园中辅助线的作法
- 格式:ppt
- 大小:446.00 KB
- 文档页数:16
圆内辅助线方法
在圆内作辅助线的方法有以下几种:
1. 直径:通过圆心作直径,将圆分成两个相等的半圆,可以用于确定圆上某点的位置或者进行圆的对称性证明。
2. 弦:连接圆上的两个点,形成一条弦。
弦可以用来测量圆的直径、找到圆上的中点以及确定圆弧的长度和角度。
3. 切线:从圆外一点引切线与圆相切,切点即为切线与圆的交点。
切线与半径垂直,并且切线和半径的夹角等于相应弧的夹角。
4. 弧:圆上两点之间的曲线部分称为弧。
可以通过连接弧上的两点和圆心,构成一个扇形。
通过测量弧长和圆心角可以计算出圆的周长和面积。
5. 径向线:连接圆心与圆上的任意一点,称为径向线。
径向线可以用来分析圆上的几何性质,如角度和长度。
这些辅助线方法在解决圆相关的问题时非常有用,能够帮助我们理解圆的性质、推导定理以及进行计算和证明。
1。
几何证明一般都离不开作辅助线,能否迅速、准确地作出所需的辅助线,往往成为成败的关键。
本文就圆中常见辅助线的作法归纳如下,供参考。
一、作弦心距证明圆中与弦有关的问题,常需作弦心距(即垂直于弦的直径或半径),其目的在于利用垂径定理来沟通弦、弦、弦心距之间的关系,或构造半径、弦心距、弦为边的直角三角形。
例1:求证:经过相交两圆的一个交点的那些直线,被两圆所截得的线段中,平行于连心线的那一条线段最长。
分析:如图1,PQ ∥OO′,要证明PQ 最长,只须证明PQ 大于过A 点的任意一条不平行于OO ′的割线P′Q′,这是证明与圆的弦有关的问题,因此过O 、O′分别作PQ 、P′Q′的垂线,垂足分别为C 、D ;C′、D′。
由垂径定理知AC= AP 、AD= AQ ,所以CD=PQ 。
同理C′D′= P′Q′,又OO′=CD ,于是问题转化为证明OO′> C′D′,而OO′D′C′为直角梯形,显然有OO′> C′D′。
从而问题可证。
图1二、作过切点的半径或弦当所证问题含有圆的切线时,常常需要作出过切点的半径或弦,利用该半径与切线垂直或弦切角定理来沟通题设与结论之间的联系。
例2:已知AB 是⊙O 的直径,AC ⊥MN ,BD ⊥MN ,MN 切⊙O 于K ,求证:(1)AC+BD=AB(2)BK2=AB·BD分析:(1)AC 、BD 为直角梯形的上、下底边,其和必与梯形的中位线有关,由MN切⊙O 于K ,想到需连结OK ,则OK 为梯形的中位线且OK= (AC+BD ),而AB=2OK ,所以有AC+BD=AB 。
(2)要证BK =AB·BD ,即AB :BK=BK :BD ,所以需连结AK ,由弦切角定理知∠KAB=∠BKD ,又∠AKB=∠KDB=90°,所以△AKB ∽△KDB,故问题可以获证。
图2 三、过已知点作圆的切线过已知点作圆的切线是圆中常作的辅助线之一,其目的在于利用切线的性质来沟通题中各元素间的联系。
中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。
下面以几道题目为例加以说明。
1.有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。
例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。
求证:PO 平分∠APD 。
分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。
证法1:作OE ⊥AB 于E ,OF ⊥CD 于FAC=BD => = => ==> AB=CD => OE=OF∠OEP=∠OFP=90° => △OPE ≌△OPF0OP=OP=>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证AB(BD , (CD (D 图 1AC(AC (BD (AB (CD(∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。
证法2:连结OA ,OD 。
∠CAP=∠BDP∠APC=∠DPB =>△ACP ≌△DBP AC=BD=>AP=DPOA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP2.有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。
圆形半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
注意点辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
圆部分规律88.圆中解决有关弦的问题时,常常需要作出圆心到弦的垂线段(即弦心距)这一辅助线,一是利用垂径定理得到平分弦的条件,二是构造直角三角形,利用勾股定理解题.例:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D二点.求证:AC = BD证明:过O作OE⊥AB于E∵O为圆心,OE⊥AB∴AE = BE CE = DE∴AC = BD练习:如图,AB为⊙O的弦,P是AB上的一点,AB = 10cm,PA = 4cm.求⊙O 的半径.规律89.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角.例:如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB,求证:证明:(一)连结OC、OD∵M、N分别是AO、BO的中点∴OM = 12AO、ON =12BO∵OA = OBOE DC BAPOB A∴OM = ON∵CM ⊥OA 、DN ⊥OB 、OC = OD ∴Rt △COM ≌Rt △DON ∴∠COA = ∠DOB ∴(二)连结AC 、OC 、OD 、BD∵M 、N 分别是AO 、BO 的中点 ∴AC = OC BD = OD ∵OC = OD ∴AC = BD∴规律90.有弦中点时常连弦心距例:如图,已知M 、N 分别是⊙O 的弦AB 、CD 的中点,AB = CD ,求证:∠AMN = ∠CNM证明:连结OM 、ON∵O 为圆心,M 、N 分别是弦AB 、CD 的中点 ∴OM ⊥AB ON ⊥CD ∵AB = CD ∴OM = ON∴∠OMN = ∠ONM ∵∠AMN = 90o -∠OMN∠CNM = 90o-∠ONM∴∠AMN =∠CNM规律91.证明弦相等或已知弦相等时常作弦心距.例:如图,已知⊙O 1与⊙O 2为等圆,P 为O 1、O 2的中点,过P 的直线分别交⊙O 1、⊙O 2于A 、C 、D 、B.求证:AC = BD证明:过O 1作O 1M ⊥AB 于M,过O 2作O 2N ⊥AB 于N ,则O 1M ∥O 2N∴1122O M O PO N O P=∵O 1P = O 2P ∴O 1M = O 2N∴AC = BD规律92.有弧中点(或证明是弧中点)时,常有以下几种引辅助线的方法:⑴连结过弧中点的半径 ⑵连结等弧所对的弦 ⑶连结等弧所对的圆心角例:如图,已知D 、E 分别为半径OA 、OB 的中点,C 为弧AB 的中点,求证:CD = CE证明:连结OC∵C 为弧AB 的中点∴ AB BC= ONM DC BAON MD C B APO 2O 1NMDCB AOE DC BA∴∠AOC =∠BOC∵D 、E 分别为OA 、OB 的中点,且AO = BO∴OD = OE = 12AO = 12BO又∵OC = OC∴△ODC ≌△OEC ∴CD = CE规律93.圆内角的度数等于它所对的弧与它对顶角所对的弧的度数之和的一半. 规律94.圆外角的度数等于它所截两条弧的度数之差的一半.规律95.有直径时常作直径所对的圆周角,再利用直径所对的圆周角为直角证题. 例:如图,AB 为⊙O 的直径,AC 为弦,P 为AC 延长线上一点,且AC = PC,PB的延长线交⊙O 于D ,求证:AC = DC 证明:连结AD∵AB 为⊙O 的直径 ∴∠ADP = 90o∵AC = PC∴AC = CD =12AP 练习:如图,在Rt △ABC 中,∠BCA = 90o ,以BC 为直径的⊙O 交AB于E ,D 为AC 中点,连结BD 交⊙O 于F.求证:BC CFBE EF规律96.有垂直弦时也常作直径所对的圆周角. 规律97.有等弧时常作辅助线有以下几种:⑴作等弧所对的弦⑵作等弧所对的圆心角 ⑶作等弧所对的圆周角练习:1.如图,⊙O 的直径AB 垂直于弦CD ,交点为E ,F 为DC 延长线上一点,连结AF 交⊙O 于M.求证:∠AMD =∠FMC(提示:连结BM)2.如图,△ABC 内接于⊙O ,D 、E 在BC 边上,且BD = CE ,∠1 =∠2,求证:AB = AC (提示如图)规律98.有弦中点时,常构造三角形中位线.例:已知,如图,在⊙O 中,AB ⊥CD ,OE ⊥BC 于E ,求证:OE =12AD证明:作直径CF ,连结DF 、BF∵CF 为⊙O 的直径 ∴CD ⊥FD 又∵CD ⊥ABPO DC B A2题图G OFED C B A211题图F MO E DCB A∴AB ∥DF∴ AD BF= ∴AD = BF ∵OE ⊥BC O 为圆心 CO = FO ∴CE = BE∴OE =12BF∴OE =12AD规律99.圆上有四点时,常构造圆内接四边形.例:如图,△ABC 内接于⊙O ,直线AD 平分∠FAC ,交⊙O 于E ,交BC 的延长线于D ,求证:AB·AC = AD·AE 证明:连结BE∵∠1 =∠3 ∠2 =∠1∴∠3 =∠2 ∵四边形ACBE 为圆内接四边形∴∠ACD =∠E ∴△ABE ∽△ADC ∴AE ABAC AD = ∴AB·AC = AD·AE规律100.两圆相交时,常连结两圆的公共弦例:如图,⊙O 1与⊙O 2相交于A 、B ,过A 的直线分别交⊙O 1、⊙O 2于C 、D ,过B 的直线分别交⊙O 1、⊙O 2于E 、F.求证:CE ∥DF 证明:连结AB∵四边形为圆内接四边形∴∠ABF =∠C 同理可证:∠ABE =∠D∵∠ABF +∠ABE = 180o∴∠C +∠D = 180o∴CE ∥DF规律101.在证明直线和圆相切时,常有以下两种引辅助线方法:⑴当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可.⑵如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可.例1:如图,P 为⊙O 外一点,以OP 为直径作圆交⊙O 于A 、B 两点,连结PA 、PB.求证:PA 、PB 为⊙O 的切线证明:连结OA∵PO 为直径∴∠PAO = 90o∴OA ⊥PAO FE DC B A321O FED CB A O 2O1F E DCBAP OB A∵OA 为⊙O 的半径 ∴PA 为⊙O 的切线同理:PB 也为⊙O 的切线例2:如图,同心圆O ,大圆的弦AB = CD ,且AB 是小圆的切线,切点为E ,求证:CD 是小圆的切线证明:连结OE ,过O 作OF ⊥CD 于 F∵OE 为半径,AB 为小圆的切线 ∴OE ⊥AB ∵OF ⊥CD, AB = CD ∴OF = OE∴CD 为小圆的切线练习:如图,等腰△ABC ,以腰AB 为直径作⊙O 交底边BC 于P ,PE ⊥AC 于E, 求证:PE 是⊙O 的切线规律102.当已知条件中有切线时,常作过切点的半径,利用切线的性质定理证题.例:如图,在Rt △ABC 中,∠C = 90o ,AC = 12,BC = 9,D 是AB 上一点,以BD 为直径的⊙O 切AC 于E ,求AD 长. 解:连结OE ,则OE ⊥AC∵BC ⊥AC ∴OE ∥BC ∴OE AOBC AB= 在Rt △ABC 中,AB = 222212915AC BC +=+=∴15915OE AB OB OEAB --== ∴OE = OB = 458∴BD = 2OB = 454 ∴AD = AB -DB = 15-454= 154答:AD 的长为154.练习:如图,⊙O 的半径OA ⊥OB ,点P 在OB 的延长线上,连结AP 交⊙O 于D ,过D 作⊙O 的切线CE 交OP 于C ,求证:PC = CD1.圆中作辅助线的常用方法:OFED C B A P OE C B AOE D C B APOE D C B A(1)作弦心距,以便利用弦心距与弧、弦之间的关系与垂径定理。
例谈圆中常见作辅助线的方法圆是初中几何部分的重要内容之一,与圆有关的大部分几何题型都需要添加辅助线来解决。
只要添上合适的辅助线,不仅会使问题迎刃而解,而且还会有效地培养学生的解题能力与创造性思维能力。
通过对实践教学中的归纳与总结,发现添加辅助线的方法有很多,本文就圆中常见作辅助线的方法归纳如下:一、作弦心距(在与弦有关的计算或证明题时,常作辅助线的方法是作弦心距)例1:如图1,ab为⊙o的直径,pq切⊙o于t,ac⊥pq于c,交⊙o于d,ad=2,tc=.求⊙o的半径。
解:过点o作om⊥ac于m,∴am=md=ad/2=1.∵pq切⊙o于t,∴ot⊥pq.又∵ac⊥pq,om⊥ac,∴∠otc=∠act=∠omc=90°,∴四边形otcm为矩形.∴om=tc=,∴在rt△aom中,.即⊙o的半径为2.例2:如图2,已知在以o为圆心的两个同心圆中,大圆的弦ab 交小圆于c、d两点.求证:ac=bd.证明:过点o作oe⊥ab于e,则ae=be,ce=de,∴ae-ce=be-de.∵ac=ae-ce,bd=be-de.∴ac=bd.二、连半径(与半径和弦有关的简单计算、已知圆中有切线的有关计算和证明时,常作辅助线的方法是连半径)例3:如图3,⊙o的直径cd=20cm,直线l⊥co,垂足为h,交⊙o于a、b两点,ab=16 cm,直线l平移多少厘米时能于⊙o相切?解:连接oa,∵l⊥co,∴oc平分ab∴ah=8cm.在rt△aho中,oh=6cm.∴ch=4cm,dh=16 cm.答:直线l向左平移4cm,或向右平移16cm时能于⊙o相切。
例4:如图4,pa是⊙o的切线,切点是a,过点a作ah⊥op于点h,交⊙o于点b.求证:pb是⊙o的切线.证明:连接oa、ob.∵pa是⊙o的切线,∴∠oap=90°.∵oa=ob,ab⊥op,∴∠aop=∠bop.又∵oa=ob,op=op,∴△aop≌△bop.∴∠opb=∠oap=90°.∴pb是⊙o的切线.三、既作弦心距又连半径(与半径和弦都有关的计算时,常作辅助线的方法是既作弦心距又连半径,利用勾股定理来解决)例5:直径为52厘米的圆柱形油槽内装入一些油后,截面如图5,若油最大深度为16厘米.那么油面宽度ab的长是多少厘米?解:连接oa,作oc⊥ab于c,则ac=bc=ab.在rt△oac中,oa=×52=26厘米,oc=26-16=10厘米,∴ac=24厘米.∴ab=2ac=48厘米.四、连弦构造相似三角形或直角三角形(在圆中与弦或其他有关的计算或证明时,常作辅助线的方法是连弦,利用同弧所对的圆周角相等连弦构造相似三角形或利用直径所对的圆周角为直角这个性质连弦构造出直角三角形,从而将问题转化到相似三角形或直角三角形中去计算或证明)例6:已知,如图6,在半径为4的⊙o中,ab,cd是两条直径,m为ob的中点,cm的延长线交⊙o于点e,且em>mc.连结de,de=. (1)求证:am·mb=em·mc;(2)求em的长;(3)求sin∠eob的值.解:(1)连接ac,eb,则∠cam=∠bem.又∠amc=∠emb,∴△amc∽△emb.∴,即am·mb=em·mc.(2)∵dc为⊙o的直径,∴∠dec=90°,ec=∵oa=ob=4,m为ob的中点,∴am=6,bm=2.设em=x,则cm=7-x. 代入(1),得6×2=x(7-x).解得x1=3,x2=4.但em>mc,∴em=4. (3)由(2)知,oe=em=4,作ef⊥ob于f,则of=mf=ob=1. 在rt△eof中,∴sin∠eob=.例7:如图7所示,△abc是直角三角形,∠abc=90°,以ab为直径的⊙o交ac于点e,点d是bc边的中点,连结de.(1)求证:de与⊙o相切;(2)若⊙o的半径为,de=3,求ae.(1)证明:连结oe,be,∵ab是直径,∴be⊥ac.∵d是bc的中点,∴de=db,∴∠dbe=∠deb.又oe=ob,∴∠obe=∠oeb,∴∠dbe+∠obe=∠dbe+∠oeb.即∠abd=∠oed.又∵∠abc=90°,∴∠oed=90°,∴de是⊙o的切线.(2)解:∵,∴,∴.五、作直径构造直角三角形(在圆中牵涉到三角函数的运算或与直径的计算与证明时,常作辅助线的方法是作直径,利用直径所对的圆周角是直角构造直角三角形,从而将问题转化到直角三角形中去解决)例8:如图8,点a、b、c在⊙o上(ac不过o点),若∠acb=60°,ab=6,求⊙o半径的长。
图2A B 关于圆中常用的几种辅助线有关圆的中考,题目变化灵活,在历年各地中考题中均占有较大比例。
在解答与圆有关的题目时,常常需要作辅助线,以便在已知和结论之间“牵线搭桥”,从而使分散条件集中化,隐含条件明显化,难点分散简易化,达到解决问题的目的。
1、有弦时,可从圆心作与弦垂直的线段;或连结半径。
例1:(2006·广东)如图1,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE=BF ,请你找出线段OE 与OF 的数量关系,并给予证明。
解析:解法1,有弦,可从圆心作与弦垂直的线段,用垂径定理。
OE=OF 。
过点O 作OM ⊥AB 于点M ,则AM=BM ,又AE=BF ,故EM=FM ,从而OM 垂直平分EF ,所以OE=OF 。
解法2,此题也可利用全等来证明。
连结半径OA 、OB ,则OA=OB ,故∠A=∠B ,又AE=BF ,所以△AOE ≌△BOF(SAS),由此OE=OF ; 本题源于课本,巧妙地加以变化,成了一道开放性试题,学生解题时因为有基础铺垫,既增加了自信,又可以提高数学素养。
2、遇到直径时,可作直径所对的圆周角。
例2:(2006·烟台)如图2,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,且⊙O 直径BD=6,连结CD 、AO 。
⑴求证:CD ∥AO ; ⑵设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围。
解析:有直径,可作直径所对的圆周角得直角。
⑴连结BC 交AO 于点E 。
∵AB 、AC 是⊙O 的切线,∴AB=AC ,∠CAO=∠BAO ,∴AO ⊥BC ,∴∠BEO=90°,∵BD 是⊙O 的直径,∴∠BCD=90°,∴∠BCD=∠BEO ,∴CD ∥AO ;⑵∵CD ∥AO ,∴∠D=∠AOB ,∵AB 是⊙O 的切线,BD 是直径,∴∠BCD=∠ABO=90°∴△BCD ∽△ABO ,∴BD ∶AO=CD ∶BO ,∴6∶y=x ∶3,∴y=x18,0<x <6。
圆中的重要模型之辅助线模型(八大类)在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本专题通过分析探索归纳八类圆中常见的辅助线的作法。
模型1、遇弦连半径(构造等腰三角形)【模型解读】已知AB 是⊙O 的一条弦,连接OA ,OB ,则∠A =∠B .在圆的相关题目中,不要忽略隐含的已知条件。
当我们要解决有关角度、长度问题时,通常可以连接半径构造等腰三角形,利用等腰三角形的性质、勾股定理及圆中的相关定理,还可连接圆周上一点和弦的两个端点,根据圆周角的性质可得相等的圆周角,解决角度或长度的计算问题1(2022·山东聊城·统考中考真题)如图,AB ,CD 是⊙O 的弦,延长AB ,CD 相交于点P .已知∠P =30°,∠AOC =80°,则BD 的度数是()A.30°B.25°C.20°D.10°【答案】C【分析】如图,连接OB ,OD ,AC ,先求解∠OAC +∠OCA =100°,再求解∠PAO +∠PCO =50°,从而可得∠BOA +∠COD =260°,再利用周角的含义可得∠BOD =360°-80°-260°=20°,从而可得答案.【详解】解:如图,连接OB ,OD ,AC ,∵∠AOC =80°,∴∠OAC +∠OCA =100°,∵∠P =30°,∴∠PAO +∠PCO =50°,∵OA =OB ,OC =OD ,∴∠OBA =∠OAB ,∠OCD =∠ODC ,∴∠OBA +∠ODC =50°,∴∠BOA +∠COD =260°,∴∠BOD =360°-80°-260°=20°.∴BD的度数20°.故选:C .【点睛】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.2(2023•南召县中考模拟)如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE =OB ,∠AOC =84°,则∠E 等于()A.42°B.28°C.21°D.20°【分析】利用OB =DE ,OB =OD 得到DO =DE ,则∠E =∠DOE ,根据三角形外角性质得∠1=∠DOE+∠E ,所以∠1=2∠E ,同理得到∠AOC =∠C +∠E =3∠E ,然后利用∠E =13∠AOC 进行计算即可.【解答】解:连结OD ,如图,∵OB =DE ,OB =OD ,∴DO =DE ,∴∠E =∠DOE ,∵∠1=∠DOE +∠E ,∴∠1=2∠E ,而OC =OD ,∴∠C =∠1,∴∠C =2∠E ,∴∠AOC =∠C +∠E =3∠E ,∴∠E =13∠AOC =13×84°=28°.故选:B .【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.3(2023·江苏沭阳初三月考)如图,已知点C 是⊙O 的直径AB 上的一点,过点C 作弦DE ,使CD =CO .若AD 的度数为35°,则BE 的度数是.【答案】105°.【分析】连接OD 、OE ,根据圆心角、弧、弦的关系定理求出∠AOD =35°,根据等腰三角形的性质和三角形内角和定理计算即可.【解析】解:连接OD 、OE ,∵AD的度数为35°,∴∠AOD =35°,∵CD =CO ,∴∠ODC =∠AOD =35°,∵OD =OE ,∴∠ODC =∠E =35°,∴∠DOE =180°-∠ODC -∠E =180°-35°-35°=110°,∴∠AOE =∠DOE -∠AOD =110°-35°=75°,∴∠BOE =180°-∠AOE =180°-75°=105°,∴BE 的度数是105°.故答案为105°.【点睛】本题考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.4(2023年山东省淄博市中考数学真题)如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D 是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为()A.10B.3210 C.210 D.310【答案】A【分析】连接OA,OC,CE, 根据等腰三角形的性质得到∠B=∠ACB=30°, 根据等边三角形的性质得到AC=OA,根据相似三角形的判定和性质即可得到结论.【详解】连接OA,OC,CE,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OA,∵∠AEC=∠ACB=30°,∠CAD=∠EAC,∴△ACD∽△AEC,∴ACAD =AEAC,∴AC2=AD·AE,∵AD=2,DE=3,∴AC=AD×AE=2×2+3=10,∴OA=AC=10,即⊙O的半径为10,故选:A.【点睛】本题考查了圆周角定理,等腰三角形的性质,等边三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质度量是解题的关键.模型2、遇弦作弦心距(解决有关弦长的问题)【模型解读】已知AB是⊙O的一条弦,过点OE⊥AB,则AE=BE,OE2+AE2=OA2。
中考数学答题技巧:圆与圆位置关系中常见辅助线的作法中考数学答题技巧:圆与圆位置关系中常见辅助线的作法圆与圆位置关系是初中几何的一个重要内容,也是学习中的难点,本文介绍圆与圆的位置关系中常见的五种辅助线的作法。
1. 作相交两圆的公共弦利用圆内接四边形的性质或公共圆周角,沟通两圆的角的关系。
例1. 如图1,⊙O1和⊙O2相交于A、B两点,过A、B分别作直线C D、EF,且CD//EF,与两圆相交于C、D、E、F。
求证:CE=DF。
图1分析:CE和DF分别是⊙O1和⊙O2的两条弦,难以直截了当证明它们相等,但通过连结AB,则可得圆内接四边形ABEC和ABFD,利用圆内接四边形的性质,则易证明。
证明:连结AB因为又因此即CE//DF又CD//EF因此四边形CEFD为平行四边形即CE=DF2. 作两相交圆的连心线利用过交点的半径、公共弦、圆心距构造直角三角形,解决有关的运算问题。
例2. ⊙O1和⊙O2相交于A、B两点,两圆的半径分别为和,公共弦长为12。
求的度数。
图2分析:公共弦AB可位于圆心O1、O2同侧或异侧,要求的度数,可利用角的和或差来求解。
解:当AB位于O1、O2异侧时,如图2。
连结O1、O2,交AB于C,则。
分别在和中,利用锐角三角函数可求得故当AB位于O1、O2同侧时,如图3图3则综上可知或3. 两圆相切,作过切点的公切线利用弦切角定理沟通两圆中角的关系例3. 如图4,⊙O1和⊙O2外切于点P,A是⊙O1上的一点,直线A C切⊙O2于C,交⊙O1于B,直线AP交⊙O2于D。
求证PC平分。
图4分析:要证PC平分,即证而的边分布在两个圆中,难以直截了当证明。
若过P作两圆的公切线PT,与AC交于T易知由弦切角定理,得又是的一个外角因此又从而有即PC平分4. 两圆相切,作连心线利用连心线通过切点的性质,解决有关运算问题。
例4. 如图5,⊙O1与半径为4的⊙O2内切于点A,⊙O1通过圆心O 2,作⊙O2的直径BC,交⊙O1于点D,EF为过点A的公切线,若,求的度数。