确题目中的未知数;(2)根据题意找________,列出分式方程.21、已知=,则=________.22、已知= ,则的值为________23、分式,,的最简公分母是________.24、化简:________.25、若分式的值为零,则m,n满足的条件是________.三、解答题(共5题,共计25分)26、若,.求的值.27、先化简,再求值:﹣÷,其中a=cos30°﹣2tan45°.28、化简代数式,请在-2,0,1,2中选择一个你喜欢的x的值代入化简后的代数式并求值.29、春节寒假期间,小红同学完成寒假数学作业的情况是这样的:刚开始放假后放松调节了几天,随后每天都做相同页数的数学作业,做了5天后,由于新冠肺炎疫情的加重,当地加强了防控措施,对外出进行了限制,小红有更多的时间待在家里,做作业的效率提高到原来的2倍,结果比原来提前6天完成寒假数学作业,已知寒假数学作业共有34页,求小红原来每天做多少页的寒假数学作业.30、化简分式:参考答案一、单选题(共15题,共计45分)1、C2、D4、C5、B6、A7、C8、A9、C10、B11、B12、D13、A14、A15、D二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。
第12章分式和分式方程单元测试一、单选题(共10题;共30分)1.化简分式bab+b2的结果为()A、1a+bB、1a+1bC、1a+b2D、1ab+b2.有理式①,②,③,④中,是分式的有()A、①②B、③④C、①③D、①②③④3.若x=3是分式方程的根,则a的值是().A、5B、﹣5C、3D、﹣34.给出下列式子:1a、3a2b3c4、56+x、x7+y8、9x+10y,其中,是分式的有()A.5个B.4个C.3个D.2个5.在式子y2、x、12π、2x-1中,属于分式的个数是()A.0B.1C.2D.36.如果1a+1b=1,则a-2ab+b3a+2ab+3b的值为()A.15B.-15C.-1D.-37.学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x根栏杆,根据题意列方程为()A. = +2B. = ﹣2C. = ﹣2D. = +28.下列分式中最简分式为()A. B. C. D.9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达、若设走路线一时的平均速度为x千米/小时,根据题意,得()A.25x−30(1+80%)x=1060B.25x−30(1+80%)x=10C.30(1+80%)x−25x=1060D.30(1+80%)x−25x=1010.如果,那么的值是( )A、B、C、D、二、填空题(共8题;共24分)11.计算÷的结果是________、12.分式方程= 的解是________、13.方程﹣=0的解是________、14.计算:-3xy24z•-8zy=________15.计算:3a22b·4b9a=________ .16.分式方程5x+3=1的解是________ 、17.关于x的方程mxx-3=3x-3无解,则m的值是________、18.若分式x2−1x+2 有意义,则x的取值范围是________、三、解答题(共5题;共36分)19.解方程:3xx-1=1+11-x、20.先化简,再求值:(1+1x−1)÷xx2−1 ,其中:x=﹣2、21.某市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,问原计划每小时修路多少米?22.昆明在修建地铁3号线的过程中,要打通隧道3600米,为加快城市建设,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成了任务、问原计划每天打通隧道多少米?23.下面是我校初二(8)班一名学生课后交送作业中的一道题:计算:x3x−1−x2−x−1 、解:原式= x3x−1−(x2−x−1)=x3−(x−1)(x2+x+1)=x3−(x3−1)=1 、你同意她的做法吗?如果同意,请说明理由;如果不同意,请把你认为正确的做法写下来、四、综合题(共1题;共10分)24.解方程:(1)1x=5x+3;(2)xx−1−2=32x−2 、答案解析一、单选题1、【答案】A【考点】约分【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分、判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分、【解答】原式=bb(a+b)=1a+b、故选:A、【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题、在解题中一定要引起注意、2、【答案】C【考点】分式的定义【解析】【解答】①③中分母中含有字,所以为分式. ②④中不含有字母.【分析】本题考查分式的定义,区分关键是分母中是否含有字母.3、【答案】A【考点】分式方程的解【解析】【分析】首先根据题意,把x=3代入分式方程,然后根据一元一次方程的解法,求出a的值是多少即可、【解答】∵x=3是分式方程的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5、故选:A、4、【答案】C【考点】分式的定义【解析】【解答】解:3a2b3c4、x7+y8的分母中均不含有字母,因此它们是整式,而不是分式、1a、56+x、9x+10y,分母中含有字母,因此是分式、故选C、【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式、5、【答案】B【考点】分式的定义【解析】【解答】解:式子y2、x、12π、2x-1中,属于分式的有2x-1 ,只有1个、故选B、【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式,可得答案、6、【答案】B【考点】分式的化简求值【解析】【解答】解:∵1a+1b=1,即a+bab=1,∴a+b=ab,则原式=a+b-2ab3a+b+2ab=ab-2ab3ab+2ab=-ab5ab=-15 、故选B、【分析】已知等式左边通分并利用同分母分式的加法法则计算整理得到a+b=ab,代入原式计算即可得到结果、7、【答案】D【考点】由实际问题抽象出分式方程【解析】【解答】解:设每天油x根栏杆,根据题意列方程:24000x = 24000x+400 +2 故选:D、【分析】如果设每天油x根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程、8、【答案】B【考点】最简分式【解析】【解答】解:A、42x=2x可以约分,错误;B、2xx2+1 是最简分式,正确;C、x−1x2−1=1x+1 可以约分,错误;D、1−xx−1=1 可以约分,错误;故选:B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分、判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分、9、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设走路线一时的平均速度为x千米/小时,25x﹣30(1+80%)x = 1060 、故选:A、【分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程、10、【答案】D【考点】分式的基本性质【解析】【解答】解:∵,,故选D.二、填空题11、【答案】【考点】分式的乘除法【解析】【解答】÷= = 、故答案为:、【分析】利用分式的乘除法求解即可、12、【答案】x=9【考点】解分式方程【解析】【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解、【解答】方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9、检验:把x=9代入x(x﹣3)=54≠0、∴原方程的解为:x=9、故答案为:x=9、13、【答案】x=6【考点】解分式方程【解析】【分析】先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根、【解答】去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根、故答案为:x=6、14、【答案】6xy【考点】分式的乘除法【解析】【解答】解:原式=24xy2z4yz=6xy、故答案为:6xy、【分析】原式利用分式相乘的方法计算,约分即可得到结果、15、【答案】23a【考点】约分,分式的乘除法【解析】【解答】解:原式=23a、故答案为23a【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母、然后进行约分、化简即可、16、【答案】x=2【考点】分式方程的解【解析】【解答】解:方程的两边同乘(x+3),得5=x+3,解得x=2、检验:把x=2代入(x+3)=5≠0、所以原方程的解为:x=2、故答案为x=2、【分析】观察可得最简公分母是(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解、17、【答案】1或0【考点】分式方程的解【解析】【解答】解:去分母得mx=3,∵x=3时,最简公分母x﹣3=0,此时整式方程的解是原方程的增根,∴当x=3时,原方程无解,此时3m=3,解得m=1,当m=0时,整式方程无解∴m的值为1或0时,方程无解、故答案为:1或0、【分析】先把分式方程化为整式方程得到mx=3,由于关于x的分式方程mxx-3=3x-3无解,当x=3时,最简公分母x﹣3=0,将x=3代入方程mx=3,解得m=1,当m=0时,方程也无解、18、【答案】x≠2【考点】分式有意义的条件【解析】【解答】解:由题意得:x+2≠0,解得:x≠2,故答案为:x≠2、【分析】根据分式有意义的条件可得x+2≠0,再解即可、三、解答题19、【答案】解:去分母得:3x=x﹣1﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解、【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解、20、【答案】解:,= ,= ,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1【考点】分式的化简求值【解析】【分析】本题需先对要求的式子进行整理,再把x的值代入即可求出答案、21、【答案】解:设原计划每小时修路x米,,解得,x=50,经检验x=50时分式方程的解,即原计划每小时修路50米【考点】分式方程的应用【解析】【分析】根据题意可以列出相应的分式方程,然后解分式方程即可,本题得以解决、22、【答案】解:设原计划每天打通隧道x米,由题意得:﹣=20,解得:x=80,经检验:x=80是原分式方程的解,答:原计划每天打通隧道80米【考点】分式方程的应用【解析】【分析】首先设原计划每天打通隧道x米,则实际每天打通隧道1.8x米,根据题意可得等量关系:原计划所用时间﹣实际所用时间=20天,根据等量关系列出方程,再解即可、23、【答案】解:原式= ﹣﹣﹣=【考点】分式的加减法【解析】【分析】根据分式的加减,可得答案、四、综合题24、【答案】(1)解:去分母得:x+3=5x,解得:x= 34 ,经检验x= 34 是分式方程的解(2)解:去分母得:2x﹣4x+4=3,解得:x= 12 ,经检验x= 12 是分式方程的解【考点】解分式方程【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解、。
第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. B. C. D.2、下列说法正确的是()A.分式的值为零,则的值为B.根据分式的基本性质,等式C.分式中的,都扩大倍,分式的值不变D.分式是最简分式3、下列各式,,x2y,﹣,,中,是分式的有()A.1个B.2个C.3个D.4个4、若将分式中的x与y的值都扩大为原来的2倍,则这个分式的值将()A.扩大为原来的2倍B.不变C.扩大为原来的4倍D.无法确定5、÷等于()A. B. C.- D.-6、下列分式为最简分式的是()A. B. C. D.7、下列各分式中,是最简分式的是()A. B. C. D.8、若整数a使关于x的不等式组无解,且使关于x的分式方程有整数解,那么所有满足条件的a的值的积是()A.2B.3C.D.89、在代数式x,,xy2,,,x2﹣中,分式共有()A.2个B.3个C.4个D.5个10、分式方程=1的解是()A.x=﹣B.x=2C.x=3D.x=11、某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A. B. C. D.12、如果分式有意义,那么x的取值范围是()A.x≠0B.x≤﹣3C.x≥﹣3D.x≠﹣313、若实数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程有正整数解,则符合条件的所有整数a的和为()A.-7B.-12C.-21D.-2314、使分式有意义的x的取值范围是()A. B. C. D.15、某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. B. C.D.二、填空题(共10题,共计30分)16、在函数中,自变量x的取值范围是________;化简:________.17、分式与的最简公分母是________.18、分式有意义的条件是________.19、定义:,则方程的解为________.20、已知整数a满足,则分式的值为________.21、计算:÷•=________22、当x=________时,分式的值为0.23、若分式有意义,则x的取值范围是________.24、某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为________.25、若,其中,则________.三、解答题(共5题,共计25分)26、化简求值:,其中.27、已知分式的值为0,求a的值及b的取值范围.28、如图,学校为生物兴趣小组规划一块长方形试验田.长AD为22m,宽AB为18m.现在试验田中留出分别与AD,AB平行且宽度相同的小路,将试验田分割成形状、大小完全相同的四个小长方形,每个小长方形的长宽之比为5:4.求小路的宽度.29、求式子中x 的取值范围.30、解分式方程:.参考答案一、单选题(共15题,共计45分)1、B3、C4、B5、C6、A7、C8、C9、B10、D11、A12、D13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
八年级上册数学单元测试卷-第十二章分式和分式方程-冀教版(含答案)一、单选题(共15题,共计45分)1、下列各式从左到右变形正确的是()A. B. C. D.2、甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A. B. C. D.3、若分式的值为零,则x的值是()A.0B.1C.﹣1D.﹣24、化简﹣的结果是()A.x+1B.x﹣1C.1﹣xD.﹣x﹣15、 + 的运算结果正确的是()A. B. C. D.a+b6、计算的结果为()A. B. C.﹣1 D.27、计算的结果是()A.a﹣bB.b﹣aC.1D.-18、为祝福祖国70周年华诞,兴义市中等职业学校全体师生开展了以“我和我的祖国、牢记初心和使命”为主题的演讲比赛,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用了1500元,购买的钢笔数比毛笔少35支,钢笔、毛笔的单价分别是多少元?如果设毛笔的单价为x元/支,那么下面所列方程正确的是()A. B. C.D.9、要时分式有意义,则x应满足的条件为()A.x≠2B.x≠0C.x≠±2D.x≠﹣210、若关于x的分式方程=2﹣有增根,则m的值为()A.﹣3B.2C.3D.不存在11、要使得分式有意义,那么应满足()A. B. C. D.12、下列分式的运算正确的是( )A. B. C. D.13、要使分式有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-114、如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.15、甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A.17小时B.14小时C.12小时D.10小时二、填空题(共10题,共计30分)16、若﹣=2,则的值是________.17、若分式的值为零,则x的值为________.18、使代数式有意义的x的取值范围是________19、使分式有意义的的取值范围是________20、已知分式的值为负数,则的取值范围为________.21、当x________时,分式有意义.22、计算:+=________ .23、要使分式有意义,则x的取值范围是________.24、若分式的值为零 , 则________.25、计算:()2=________ .三、解答题(共5题,共计25分)26、先化简再从1,0,这三个数中选个合适的数作为的值代入求值.27、先化简,再求值:(﹣)•,其中x=4.28、列方程或方程组解应用题:九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度.29、先化简,再求值:(﹣)÷•,其中a= + ,b= ﹣.30、西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务.问原计划每天铺多少千米,计划多少天完成?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、D5、C6、C7、D9、D10、C11、B12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。
147 冀教版数学八年级上册 第十二章 分式和分式方程 单元检测题 含答案一.选择题(每小题3分,共24分)1、当x=2时,其值为零的分式是 ( )232)(2+--x x x A 21)(-x B 142)(--x x C 12)(++x x D2、使分式65222++-+x x x x 的值等于零,则x 的值为 ( )A.1B.-2C.1或-2D.-1或23、分式()()311-+-x x x 有意义,则x 应满足条件 ( )A 、1-≠xB 、3≠xC 、1-≠x 或3≠xD 、1-≠x 且3≠x 4、分式a x y 434+,1142--x x ,y x y xy x ++-22,2222b ab aba -+中,最简分式有 ( )A.1个B.2个C.3个D.4个.5、若x 等于它的倒数,则分式1332622+-+÷--+x x x x x x 的值为 ( )A.-1B.5C.-1或5D.-41或4.6.已知为整数,且918232322-++-++x x x x 为整数,则符合条件的有()A .2个B .3个C .4个D .5个7、使方程(m+1)x=m-1有解的m 值是 ( )8、现有20%的盐水10千克,问加食盐多少千克,才能恰好配得40%的盐水?解设加食盐x 千克,则正确的方程是 ( )A 、004010=+x xB 、0040101002010=++⨯x xC 、004010020=+x xD 、0040100201002010=++⨯x x二、填空题(每小题3分,共24分)9、对于分式521-+x x ,当x 时,该分式有意义。
10、当x= 时,分式242--x x 的值为零.11、化简:1342+⋅⎪⎭⎫ ⎝⎛+-x xx 得__________。
14812、计算:3)3(32-+-x x x x =_________。
13、方程114112=---+x x x 的解为_____。
冀教版八年级数学上册第十二章分式和分式方程测试题一、选择题(每小题4分,共32分)1.在代数式3x +12,5a ,6x 2y π,35+y ,2ab 2c 23,x 2x中,分式有( ) A .4个 B .3个C .2个D .1 个2.若分式x -3x +4的值为0,则x 的值是( ) A .3 B .0C .-3D .-43.下列等式中正确的是( )A.a b =2a 2bB.a b =2+a 2+bC.a b =a -1b -1D.a b =a 2b 2 4.使等式7x +2=7x x 2+2x从左到右变形成立的条件是( ) A .x <0 B .x >0C .x ≠0D .x =05.分式方程12x =1x +3的解是( ) A .x =-2 B .x =1C .x =2D .x =36.计算⎝ ⎛⎭⎪⎫2x x 2-1+x -1x +1÷1x 2-1的结果是( ) A.1x 2+1 B.1x 2-1 C .x 2+1 D .x 2-17.若分式方程k -1x -1-1x -x =k -5x +x有增根x =-1,则k 的值为( ) A .1 B .3C .6D .98.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度分别为多少?设货车的速度为x 千米/时,依题意列方程正确的是( )A.25x =35x -20 B.25x -20=35x C.25x =35x +20 D.25x +20=35x二、填空题(每小题4分,共24分)9.当x________时,分式13-x有意义. 10.分式x +y 2xy ,y 3x 2,x -y 6xy 2的最简公分母为________.11.计算1a -1+a 1-a的结果是________. 12.当x =________时,1x +1与1x -1互为相反数. 13.某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工a 件这样的产品,机器加工所用的时间是手工加工所用时间的37,则手工每小时加工产品的数量为________件.14.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…,你规定的新运算a ⊕b =__________(用含a ,b 的代数式表示).三、解答题(共44分)15.(6分)计算:(1)-3a 2b 3cd 2·8a 2c 221bd ÷-2c 7a;(2)3a +⎝ ⎛⎭⎪⎫1+1a -2·a 2-2a a -1.16.(6分)解方程:x x +3=1+2x -1.17.(6分)已知1a -1=2,请先化简⎝ ⎛⎭⎪⎫1-1a +2÷a 2+2a +1a 2-4,再求该式子的值.18.(8分)一般情况下,一个分式通过适当的变形,可以化为整式与分式的和的形式,例如:①x +1x -1=(x -1)+2x -1=x -1x -1+2x -1=1+2x -1; ②x 2x -2=x 2-4+4x -2=()x +2(x -2)+4x -2=x +2+4x -2. (1)试将分式x -1x +2化为一个整式与一个分式的和的形式; (2)如果分式2x 2-1x -1的值为整数,求x 的整数值.19. (8分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20.(10分)在某城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程合作完成该工程省钱?答案1.B 2.A 3.A .4.C 5.D 6.C 7.D 8.C9.≠3 10.6x 2y 2 11.-112.0 13.2714.2a +2b ab 或2a +2b(符合题意的式子均可) 15.解:(1)原式=-3a 2b 3cd 2·8a 2c 221bd ·7a -2c =4a 53d 3. (2)原式=3a +a -2+1a -2·a (a -2)a -1=3a +a =4a. 16.解:方程两边同乘(x -1)(x +3),得x(x -1)=(x +3)(x -1)+2(x +3).解得x =-35. 检验:当x =-35时,(x -1)(x +3)≠0. ∴x =-35是原方程的解. 17.解:原式=a +2-1a +2·(a +2)(a -2)(a +1)2=a -2a +1. ∵1a -1=2,∴a -1=12,∴a =32. 当a =32时,原式=⎝ ⎛⎭⎪⎫32-2÷⎝ ⎛⎭⎪⎫32+1=-12÷52=-15. 18.解:(1)原式=(x +2)-3x +2=1-3x +2. (2)原式=2x 2-2+1x -1=2(x +1)(x -1)+1x -1=2(x +1)+1x -1. ∵分式的值为整数,且x 为整数,∴x -1=±1,∴x =2或x =0.19.解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米.根据题意,得360x -3601.6x=4,解得x =33.75, 经检验x =33.75是原分式方程的解且符合题意,则1.6x =1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米.(2)设平均每年绿化面积增加a 万平方米.根据题意,得54×3+2(54+a)≥360,解得a ≥45.答:实际平均每年绿化面积至少还要增加45万平方米.20.解:(1)设乙队单独完成之项工程需x 天,根据题意,得160×20+⎝ ⎛⎭⎪⎫1x +160×24=1, 解这个方程,得x =90.经检验,x =90是原方程的解且符合题意.答:乙队单独完成这项工程需90天.(2)设甲、乙合作完成需y 天,则有⎝ ⎛⎭⎪⎫160+190y =1, 解得y =36.甲单独完成需付工程款为60×3.5=210(万元);由(1)知乙单独完成超过计划天数,不符合题意;甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).因为198<210,所以在不超过计划天数的前提下,由甲、乙两队合作完成该工程省钱.。
第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、下列分式中,最简分式是()A. B. C. D.2、分式方程的解是()A.x=1B.x=2C.x=0D.无解3、某单位向一所希望小学赠送1080 件文具,现用 A,B 两种不同的包装箱进行包装,已知每个B型包装箱比 A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为( )A. B. C.D.4、分式与下列分式相等的是()A. B. C. D.5、要使分式有意义,x必须满足的条件是()A. B. C. D. 且6、已知实数a、b满足:ab=1且,,则M、N的关系为()A.M>NB.M<NC.M=ND.M、N的大小不能确定7、某商场要销售70件积压衬衫,销售30件后,降低售价,每天能多售出10件,结果70件衬衫一共用5天全部售完,原来每天销售多少件衬衫?设原来每天销售x件衬衫,下面列出的方程正确的是( )A. B. C. D.8、分式中的x,y都扩大2倍,则分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍9、下列说法中,错误的是()A.分式方程的解等于0,就说明这个分式方程无解B.解分式方程的基本思路是把分式方程转化为整式方程 C.检验是解分式方程必不可少的步骤 D.能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解10、在代数式①;②;③;④中,属于分式的有()A.①②B.①③C.①③④D.①②③④11、去分母解关于x的方程时会产生增根,那么m的值为()A.1B.﹣1C.2D.无法确定12、若将分式中的a与b的值都扩大为原来的2倍,则这个分式的值将()A.扩大为原来的2倍B.分式的值不变C.缩小为原来的D.缩小为原来的13、若关于的不等式组有解,关于的分式方程有整数解,则符合条件的所有整数的和为()A.0B.1C.2D.514、化简﹣的结果是()A.m+3B.m﹣3C.D.15、关于x的方程无解,则a的值为()A.﹣5B.﹣8C.﹣1D.5二、填空题(共10题,共计30分)16、计算:30+2﹣1=________,+ =________.17、要使分式有意义,则x的取值是________.18、对于分式,当________时,分式有意义.19、甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为________.20、将分式约分可得________,依据为________.21、如果x=﹣1,那么分式的值为________.22、计算:=________23、解方程=得________.24、分式方程的解是________.25、从﹣2,﹣1,0,1,2,3,4这7个数中任选一个数作为a的值,则使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的概率是________.三、解答题(共5题,共计25分)26、解方程:=1﹣27、列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前天完成任务,则原计划每天种树多少棵?28、已知,求的值.29、列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?30、红红服装店用元购进一批某款式T恤衫,由于深受顾客喜爱,很快售完,又用元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了元.求第一批该款式T恤衫每件进价.参考答案一、单选题(共15题,共计45分)1、A3、B4、B5、A6、C7、A8、B9、A10、B11、B12、C13、B14、A15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
第12章分式和分式方程单元测试一、单选题(共10题;共30分)1.化简分式bab+b2的结果为()A、1a+bB、1a+1bC、1a+b2D、1ab+b2.有理式①,②,③,④中,是分式的有()A、①②B、③④C、①③D、①②③④3.若x=3是分式方程的根,则a的值是().A、5B、﹣5C、3D、﹣34.给出下列式子:1a、3a2b3c4、56+x、x7+y8、9x+10y,其中,是分式的有()A.5个B.4个C.3个D.2个5.在式子y2、x、12π、2x-1中,属于分式的个数是()A.0B.1C.2D.36.如果1a+1b=1,则a-2ab+b3a+2ab+3b的值为()A.15B.-15C.-1D.-37.学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x根栏杆,根据题意列方程为()A. = +2B. = ﹣2C. = ﹣2D. = +28.下列分式中最简分式为()A. B. C. D.9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得()A.25x−30(1+80%)x=1060B.25x−30(1+80%)x=10C.30(1+80%)x−25x=1060D.30(1+80%)x−25x=1010.如果,那么的值是( )A、B、C、D、二、填空题(共8题;共24分)11.计算÷ 的结果是________.12.分式方程= 的解是________.13.方程﹣=0的解是________.14.计算:-3xy24z•-8zy=________15.计算:3a22b·4b9a=________ .16.分式方程5x+3=1的解是________ .17.关于x的方程mxx-3=3x-3无解,则m的值是________.18.若分式x2−1x+2 有意义,则x的取值范围是________.三、解答题(共5题;共36分)19.解方程:3xx-1=1+11-x .20.先化简,再求值:(1+1x−1)÷xx2−1 ,其中:x=﹣2.21.某市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,问原计划每小时修路多少米?22.昆明在修建地铁3号线的过程中,要打通隧道3600米,为加快城市建设,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成了任务.问原计划每天打通隧道多少米?23.下面是我校初二(8)班一名学生课后交送作业中的一道题:计算:x3x−1−x2−x−1 .解:原式= x3x−1−(x2−x−1)=x3−(x−1)(x2+x+1)=x3−(x3−1)=1 .你同意她的做法吗?如果同意,请说明理由;如果不同意,请把你认为正确的做法写下来.四、综合题(共1题;共10分)24.解方程:(1)1x=5x+3;(2)xx−1−2=32x−2 .答案解析一、单选题1、【答案】A【考点】约分【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】原式=bb(a+b)=1a+b .故选:A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.2、【答案】C【考点】分式的定义【解析】【解答】①③中分母中含有字,所以为分式. ②④中不含有字母.【分析】本题考查分式的定义,区分关键是分母中是否含有字母.3、【答案】A【考点】分式方程的解【解析】【分析】首先根据题意,把x=3代入分式方程,然后根据一元一次方程的解法,求出a的值是多少即可.【解答】∵x=3是分式方程的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5.故选:A.4、【答案】C【考点】分式的定义【解析】【解答】解:3a2b3c4、x7+y8的分母中均不含有字母,因此它们是整式,而不是分式.1a、56+x、9x+10y,分母中含有字母,因此是分式.故选C.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.5、【答案】B【考点】分式的定义【解析】【解答】解:式子y2、x、12π、2x-1中,属于分式的有2x-1 ,只有1个.故选B.【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式,可得答案.6、【答案】B【考点】分式的化简求值【解析】【解答】解:∵1a+1b=1,即a+bab=1,∴a+b=ab,则原式=a+b-2ab3a+b+2ab=ab-2ab3ab+2ab=-ab5ab=-15 .故选B.【分析】已知等式左边通分并利用同分母分式的加法法则计算整理得到a+b=ab,代入原式计算即可得到结果.7、【答案】D【考点】由实际问题抽象出分式方程【解析】【解答】解:设每天油x根栏杆,根据题意列方程:24000x = 24000x+400 +2 故选:D.【分析】如果设每天油x根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程.8、【答案】B【考点】最简分式【解析】【解答】解:A、42x=2x 可以约分,错误;B、2xx2+1 是最简分式,正确;C、x−1x2−1=1x+1 可以约分,错误;D、1−xx−1=1 可以约分,错误;故选:B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.9、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设走路线一时的平均速度为x千米/小时,25x ﹣30(1+80%)x = 1060 .故选:A.【分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.10、【答案】D【考点】分式的基本性质【解析】【解答】解:∵,,故选D.二、填空题11、【答案】【考点】分式的乘除法【解析】【解答】÷ = = .故答案为:.【分析】利用分式的乘除法求解即可.12、【答案】x=9【考点】解分式方程【解析】【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】方程的两边同乘x(x﹣3),得3x﹣9=2x ,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.13、【答案】x=6【考点】解分式方程【解析】【分析】先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根.【解答】去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.14、【答案】6xy【考点】分式的乘除法【解析】【解答】解:原式=24xy2z4yz=6xy.故答案为:6xy.【分析】原式利用分式相乘的方法计算,约分即可得到结果.15、【答案】23a【考点】约分,分式的乘除法【解析】【解答】解:原式=23a .故答案为23a【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.然后进行约分、化简即可.16、【答案】x=2【考点】分式方程的解【解析】【解答】解:方程的两边同乘(x+3),得5=x+3,解得x=2.检验:把x=2代入(x+3)=5≠0.所以原方程的解为:x=2.故答案为x=2.【分析】观察可得最简公分母是(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.17、【答案】1或0【考点】分式方程的解【解析】【解答】解:去分母得mx=3,∵x=3时,最简公分母x﹣3=0,此时整式方程的解是原方程的增根,∴当x=3时,原方程无解,此时3m=3,解得m=1,当m=0时,整式方程无解∴m的值为1或0时,方程无解.故答案为:1或0.【分析】先把分式方程化为整式方程得到mx=3,由于关于x的分式方程mxx-3=3x-3无解,当x=3时,最简公分母x﹣3=0,将x=3代入方程mx=3,解得m=1,当m=0时,方程也无解.18、【答案】x≠2【考点】分式有意义的条件【解析】【解答】解:由题意得:x+2≠0,解得:x≠2,故答案为:x≠2.【分析】根据分式有意义的条件可得x+2≠0,再解即可.三、解答题19、【答案】解:去分母得:3x=x﹣1﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.20、【答案】解:,= ,= ,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1【考点】分式的化简求值【解析】【分析】本题需先对要求的式子进行整理,再把x的值代入即可求出答案.21、【答案】解:设原计划每小时修路x米,,解得,x=50,经检验x=50时分式方程的解,即原计划每小时修路50米【考点】分式方程的应用【解析】【分析】根据题意可以列出相应的分式方程,然后解分式方程即可,本题得以解决.22、【答案】解:设原计划每天打通隧道x米,由题意得:﹣=20,解得:x=80,经检验:x=80是原分式方程的解,答:原计划每天打通隧道80米【考点】分式方程的应用【解析】【分析】首先设原计划每天打通隧道x米,则实际每天打通隧道1.8x米,根据题意可得等量关系:原计划所用时间﹣实际所用时间=20天,根据等量关系列出方程,再解即可.23、【答案】解:原式= ﹣﹣﹣=【考点】分式的加减法【解析】【分析】根据分式的加减,可得答案.四、综合题24、【答案】(1)解:去分母得:x+3=5x,解得:x= 34 ,经检验x= 34 是分式方程的解(2)解:去分母得:2x﹣4x+4=3,解得:x= 12 ,经检验x= 12 是分式方程的解【考点】解分式方程【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.。