2017成都七中高三数学(理)入学试题
- 格式:docx
- 大小:405.40 KB
- 文档页数:5
成都七中高2017届高三下期第9周测试数学试卷(理科)命题人:周建波审题人:张世永满分150分 120分钟完卷一、选择题(5×12=60′)1. 集合{}2|230M x x x =--≥,{}|21N x x =-≤,则R M N ⋂=ð( )A. {}|10x x -<≤B. {}|03x x <<C. {}|13x x ≤<D. {}|03x x <≤2. 复数22(1)1i i +++的模长为( )A.B.C.D. 3. 圆22:(2)(1)4C x y -+-=关于直线:10l x y -+=对称的圆C '的方程为( ) A. 22(1)(2)4x y -+-=B. 22(1)(2)4x y +++=C. 22(3)4x y +-=D. 22(3)4x y ++=4. 函数()sin()3f x x πω=+的图象与x 轴的交点横坐标构成了一个公差为4π的等差数列,若要得到()cos()3g x x πω=+的图象,可将()f x 的图象( )A. 向左平移8π个单位 B. 向右平移8π个单位 C.向左平移2π个单位 D. 向右平移2π个单位 5. 下列选项中,说法正确的是( )A.命题“20000,0x x x ∃<-<”的否定为“20,0x x x ∀≥-≥”B.在等腰ABC ∆中,23A π∠=,BC =,则ABC ∆的外接圆半径等于2C.若A O B '''∆是水平放置面积为4的AOB ∆的直观图,则A O B '''∆D.向量(1,1)a =- 在向量(1,0)i =上的投影等于16. 执行如图所示的程序框图,若输出的结果是6,则判断框内m 的取值范围是( ) A. (30,42] B. (20,30) C. (20,30] D. (20,42)7. 已知函数()cos(2)3f x x π=+,()f x '是()f x 的导函数,则函数()2()()g x f x f x '=+的一个单调递减区间是( ) A. 75,1212ππ⎡⎤-⎢⎥⎣⎦B. 517,1212ππ⎡⎤⎢⎥⎣⎦C. 75,2424ππ⎡⎤-⎢⎥⎣⎦D. 517,2424ππ⎡⎤⎢⎥⎣⎦8. 从方程{}22:1(,1,2,3)x y C m n m n-=∈-所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取两个,记“两个方程都是双曲线”为事件A ,“两个方程都是焦点在x 轴上的双曲线”为事件B ,则(|)P B A =( ) A.45 B. 35C.47 D.379. 在平面直角坐标系中,不等式组22200x y x y x y r ⎧+≤⎪-≤⎨⎪+≤⎩表示的平面区域Ω的面积为π,若(,)P x y 是Ω内任意一点,那么3x yx ++的最小值为( )A.17--B. 87--C.95--D. 45-- 10. 已知直线l 的方向向量(4,4)ν=-,与y 轴的交点为(0,4)-,若M ,N 是直线l 上两个动点,且4MN =,则OM ON ⋅的最小值为( )A. 4B. C.52D.3211. 已知双曲线2222:1(,0)y x a b a b Γ-=>的焦点为1F ,2F ,过下焦点1F 且垂直于实轴的直线交Γ的下支于M ,N 两点,2MF ,2NF 分别交虚轴所在直线于S ,T 两点,若2SF T ∆的周长为20,则ab 取得最大值时该双曲线的离心率为( ) A.32B.C.3D.312. 设函数310,0(),0x x f x x x ⎧≥⎪=⎨-<⎪⎩,若()(())(0)g x f f x a a =->有两个不同的零点1x ,2x ,则121010x x⋅的最大值为( )A. 3310lg eeB. 3327lg e eC. 2210ln 2eD. 2227ln 2e二、填空题(5×4=20′)13. 已知离散型随机变量2105B ξ⎛⎫ ⎪⎝⎭~,,且=49ηξ-,则()=E η___________;14. 某几何体的三视图如图所示,则该几何体的体积是_________;15. 若()33a x x dx -=+⎰,则在a的展开式中,有理项为___________;16.《九章算术》作为中国古代第一部数学专著,是《算经十书》中最重要的一种,成书于东汉年间,作者已不可考,当世流行的版本多为《海岛算经》的作者、三国时期魏国刘徽为其所作的注本.在此书第五章“商功”篇里,提及了一种称之为“鳖臑(biē nào )”的空间几何体,用现代白话文翻译过来即“四个面都为直角三角形的三棱锥” .在鳖臑P ABC -中,已知PA ⊥平面ABC ,AB BC ⊥,3PA =,4AC =,过点A 分别作AE PB ⊥于E ,AF PC ⊥于F ,连接EF ,当AEF ∆的面积最大时,BPC ∠的正切值为___________.三、解答题(12×5+10×1=70′)17. 已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈ (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列;(2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++ ,求证:()1.2n n n T ->18. 某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度; (2)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:y 关于x 的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为x b y a xn xy x n yx b ni ini ii ∧∧==∧-=--=∑∑,1221.19. 如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且,32ABE BC π∠==.四棱锥F ABED -的体积为2,点F 在平面ABED 内的正投影为G ,且G 在AE 上,点M 是在线段CF 上,且14CM CF =. (1)证明:直线//GM 平面DEF ; (2)求二面角M AB F --的余弦值.20. 设椭圆2211612x y +=上三个点M N 、和T ,且M N 、在直线8x =上的射影分别为11,M N . (1)若直线MN 过原点O ,直线MT NT 、斜率分别为12,k k ,求证:12k k ⋅为定值;(2)若M N 、不是椭圆长轴的端点,点L 坐标为()3,0,11M N L ∆与MNL ∆面积之比为5,求MN 中点K 的轨迹方程.21. 已知函数()()()()ln 1,11xf x m xg x x x =+=>-+. (1)讨论函数()()()F x f x g x =-在()1,-+∞上的单调性;(2)若()y f x =与()y g x =的图象有且仅有一条公切线,试求实数m 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a αα=+⎧⎨=⎩(0,a α>为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos 32πρθ⎛⎫-= ⎪⎝⎭.(1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23. 选修4-5:不等式选讲设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.成都七中高2017届高三下期第9周测试数学试卷(理科)参考答案及评分意见17. 解:(1) 由题可知*1113()()22N +-=-∈n n a a n ,从而有13+=n n b b ,11112=-=b a , 所以{}n b 是以1为首项,3为公比的等比数列. ……………………………………………………………5分(2) 由(1)知13-=n n b ,从而1132-=+n n a ,11331log (3)log 312--=+>=-n n n c n , 有12(1)01212-=+++>+++-= n n n n T c c c n ,所以(1)2->n n n T . ………………………………………………………………………………………12分18. 解:(1) 设各小长方形的宽度为m ,由频率分布直方图各小长方形面积总和为1,可知(0.080.10.140.120.040.02)0.51m m +++++⋅==,故2m =;……………………………………4分 (2) 由(1)知各小组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12],其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04,故可估计平均值为10.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=;…………………8分 (3) 空白栏中填5. 由题意可知,1234535x ++++==,232573.85y ++++==,51122332455769i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得26953 3.812 1.2555310b-⨯⨯===-⨯ , 3.8 1.230.2a =-⨯=, 即回归直线的方程为 1.20.2y x =+. ………………………………………………………………………12分 19. 解:(1)解:因为四棱锥F ABED -的体积为2,即14223F ABED V FG -=⨯⨯=,所以FG =又2BC EF ==,所以32EG =即点G 是靠近点A 的四等分点,过点G 作//GK AD 交DE 于点K ,所以3344GK AD CF ==,又34MF CF =,所以MF GK =且//MF GK ,所以四边形MFKG 为平行四边形,所以//GM FK ,所以直线//GM 平面DEF .…………………………………………………………6分(2)设,A E B D 的交点为O ,OB 所在直线为x 轴,OE 所在直线为y 轴,过点O 作平面ABED 的垂线为z 轴,建立空间直角坐标系,如图所示:())150,1,0,,0,,244A BF M ⎛⎛--- ⎝⎝()511,0,,442BA BM BF ⎛⎛=-=--=- ⎝⎝ 设平面,ABM ABF 的法向量为,m n, 00m BA m BM ⎧⋅=⎪⎨⋅=⎪⎩,则()1,1m =- , 00n B A n B F ⎧⋅=⎪⎨⋅=⎪⎩,则11,2n ⎛⎫= ⎪⎝⎭∴cos ,m n m n m n ⋅<>==⋅,∴二面角M AB F --.…………………………12分20. 解:(1)设()()()00,,,,,M p q N p q T x y --,则22012220y q k k x p-⋅=-, 又2222001161211612p q x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得22220001612x p y q --+=,即22022034y q x p -=--,1234k k =-.………………4分 (2)设直线MN 与x 轴相交于点()1,0,32MNL M N R r S r y y ∆=-⋅-,1111152M N L M N S y y ∆=⋅⋅-,由于115M N L MNL S S ∆∆=且11M N M N y y y y -=-,得1111553,22M N M N y y r y y ⋅⋅-=⋅-⋅-则2r =或4r =(舍去). 即直线MN 经过点()2,0F .设()()()112200,,,,,M x y N x y K x y ,① 直线MN 垂直于x 轴时,弦MN 中点为()2,0F ;② 直线MN 与x 轴不垂直时,设MN 的方程为()2y k x =-,则()()222222134161648016122x y k x k x k y k x ⎧+=⎪⇒+-+-=⎨⎪=-⎩. 则有22121222161648,3434k k x x x x k k -+==++,∴2002286,3434k kx y k k-==++. 消去k ,整理得()()2200041103y x y -+=≠. 综上所述,点K 的轨迹方程为()()2241103y x x -+=>.……………………………………………12分 21. 解:(1)()()()()()()()22111,1111m x m F x f x g x x x x x +-'''=-=-=>-+++ 当0m ≤时, ()0F x '<,函数()F x 在()1,-+∞上单调递减;当0m >时,令()101F x x m '<⇒<-+,函数()F x 在11,1m ⎛⎫--+ ⎪⎝⎭上单调递减; ()101F x x m '>⇒>-+,函数()F x 在11,m ⎛⎫-++∞ ⎪⎝⎭上单调递增,综上所述,当0m ≤时,()F x 的单减区间是()1,-+∞;当0m >时,()F x 的单减区间是11,1m ⎛⎫--+⎪⎝⎭,单增区间是11,m ⎛⎫-++∞⎪⎝⎭………………………4分 (2)函数()()ln 1f x m x =+在点()(),ln 1a m a +处的切线方程为()()ln 11my m a x a a -+=-+,即()ln 111m may x m a a a =++-++, 函数()1x g x x =+在点1,11b b ⎛⎫- ⎪+⎝⎭处的切线方程为()()211111y x b b b ⎛⎫--=- ⎪+⎝⎭+, 即()()222111b y x b b =+++.()y f x =与()y g x =的图象有且仅有一条公切线.所以()()()222111ln 111m a b ma b m a a b ⎧=⎪++⎪⎨⎪+-=⎪++⎩①② 有唯一一对(),a b 满足这个方程组,且0m >.由(1)得: ()211a m b +=+代入(2)消去a ,整理得:()22ln 1ln 101m b m m m b +++--=+,关于()1b b >-的方程有唯一解. 令()()22ln 1ln 11g b m b m m m b =+++--+,()()()()2221122111m b m g b b b b +-⎡⎤⎣⎦'=-=+++方程组有解时,0m >,所以()g b 在11,1m ⎛⎫--+ ⎪⎝⎭单调递减,在11,m ⎛⎫-++∞ ⎪⎝⎭单调递增,所以()min 191ln 1g b m m m m ⎛⎫=-+=-- ⎪⎝⎭, 因为()(),,1,b g b b g b →+∞→+∞→-→+∞,只需ln 10m m m --=,令()ln 1m m m σ=--、()ln m m σ'=-在0m >为单减函数,且1m =时,()0m σ'=,即()()max 10m σσ==,所以1m =时,关于b 的方程()22ln 1ln 101m b m m m b +++--=+有唯一解 此时0a b ==,公切线方程为y x =.……………………………………………………………………12分22. 解:(1)由cos sin x a a y a αα=+⎧⎨=⎩可得cos sin x aay aαα-⎧=⎪⎪⎨⎪=⎪⎩,两式平方后相加即得222()(0)x a y a a -+=>, ∴曲线C 是以(),0a 为圆心,以a 为半径的圆;直线l的直角坐标方程为30x -=.由直线l 与圆C 只有一个公共点,即直线l 与圆C 相切,则可得32a a -=, 解得: 3a =-(舍),1a =.所以:1a =………………………………………………………………………………………………5分 (2)因为曲线C 是以(),0a 为圆心,以a 为半径的圆,且3AOB π∠=由正弦定理得:2sin3AB a π=,所以AB =.由余弦定理得22223AB a OA OB OA OB OA OB ==+-⋅≥⋅,所以2211sin 323224OAB S OA OB a π∆=⋅≤⨯⨯=, 所以OAB ∆的面积最大值24.…………………………………………………………………10分23. 解:(1)()12,213,122,1x x f x x x x x ⎧+≤-⎪⎪⎪=--<<⎨⎪--≥⎪⎪⎩(如果没有此步骤,需要图中标示出1,12x x =-= 对应的关键点,否则扣分)画出图象如图所示, ………………………………………………………………………………………5分 (2)由(1)知32m =. ∵()()22222223232242m a c b a b c b ab bc ==++=+++≥+, ∴324ab bc +≤,∴2ab bc +的最大值为34,当且仅当12a b c ===时,等号成立. ……………………………………………………………10分。
四川省成都市第七中学2017届高三下学期入学考试试题理科综合注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.人体肝细胞合成的糖原储存在细胞内,合成的脂肪是以VLDL(脂肪与蛋白质复合物)形式分泌出细胞外。
下列相关叙述,正确的是()A.糖原和VLDL都含有C、H、O、N元素B.VLDL是以自由扩散方式分泌到细胞外的C.VLDL的合成过程必须要有内质网的参与D.糖原和脂肪是细胞生活的主要能源物质2.嗜盐菌是一种能在高浓度盐溶液中生长的细菌,该菌中有一种结合蛋白质称为菌紫质,菌紫质能将光能转换成化学能.下列叙述不正确的是()A.加入呼吸抑制剂影响菌紫质的合成B.嗜盐菌属于生态系统的生产者C.嗜盐菌的能量转化发生在类囊体膜上D.菌紫质的功能与叶绿素等色素分子类似3.PM2.5是粒径小于2.5um(相当于细菌大小)的颗粒物,被认为是造成雾霾天气的“元凶”.PM2.5进入人体后,会被吞噬细胞吞噬,同时导致生物膜通透性改变,引起细胞死亡.下列叙述错误的是()A.PM2.5引起细胞死亡的原因可能与溶酶体水解酶的释放有关B.吞噬细胞因不含分解PM2.5的酶,最终导致细胞死亡C.PM2.5可携带病菌进入人体,导致机体出现炎症反应D.吞噬细胞吞噬PM2.5,属于人体免疫的第三道防线4.下列关于生物学实验中常用技术、方法等的相关描述,正确的是()A.观察植物细胞质壁分离与复原时,可用洋葱根尖分生区细胞作实验材料B.噬菌体DNA被35S标记后,用于侵染大肠杆菌能证明DNA是遗传物质C.在“探究酵母菌细胞呼吸的方式”实验中,可用重铬酸钾溶液检测CO2D.建构数学模型的方法,可以用于研究种群数量变化和酶活性变化的规律A.比较①③⑤组的实验结果可知昆虫乙更适应高湿度环境B.在温度比较低的环境中,昆虫甲的竞争能力大于昆虫乙C.昆虫乙与昆虫甲相比,昆虫乙防止水分散失的能力更强D.在高温环境中,昆虫甲通过突变会使基因频率定向改变6.有生物学家在某海岛上发现多年前单一毛色的老鼠种群演变成了具有黄色、白色和黑色三种毛色的种群.基因A1(黄色)、A2(白色)、A3(黑色)的显隐关系为A1对A2、A3显性,A2对A3显性,且黄色基因纯合会致死.据此下列有关说法不正确的是()A.老鼠中出现多种毛色说明基因突变是不定向的B.多年前老鼠的单一毛色只可能是白色或黑色C.两只黄色老鼠交配,子代中黄色老鼠概率为D.不存在两只老鼠杂交的子代有三种毛色的可能8、设N A表示阿伏伽德罗常数的值,下列叙述正确的是A. 1molOH-和1mol羟基(—OH)中含有的质子数均为9N AB. 1L 2mol/L Na2S溶液中S2-和HS-的总数为2N AC. 某密闭容器中盛有1mol N2和3molH2,在一定条件下充分反应,转移电子的数目为6N AD. 含0.2mol H2SO4的浓硫酸与足量铜反应,生成SO2的分子数为0.1N A9、下列关于有机化合物的说法正确的是A. 2,2,7,7—四甲基辛烷的一氯取代物有4种B. 甲醇与分子式为C3H8O的某种有机物相差2个CH2原子团,所以它们一定互为同系物C. 苯与浓硝酸、浓硫酸共热并保持50~60℃反应生成硝基苯D. 已知C4H9OH的同分异构体有4种,则分子式为C5H10O2的属于羧酸的同分异构体有8种10、下列说法正确的是A. 水的离子积常数K W只与温度有关,但外加酸、碱、盐一定会影响水的电离程度B. K sp不仅与难溶电解质的性质和温度有关,还与溶液中相关离子的浓度有关C. 常温下,在0.1mol/L的NH3·H2O溶液中加入少量NH4Cl晶体,能使溶液的pH减小,c(NH4+)/c(NH3·H2O)的值增大D. 室温下,CH3COOH的K a=1.7×10-5,NH3·H2O的K b=1.7×10-5,CH3COOH溶液中的c(H+)与NH3·H2O中c(OH-)相等11、已知X、Y、Z、W为短周期主族元素,在周期表中的相对位置如下表所示。
成都七中2017届高三数学测试理科命题人:杨敬民 审题人:祁祖海一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{0,1,2,3,4}U =,集合{0,1,3}A =,集合{2,3}B =,则()UA B =( )A .{}4B .{}0,1,2,3C .{}3D .{}0,1,2,4 2.在区间上任取一实数,则的概率是( )A .B .C.D .3.已知复数21iz i +=-(i 为虚数单位),那么z 的共轭复数为( ) A .3322i + B .1322i - C .1322i + D .3322i -4.设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题正确的是( )A .若,,m n m n αβ⊂⊂⊥,则αβ⊥B .若//,,//m n αβαβ⊥,则m n ⊥C .若,,//m n αβαβ⊥⊥,则//m nD .若,,m n m αβαβ⊥=⊥,则n β⊥5.将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是( )A .2164B .2158C .1229 D .7276.设13482,log 3,log 5a b c ===,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >> 7. 函数()sin(2)3f x x π=+的图象是由函数()cos 2f x x =的图象( )A .向右平移12π个单位B .向左平移12π个单位 C .向右平移512π个单位D .向左平移512π个单位8.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于 ( )A .21 B .22 C .23 D .249.如图,网格纸上小正方形的边长为1,粗线画出的为某几何体的三视图,则此几何体的体积为( )A .23 B .1 C .43D .210. 函数24sin 2)21(424+++=+x x x x x f ,则++)20172()20171(f f …=+)20172016(f ( )ABCD1D 1A 1B 1C E FA .2017B .2016C .4034D .403211.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的动点,设1,AE x B F y ==.若棱1DD 与平面BEF 有公共点,则x y +的取值范围是( )A .(]0,2B .13[,]22C .[1,2]D .3[,2]2 12.过x 轴下方的一动点P 作抛物线2:2C x y =的两切线,切点分别为,A B ,若直线AB与圆221x y +=相切,则点P 的轨迹方程为( )A .221(0)y x y -=< B .22(2)1y x ++= C .221(0)4y x y +=< D .21x y =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 二项式的展开式中的常数项为____________________.14. 若实数满足不等式组,则目标函数的最大值为___________________.15.已知在ABC ∆中,2B A =,ACB ∠的平分线CD 把三角形分成面积比为4:3的两部分, 则cos A =___________________.16.已知直线y b =与函数()23f x x =+和()ln g x ax x =+分别交于,A B 两点,若AB 的最小值为2,则a b +=________________________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知(12)nx +的展开式中各项的二项式系数和为n a ,第二项的系数为n b . (Ⅰ)求n a ,n b ; (Ⅱ)求数列{}n n a b 的前n 项和n S .18.(12分)如图,在三棱柱中,侧面底面,,且点为中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的大小.19.(12分)为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a <<,(Ⅰ)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;(Ⅱ)视频率分布直方图中的频率为概率,用样本估计总体,则(1)从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; (2)从长期来看,投资哪种型号的节排器平均利润较大?20. (12分)已知椭圆22122:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,且2F 为抛物线22:2C y px=的焦点,2C 的准线l 被1C 和圆222x y a +=截得的弦长分别为224.(Ⅰ)求1C 和2C 的方程;(Ⅱ)直线1l 过1F 且与2C 不相交,直线2l 过2F 且与1l 平行,若1l 交1C 于,A B ,2l 交1C 交于,C D ,A,C 且在x 轴上方,求四边形12AF F C 的面积的取值范围.21. (12分)已知函数.(Ⅰ)当时,求证:;(Ⅱ)当时,若不等式恒成立,求实数的取值范围;(Ⅲ)若,证明.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线cos :(sin x t l t y t αα=⎧⎨=⎩为参数,(0,))2πα∈与圆:C 22(1)(2)4x y -+-=相交于点,A B ,以O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求直线l 与圆C 的极坐标方程; (Ⅱ)求11OA OB+的最大值. 23. (10分)选修4-5:不等式选讲 设函数()2(0)f x x a x a a =-++>. (Ⅰ)当1a =时,求()f x 的最小值; (Ⅱ)若关于x 的不等式()5f x a x<+在[1,2]x ∈上有解,求实数a 的取值范围. 成都七中2017届高三数学测试 理科参考解答 三、解答题17.(1)2,2n n n a b n ==;(2)12312,12222n n n n n a b n S n -+=⋅=⋅+⋅++⋅,错位相减法2(1)24n n S n +=-+.18.(Ⅰ)证明:因为C A AA 11=,且O 为AC 的中点,所以AC O A ⊥1,又∵面面,交线为AC ,且⊂O A 1平面C C AA 11,∴⊥O A 1平面ABC (Ⅱ)如图,以O 为原点,1,,OA OC OB 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.由已知可得(0,0,0)O ,(0,1,0)A -,13)A ,1(0,3)C ,3,0,0)B ∴(3,1,0)AB =,1(3,0,3)A B =-,11(0,2,0)AC =.............6分 设平面的一个法向量为),,(111z y x m =,则有111110300330m AB x y m A B ⎧⎧⋅=+=⎪⎪⇒⎨⋅==⎪⎩令11=x ,得13y =,11z =)1,3,1(-=m . 8分 设平面11BC A 的法向量为),,(222z y x n =,则有2112212003300y m AC m A B ⎧=⎧⋅=⎪⎪⇒⎨-=⋅=⎪⎩令12=x ,则20y =,21z =,∴)1,0,1(=n ..10分 ∴510102,cos =>=<n m ∴所求二面角的大小为)510arccos(-. .12分19.(1)21364631023C C C P C +==; (2)①由已知及频率分布直方图中的信息知,乙型号节排器中的一级品的概率为710, 二级品的概率14,三级品的概率为120,若从乙型号节排器随机抽取3件, 则二级品数ξ所有可能的取值为0,1,2,3,且1(3,)4B ξ,所以0301213331273127(0)()(),(1)()()44644464P C P C ξξ======, 21230333319311(2)()(),(3)()()44644464P C P C ξξ======, 所以ξ的分布列为所以数学期望()2727272730123646464644E ξ=⨯+⨯+⨯+⨯=(或()13344E ξ=⨯=).②由题意知,甲型号节排器的利润的平均值22132352555E a a a a =+⨯=+,乙型号节排器的利润的平均值22227111375104201010E a a a a a =+⨯+=+,2127171()1010107E E a a a a -=-=-,又11107a <<,所以投资乙型号节排器的平均利润率较大.20.(1)由2224b a b ⎧=⎪⎨⎪=⎩得2,4a b c p ====,所以1C 和2C 的方程分别为2221,884x y y x +==.(2)由题意,AB 的斜率不为0,设:2AB x ty =-,由228x ty y x =-⎧⎨=⎩,得228160,64640y ty t -+=∆=-≤,得21t ≤, 由222280x ty x y =-⎧⎨+-=⎩,得22(1)440t y ty +--=,12122()()AB a e x x y y =++=++=, AB 与CD ABDC 为平行四边形,121122F F CABDC S S ∆===,m m ⎡=∈⎣,1216[,3AF F C S =. 21. 解:(Ⅰ)0a =时,'()1,()1xxf x e x f x e =--=-. ...........1分 当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >. .................2分 故()f x 在(,0)-∞单调递减,在(0,)+∞单调递增,00)(min ==)(f x f .........4分(Ⅱ)方法一:'()12x f x e ax =--.由(Ⅰ)知1x e x ≥+,当且仅当0x =时等号成立. 故'()2(12)f x x ax a x ≥-=- 从而当120a -≥,即12a ≤时,在区间[0,)+∞上,()0f x '≥,()f x 单调递增,()(0)f x f ≥,即()0f x ≥,符合题意. ................5分 又由1(0)xe x x >+≠,可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x xf x e a e e e e a --<-+-=-- 在区间(0,ln 2)a 上,'()0f x <,()f x 单调递减,()(0)f x f <, 即()0f x <,不合题意. ....7分 综上得实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. .................8分方法二:()12x f x e ax '=--,令ax e x h x 21)(--=,则a e x h x2)(-='.1)当21a ≤时,在[)+∞,0上,()0h x '≥,)(x h 递增,)0()(h x h ≥,即0)0()(='≥'f x f)(x f ∴在[)+∞,0为增函数,0)0()(=≥∴f x f ,21≤∴a 时满足条件;......5分 2)当12>a 时,令0)(='x h ,解得a x 2ln =, 在当(0,ln 2)a 上,,0)(<'x h )(x h 单调递减,()a x 2ln ,0∈∴时,有0)0()(=<h x h ,即0)0()(='<'f x f ,∴)(x f 在区间)2ln ,0(a 为减函数,∴0)0()(=<f x f ,不合题意...........7分综上得实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-21,............8分(Ⅲ)由(Ⅱ)得,当21=a 时,0>x ,212x x e x ++>,即212x x e x+>-欲证不等式2)1ln()1(x x e x>+-,只需证22)1ln(+>+x xx ..................10分设22)1ln()(+-+=x x x x F ,则222)2)(1()2(411)(++=+-+=x x x x x x F ’0>x 时,0)('>x F 恒成立,且0)0(=F ,0)(>∴x F 恒成立.得证. .....12分22.(1)直线l 的极坐标方程为()R θαρ=∈,圆C 的极坐标方程为22cos 4sin 10ρρθρθ--+=; (2)θα=,代入22cos 4sin 10ρρθρθ--+=,得22cos 4sin 10ρραρα--+=,显然121212110,0,2cos 4sin )OA OB ρρρραααϕρρ+>>+==+=-≤, 所以11OA OB+的最大值为23.(1)当1a =时,()1111321110()()22222f x x x x x x x x =-++=-+-++≥+-+-=, 当且仅当12x =时,取等号. (2)[1,2]x ∈时,()55522f x a x a x a a a x x x x<+⇒-++<+⇒-< 553x a x x x⇔-<<+,所以06a <<.。
2017-2018学年四川省成都七中高三(上)入学数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,若(a,b∈R),则ab=()A.﹣15B.3C.15D.﹣32.(5分)某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程,其中,,据此模型预测广告费用为9万元时,销售轿车台数为()A.17B.18C.19D.203.(5分)程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是()A.x>60?,i=i﹣1B.x<60?,i=i+1C.x>60?,i=i+1D.x<60?,i=i﹣14.(5分)圆C的圆心在y轴正半轴上,且与x轴相切,被双曲线的渐近线截得的弦长为,则圆C的方程为()A.x2+(y﹣1)2=1B.x2+(y﹣)2=3C.x2+(y﹣)2=D.x2+(y﹣2)2=45.(5分)已知直线m,n和平面α,β,使m⊥α成立的一个充分条件是()A.m⊥n,n∥αB.m∥β,β⊥αC.m∥n,n⊥αD.m⊥n,n⊂α6.(5分)一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图与侧视图中x的值为()A.5B.4C.3D.27.(5分)将函数的图象向左平移个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在的最大值为()A.0B.C.D.18.(5分)二项式(ax+)6的展开式的第二项的系数为﹣,则∫x2dx的值为()A.B.C.3或D.3或9.(5分)某个家庭有2个孩子,其中有一个孩子为女孩,则另一个孩子也为女孩的概率为()A.B.C.D.10.(5分)在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且=5,则△ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.上述三种情况都有可能11.(5分)对正整数n,有抛物线y2=2(2n﹣1)x,过P(2n,0)任作直线l交抛物线于A n,B n两点,设数列{a n}中,a1=﹣4,且a n=(其中n>1,n∈N),则数列{a n}的前n项和T n=()A.4n B.﹣4n C.2n(n+1)D.﹣2n(n+1)12.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”,现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足;④要使得分段函数的图象具有“可平行性”,当且仅当m=1.其中的真命题个数有()A.1B.2C.3D.4二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a =.14.(5分)若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)=.15.(5分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;附:.16.(5分)设等差数列{a n}的前n项和为S n,且S n=na n+a n﹣c(c是常数,n∈N*),a2=6,又b n=,数列{b n}的前n项和为T n,若2T n>m﹣2对n∈N*恒成立,则正整数m的最大值是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.18.(12分)在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是.(Ⅰ)求油罐被引爆的概率;(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E (ξ).(结果用分数表示)19.(12分)如图,P A⊥平面ADE,B,C分别是AE,DE的中点,AE⊥AD,AD=AE=AP =2.(Ⅰ)求二面角A﹣PE﹣D的余弦值;(Ⅱ)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.20.(12分)已知定点F(1,0),定直线l:x=4,动点P到点F的距离与到直线l的距离之比等于.(Ⅰ)求动点P的轨迹E的方程;(Ⅱ)设轨迹E与x轴负半轴交于点A,过点F作不与x轴重合的直线交轨迹E于两点B、C,直线AB、AC分别交直线l于点M、N.试问:在x轴上是否存在定点Q,使得?若存在,求出定点Q的坐标;若不存在,请说明理由.21.(12分)已知函数g(x)=x sinθ﹣lnx﹣sinθ在[1,+∞)单调递增,其中θ∈(0,π)(1)求θ的值;(2)若,当x∈[1,2]时,试比较f(x)与的大小关系(其中f′(x)是f(x)的导函数),请写出详细的推理过程;(3)当x≥0时,e x﹣x﹣1≥kg(x+1)恒成立,求k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.[选修4-5:不等式选讲]23.已知不等式2|x﹣3|+|x﹣4|<2a,(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.2017-2018学年四川省成都七中高三(上)入学数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由,得:,∴a=﹣1,b=3,则ab=﹣3.故选:D.2.【解答】解:根据表中数据,计算=×(2+3+4+5+6)=4,=×(3+4+6+10+12)=7,且回归直线方程为=2.4x+,∴=7﹣2.4×4=﹣2.6,∴回归方程为=2.4x﹣2.6;当x=9时,=2.4×9﹣2.6=19,即据此模型预测广告费用为9万元时,销售轿车台数为19.故选:C.3.【解答】解:把大于60的数找出来,根据流程图可知当满足条件时输出x,故判断框中应填x>60°?,处理框用来计数的,则处理框应填i=i+1.故选:C.4.【解答】解:设圆C的方程为x2+(y﹣a)2=a2(a>0),圆心坐标为(0,a),∵双曲线的渐近线方程为,圆被双曲线的渐近线截得的弦长为,∴,∴a=1,∴圆C的方程为x2+(y﹣1)2=1.故选:A.5.【解答】解:∵已知直线m,n和平面α,β,故由n∥n,n⊥α,可得m⊥α,故“n∥n,n⊥α”是“m⊥α”的一个充分条件,故选:C.6.【解答】解:由三视图知,该空间几何体为圆柱及四棱锥,且圆柱底面半径为2,高为x,四棱锥底面为正方形,边长为2,高为=,故体积为4πx+×(2)2×=12π+,故x=3,故选:C.7.【解答】解:将函数的图象向左平移个单位长度后,可得函数g(x)=sin(2x++φ)的图象,根据所得图象关于原点对称,可得+φ=π,∴φ=,f(x)=sin(2x+).在上,2x+∈[,],故当2x+=时,f(x)=sin(2x+)取得最大值为1,故选:D.8.【解答】解:∵二项式(ax+)6的展开式的第二项的系数为×a5×=a5=﹣,∴a=﹣1,x2dx=×(﹣1)3﹣×(﹣2)3=.故选:A.9.【解答】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A为“其中一个是女孩”,事件B为“另一个也是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.于是可知P(A)=,P(AB)=.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)===,故选:A.10.【解答】解:在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵,,由=5,则()==﹣•=5,即﹣•()=5,则,又BC=5,则有||2=||2+||2>||2+||2,由余弦定理可得cos C<0,即有C为钝角.则三角形ABC为钝角三角形.故选:B.11.【解答】解:设直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n﹣1)ty﹣4n(2n﹣1)=0,设A n(x n1,y n1),B n(x n2,y n2),则=x n1x n2+y n1y n2=(t2+1)y n1y n22nt+(y n1+y n2)+4n2,①,由根与系数的关系得y n1+y n2=2(2n﹣1)t,y n1y n2=﹣4n(2n﹣1),代入①式得=﹣4n(2n﹣1)t2+4n2=4n﹣4n2,故(n>1,n∈N),故数列{}的前n项和为﹣2n(n+1).故选:D.12.【解答】解:①函数y=(x﹣2)2+lnx,则y′=2(x﹣2)+=,(x>0),方程==a,即2x2﹣(4+a)x+1=0,当a=﹣4+2时有两个相等正根,不符合题意;②定义在(﹣∞,0)∪(0,+∞)的奇函数,如y=x,x∈(﹣∞,0)∪(0,+∞)在各点处没有切线,∴②错误;③三次函数f(x)=x3﹣x2+ax+b,则f′(x)=3x2﹣2x+a,方程3x2﹣2x+a﹣m=0在判别式△=(﹣2)2﹣12(a﹣m)≤0时不满足方程y′=a(a 是导数值)至少有两个根.命题③错误;④函数y=e x﹣1(x<0),y′=e x∈(0,1),函数y=x+,y′=1﹣,则由1﹣∈(0,1),得∈(0,1),∴x>1,则m=1.故要使得分段函数f(x)的图象具有“可平行性”,当且仅当实数m=1,④正确.∴正确的命题是④.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:先根据约束条件画出可行域,设z=2x+y,将最大值转化为y轴上的截距,当直线z=2x+y经过点B时,z最小,由得:,代入直线y=a(x﹣3)得,a=;故答案为:14.【解答】解:∵随机变量ξ~N(2,1),∴正态曲线关于x=2对称,∵P(ξ>3)=0.1587,∴P(ξ>1)=P(ξ<3)=1﹣0.1587=0.8413.故答案为:0.841315.【解答】解:根据表中数据,计算观测值,对照临界值知,有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.16.【解答】解:∵S n=na n+a n﹣c(c是常数,n∈N*),a2=6,∴n=1,2,a1=a1+a1﹣c,a1+6=+6﹣c,解得a1=4,c=2.∴公差d=a2﹣a1=6﹣4=2.∴a n=4+2(n﹣1)=2n+2.b n==,∴数列{b n}的前n项和为T n=+++…+,=+…++,∴T n=+…+﹣=﹣,∴T n=2﹣.2T n>m﹣2,∴2(2﹣)>m﹣2,化为:m<6﹣,对n∈N*恒成立,由于=>0,∴数列{}单调递减.∴m<6﹣3=3,则正整数m的最大值是2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.【解答】解:(I)设命中油罐的次数为X,则当X=0或X=1时,油罐不能被引爆.,,∴(II)射击次数ξ的取值为2,3,4,5.,,,P(ξ=5)=1﹣P(ξ=2)﹣P(ξ=3)﹣P(ξ=4)=.因此,ξ的分布列为:∴19.【解答】解:以{,,}为正交基底建立空间直角坐标系Axyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)(Ⅰ)∵AD⊥平面P AB,∴是平面P AB的一个法向量,=(0,2,0).∵=(1,1,﹣2),=(0,2,﹣2).设平面PED的法向量为=(x,y,z),则•=0,•=0,即,令y=1,解得z=1,x=1.∴=(1,1,1)是平面PCD的一个法向量,计算可得cos<,>==,∴二面角A﹣PE﹣D的余弦值为;(Ⅱ)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),∴cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为.因为y=cos x在(0,)上是减函数,此时直线CQ与DP所成角取得最小值,又∵BP==,∴BQ=BP=20.【解答】解:(Ⅰ)设点P(x,y),依题意,有=两边平方,整理得=1.所以动点P的轨迹E的方程为=1.(Ⅱ)设BC的方程为x=my+1,代入椭圆方程,整理得(3m2+4)y2+6my﹣9=0,设B(my1+1,y1),C(my2+1,y2),Q(x0,0),则y1+y2=﹣,y1y2=﹣,∵A(﹣2,0),∴直线AB的方程为y=(x+2),直线AC的方程为y=(x+2),从而M(4,),N(4,),∴=+=﹣9,∴=9即x0,=1或7时,=0,综上所述,在x轴上存在定点Q(1,0)或(7,0),使得=0.21.【解答】解:(1)∵g(x)在[1,+∞)单调递增,∴在[1,+∞)上恒成立,即恒成立.∵当x≥1时,≤1,∴sinθ≥1,又θ∈(0,π),∴0<sinθ≤1∴sinθ=1,∴.(2)由(1)可知g(x)=x﹣lnx﹣1,∴,∴,∴,令h(x)=x﹣lnx,,∴,,∴h(x)在[1,2]上单调递增,∴h(x)≥h(1)=1,令φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]单调递减,∵φ(1)=1,φ(2)=﹣10,∴∃x0∈(1,2),使得H(x)在(1,x0)单调递增,在(x0,2)单调递减,∵H(1)=0,H(2)=﹣,∴,∴,又两个函数的最小值不同时取得;∴,即:.(3)∵e x﹣x﹣1≥kg(x+1)恒成立,即:e x+kln(x+1)﹣(k+1)x﹣1≥0恒成立,令F(x)=e x+kln(x+1)﹣(k+1)x﹣1,则,由(1)得:g(x)≥g(1)即x﹣lnx﹣1≥0(x≥1),∴x+1≥ln(x+1)+1(x≥0),即:x≥ln(x+1)(x≥0),∴e x≥x+1,∴当k=1时,∵x≥0,∴,∴F(x)单调递增,∴F(x)≥F(0)=0,符合题意;当k∈(0,1)时,y=(x+1)+﹣(k+1)在[0,+∞)上单调递增,∴,∴F(x)单调递增,∴F(x)≥F(0)=0,符合题意;当k≤0时,F′(x)在[0,+∞)上是增函数,∴≥F′(0)=1+k﹣(k+1)=0,∴F(x)单调递增,∴F(x)≥F(0)=0符合题意,当k>1时,F″(x)=e x﹣,∴F″(x)在[0,+∞)上单调递增,又F″(0)=1﹣k<0,且x→+∞,F″(x)>0,∴F″(x)在(0,+∞)存在唯一零点t0,∴F′(x)在(0,t0)单调递减,在(t0,+∞)单调递增,∴当x∈(0,t0)时,F′(x)<F′(0)=0,∴F(x)在(0,t0)单调递减,∴F(x)<F(0)=0,不合题意.综上:k≤1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.【解答】解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴t=,代入y=t sinα,得:直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(﹣6,0),半径r=5,圆心到直线的距离d=.∴圆心C(﹣6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)若a=1,不等式即2|x﹣3|+|x﹣4|<2,①若x≥4,则3x﹣10<2,x <4,∴舍去.②若3<x<4,则x﹣2<2,∴3<x<4.③若x≤3,则10﹣3x<2,∴.综上,不等式的解集为.(Ⅱ)设f(x)=2|x﹣3|+|x﹣4|,则,故当x=3时,f(x)取得最小值为1,∴f(x)≥1,根据题意,2a>1,解得a>.。
2016—2017学年四川省成都七中高三(上)入学数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设全集U=R,若集合A={x∈N||x﹣2|<3},B={x|y=lg(9﹣x2)},则A∩∁R B()A.{x|﹣1<x<3}B.{x|3≤x<5} C.{0,1,2} D.{3,4}2.已知复数z=x+yi(x,y∈R),且有=1+yi,是z的共轭复数,则的虚部为()A.B.i C.D.i3.已知x,y取值如表:x01456y 1.3m3m5。
67。
4画散点图分析可知,y与x线性相关,且回归直线方程=x+1,则实数m的值为()A.1.426 B.1。
514 C.1。
675 D.1.7324.已知函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计f(x)dx的值约为( )A.B.C.D.5.已知点P(3,3),Q(3,﹣3),O为坐标原点,动点M(x,y)满足,则点M所构成的平面区域的内切圆和外接圆半径之比为()A.B. C.D.6.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=AB=AD=,若∠A1AD=∠A1AB=45°,∠BAD=60°,则点A1到平面ABCD的距离为()A.1 B.C.D.7.在△ABC中,若4(sin2A+sin2B﹣sin2C)=3sinA•sinB,则sin2的值为()A.B. C.D.8.若直线xcosθ+ysinθ﹣1=0与圆(x﹣cosθ)2+(y﹣1)2=相切,且θ为锐角,则这条直线的斜率是()A. B. C.D.9.定义在R上的函数f(x)满足f(x﹣2)=﹣f(x),且在区间[0,1]上是增函数,又函数f(x﹣1)的图象关于点(1,0)对称,若方程f(x)=m在区间[﹣4,4]上有4个不同的根,则这些根之和为()A.﹣3 B.±3 C.4 D.±410.设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λ•μ=,则该双曲线的离心率为()A.B.C. D.11.已知函数f(x)=,g(x)=,则函数h(x)=g(f(x))﹣1的零点个数为()个.A.7 B.8 C.9 D.1012.若对任意的x1∈[e﹣1,e],总存在唯一的x2∈[﹣1,1],使得lnx1﹣x1+1+a=x22e x2成立,则实数a的取值范围是()A.[,e+1] B.(e+﹣2,e]C.[e﹣2,) D.(,2e﹣2]二、填空题13.已知P1(x1,x2),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若sin()=,则的x1x2+y1y2值为.14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x i(i=1,2,3,4)(单位:立方米).根据如图所示的程序框图,若知x1,x2,x3,x4分别为1,1.5,1.5,3,则输出的结果S为.15.已知a<b,二次不等式ax2+bx+c≥0对任意实数x恒成立,则M=的最小值为.16.设x∈R,定义[x]表示不超过x的最大整数,如[]=0,[﹣3。
成都七中2017级考试 数学试卷(理科)命题:方廷刚 审题:巢中俊 一、选择题(共50分,每题5分)1.设22{|10},{|log 0}A x x B x x =->=<,则A B ⋂=A.{|1}x x >B.{|0}x x >C.{|1}x x <-D.Φ 2.设i 是虚数单位,若()(1)2(1)a bi i i ++=-,其中,a b R ∈,则a b +的值是A.12- B.2- C.2 D.323.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有3个人从不同的角度 观察,结果如图所示.若记3的对面的数字为m ,4的对面的数字为n ,则m n +=A.3B.7C.8D.114.设554log 4,log ((2,log a b c ==-=则A.a c b <<B.b c a <<C.a b c <<D.b a c <<5.设,A B 是锐角ABC ∆的两内角,(sin ,1),(1,)p A q cosB =-=u r r ,则p u r与q r的夹角是A.锐角B.钝角C.直角D.不确定6.下列判断错误..的是 A.“22am bm <”是“a b <”的充分不必要条件B.“3210x x --≤对x R ∈恒成立”的否定是“存在0x R ∈使得320010x x -->”C.若“p q Λ”为假命题,则,p q 均为假命题D.若随机变量ξ服从二项分布:ξ~1(4,)4B ,则1E ξ=7.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A.32B.43C.3D.238.设22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为3π,离心率为e ,则2a eb +的最小值为C.9.设12,,,n a a a L 是1,2,,n L 的一个全排列,把排在i a 左边且小于i a 的数的个数称为i a 的顺序数(1,2,,i n =L ),例如在排列6,4,5,3,2,1中,5的顺序数是1而3的顺序数是0.在1,2,,8L 的全排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数是A.48B.96C.144D.19210.已知函数2()22ln (,0)f x x ax a x a R a =--∈≠,则下列说法错误的是A.若0a <,则()f x 有零点B.若()f x 有零点,则12a ≤且0a ≠ C.0a ∃>使得()f x 有唯一零点 D.若()f x 有唯一零点,则12a ≤且0a ≠二、填空题(共25分,每题5分)11.已知函数2()2x x f x =在区间(0,)a 内单调,则a 的最大值为__________.12.若方程3log (3)20x a x -+-=有实根,则实数a 的取值范围是___________.13.已知直线l :0y -=与抛物线Γ:24y x =交于,A B 两点,与x 轴交于F ,若()OF OA OB λμλμ=+≤u u u r u u r u u u r, 则λμ=_______. 14.正方体1111ABCD A BC D -中,E 是棱1CC 的中点, F是侧面11BCC B 内的动点,且1//A F 平面1D AE ,则1A F与平面11BCC B 所成角的正切值的集合是____________.15.已知函数()122014122014f x x x x x x x =+++++++-+-++-L L 的定义域为R ,给定两集合4222{((12101)(2))(2)}A a R f a a a f a =∈-++=+及B ={()(),}a R f x f a x R ∈≥∈,则集合A B ⋂的元素个数是_________.三、解答题(共75分) 16.(12分)设()f x p q=⋅u u r u r,而2(24sin ,1),(cos )()2xp q x x x R ωωω=-=∈u u ru r.(1)若()3f π最大,求ω能取到的最小正数值.(2)对(1)中的ω,若()(21f x x =+且(0,)2x π∈,求tan 2x .17.(12分)小区统计部门随机抽查了区内60名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过2千元的顾客被定义为“网购红人”,网购金额不超过2千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为3:2.(1)确定,,,x y p q的值,并补全频率分布直方图(图(2)).(2)为进一步了解这60名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查,设ξ为选取的3人中“网购红人”的人数,求ξ的分布列和数学期望.18.(12分)执行如图所描述的算法程序,记输出的一列a 的值依次为12,,,n a a a L ,其中*n N ∈且2014n ≤.(1)若输入λ=写出全部输出结果. (2)若输入4λ=,记*)n b n N =∈,求1n b +与n b 的关系(*n N ∈).19.(12分)如图,已知平面ABCD ⊥平面BCEF , 且四边形ABCD 为矩形,四边形BCEF 为直角梯形,090CBF ∠=,//BF CE ,BC CE ⊥,4DC CE ==, 2BC BF ==.(1)作出这个几何体的三视图(不要求写作法). (2)设,P DF AG Q =⋂是直线DC 上的动点, 判断并证明直线PQ 与直线EF 的位置关系.(3)求直线EF 与平面ADE 所成角的余弦值.20.(13分)椭圆Γ:2221(0)25x y r r+=>的左顶点为A ,直线4x =交椭圆Γ于,B C 两点(C 上B 下),动点P 和定点(4,6)D -都在椭圆Γ上.(1)求椭圆方程及四边形ABCD 的面积. (2)若四边形ABCP 为梯形,求点P 的坐标.(3)若,m n 为实数,BP mBA nBC =+uu r uu r uu u r,求m n +的取值范围.21.(14分)已知函数()2sin f x x x =-,()()(2)2g x f x π=--.(1)讨论()g x 在(0,)6π内和在(,)62ππ内的零点情况.(2)设0x 是()g x 在(0,)6π内的一个零点,求()f x 在0[,]2x π上的最值.(3)证明对*n N ∈恒有11)1212n k n n π=<<∑.成都七中2017级考试数学试卷(理科)参考答案一、DBCD BCAB CB二、11.12.13.14.15.7三、16.(1).(2).17.解.(1),,补全频率分布直方图如图所示.(2)选出的人中,“网购达人”有4人,“非网购达人”有6人,故的可能取值为0,1,2,3,且易得的分布列为.18.解.(1)输出结果共4个,依次是:.(2).19.(1)如右图. (2)垂直. (3).20.(1); .(2). (3).21.解.(1)在有唯一零点,易知在单增而在内单减,且,故在和内都至多有一个零点.又,故在内有唯一零点;再由知在内无零点.(2)由(1)知在有最大值,故在有最大值;再由(1)的结论知在的最小值应为.由知,于是在的最小值.(3)由(2)知时,有,即①取,则且,将的值代入①中,可得②再由,得③相仿地,时,,故④而时④即,显然也成立.故原不等式成立.。
2016-2017学年四川省成都七中实验学校高三(上)期中数学试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分)1.已知全集U=R,集合A={x|x2﹣x<0,x∈R},B={0,1},则()A.A∪B=A B.A∩B=B C.∁U B=A D.B⊆∁U A2.设i是虚数单位,,则实数a=()A.B.C.﹣1 D.13.命题“若x2=1,则x=1或x=﹣1”的逆否命题为()A.若x2=1,则x≠1且x≠﹣1 B.若x2≠1,则x≠1且x≠﹣1C.若x≠1且x≠﹣1,则x2≠1 D.若x≠1或x≠﹣1,则x2≠14.已知直线l⊥平面α,直线m⊂平面β,则下列四个命题正确的是()①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.A.②④B.①②C.③④D.①③5.执行如图的程序框图,若输出的,则输入的整数p的值为()A.6 B.5 C.4 D.36.在(x2﹣x)5的展开式中,含x7项的系数为()A.﹣10 B.10 C.﹣15 D.157.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.8.已知函数,则f(x)的值域是()A.[﹣1,1]B. C.D.9.直线l过抛物线C:y2=4x的焦点F交抛物线C于A、B两点,则的取值范围为()A.{1}B.(0,1]C.[1,+∞)D.10.若函数y=f(x)(x∈R)满足f(x+1)=﹣f(x),且当x∈[﹣1,0)时,,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是()A.2 B.3 C.4 D.511.快递员通知小张中午12点到小区门口取快递,由于工作原因,快递员于11:50到12:10之间随机到达小区门口,并停留等待10分钟,若小张于12:00到12:10之间随机到达小区门口,也停留等待10分钟,则小张能取到快递的概率为()A.B.C.D.12.在锐角△ABC中,∠A=,∠BAC的平分线交边BC于点D,|AD|=1,则△ABC面积的取值范围是()A.[,]B.[,]C.[,)D.[,)二、填空题:(本大题共4小题,每小题5分,共20分)13.(文科)已知α∈(,π),sinα=,则tan=.14.点P(x0,y0)是曲线y=3lnx+x+k(k∈R)图象上一个定点,过点P的切线方程为4x﹣y﹣1=0,则实数k的值为.15.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若,,则m+n的取值范围为.16.已知函数f(x)满足xf′(x)=(x﹣1)f(x),且f(1)=1,若A为△ABC的最大内角,则f[tan(A﹣)]的取值范围为.三、解答题:(本大题共6小题,共70分)17.已知=(sinωx+cosωx,cosωx),=(cosωx﹣sinωx,2sinωx)(ω>0),函数f(x)=•,若f(x)相邻两对称轴间的距离不小于.(1)求ω的取值范围;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=2,当ω最大时,f(A)=1,求△ABC面积的最大值.18.某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,如图所示茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.19.一个多面体的直观图(图1)及三视图(图2)如图所示,其中M、N分别是AF、BC的中点,(1)求证:MN∥平面CDEF;(2)求平面MNF与平面CDEF所成的锐二面角的大小.20.已知椭圆C: +=1(a>b>0)的离心率为,右焦点到直线l1:3x+4y=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l2:y=kx+m(km≠0)与椭圆C交于A、B两点,且线段AB中点恰好在直线l1上,求△OAB的面积S的最大值.(其中O为坐标原点).21.已知函数f(x)=x2+bx﹣alnx.(1)当a>0时,函数f(x)是否存在极值?判断并证明你的结论;(2)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),求自然数n的值;(3)若对任意b∈[﹣2,﹣1],都存在x∈(1,e),使得f(x)<0成立,求实数a的取值范围.22.已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2﹣2ρcos(θ﹣)=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)设两圆交点分别为A、B,求直线AB的参数方程,并利用直线AB的参数方程求两圆的公共弦长|AB|.2016-2017学年四川省成都七中实验学校高三(上)期中数学试卷(理科)参考答案与试题解+析一、选择题:(本大题共12小题,每小题5分,共60分)1.已知全集U=R,集合A={x|x2﹣x<0,x∈R},B={0,1},则()A.A∪B=A B.A∩B=B C.∁U B=A D.B⊆∁U A【考点】集合的表示法.【分析】求出∁U A={x|x≤0或x≥1},即可得出结论.【解答】解:∵∁U A={x|x≤0或x≥1},B={0,1},∴B⊆∁U A,故选D.2.设i是虚数单位,,则实数a=()A.B.C.﹣1 D.1【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简,再由复数相等的充要条件计算得答案.【解答】解:由===,得,解得a=﹣.故选:A.3.命题“若x2=1,则x=1或x=﹣1”的逆否命题为()A.若x2=1,则x≠1且x≠﹣1 B.若x2≠1,则x≠1且x≠﹣1C.若x≠1且x≠﹣1,则x2≠1 D.若x≠1或x≠﹣1,则x2≠1【考点】四种命题.【分析】根据命题“若p则q”的逆否命题“若¬q则¬p”,写出即可.【解答】解:命题“若x2=1,则x=1或x=﹣1”的逆否命题是“若x≠1且x≠﹣1,则x2≠1”.故选:C.4.已知直线l⊥平面α,直线m⊂平面β,则下列四个命题正确的是()①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.A.②④B.①②C.③④D.①③【考点】命题的真假判断与应用.【分析】直接由空间中的点线面的位置关系逐一核对四个选项得答案.【解答】解:①∵l⊥平面α,直线m⊂平面β.若α∥β,则l⊥平面β,有l⊥m,①正确;②如图,由图可知②不正确;③∵直线l⊥平面α,l∥m,∴m⊥α,又m⊂平面β,∴α⊥β,③正确;④由②图可知④不正确.∴正确的命题为①③.故选:D.5.执行如图的程序框图,若输出的,则输入的整数p的值为()A.6 B.5 C.4 D.3【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算满足S=+++…+=的整数p的值,并输出,结合等比数列通项公式,可得答案.【解答】解:由程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算满足S=+++…+=的整数p的值,∵+++…+=1﹣=,故==,故p=5.故选:B.6.在(x2﹣x)5的展开式中,含x7项的系数为()A.﹣10 B.10 C.﹣15 D.15【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式,令x的指数等于7,求得r的值,即可求出x7的系数.【解答】解:(x2﹣x)5的展开式中,通项公式为=C5r•x10﹣2r•(﹣x)r,=•(﹣1)r•x10﹣r,T r+1令10﹣r=7,求得r=3,可得展开式中x7的系数为(﹣1)3•C53=﹣10.故选:A.7.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.【考点】棱柱、棱锥、棱台的体积.【分析】根据近似公式V≈L2h,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.8.已知函数,则f(x)的值域是()A.[﹣1,1]B. C.D.【考点】正弦函数的定义域和值域.【分析】去绝对值号,将函数变为分段函数,分段求值域,在化为分段函数时应求出每一段的定义域,由三角函数的性质求之.【解答】解:由题=,当时,f(x)∈[﹣1,]当时,f(x)∈(﹣1,)故可求得其值域为.故选:D.9.直线l过抛物线C:y2=4x的焦点F交抛物线C于A、B两点,则的取值范围为()A.{1}B.(0,1]C.[1,+∞)D.【考点】抛物线的简单性质.【分析】根据抛物线方程可求得焦点坐标和准线方程,设过F的直线方程,与抛物线方程联立,整理后,设A(x1,y1),B(x2,y2)根据韦达定理可求得x1x2的值,又根据抛物线定义可知|AF|=x1+1,|BF|=x2+1代入答案可得.【解答】解:易知F坐标(1,0)准线方程为x=﹣1.设过F点直线方程为y=k(x﹣1)代入抛物线方程,得k2(x﹣1)2=4x.化简后为:k2x2﹣(2k2+4)x+k2=0.设A(x1,y1),B(x2,y2),则有x1x2=1,根据抛物线性质可知,|AF|=x1+1,|BF|=x2+1,∴=+==1,故选A.10.若函数y=f(x)(x∈R)满足f(x+1)=﹣f(x),且当x∈[﹣1,0)时,,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是()A.2 B.3 C.4 D.5【考点】函数的图象;对数函数的图象与性质.【分析】由题意可知,函数为周期函数,作函数的图象解答.【解答】解:∴函数y=f(x)(x∈R)满足f(x+1)=﹣f(x),∴f(x)的周期为2,又∵当x∈[﹣1,0)时,,作出函数y=f(x)的图象与函数y=log3|x|的图象如下:由图可得:函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是4个,故选:C11.快递员通知小张中午12点到小区门口取快递,由于工作原因,快递员于11:50到12:10之间随机到达小区门口,并停留等待10分钟,若小张于12:00到12:10之间随机到达小区门口,也停留等待10分钟,则小张能取到快递的概率为()A.B.C.D.【考点】几何概型.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={x|0<x<30}做出集合对应的线段,写出满足条件的事件对应的集合和线段,根据长度之比得到概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={x|0<x<30},而满足条件的事件对应的集合是A═{x|0<x<20},得到其长度为20,∴小张能取到快递的概率是.故选:C.12.在锐角△ABC中,∠A=,∠BAC的平分线交边BC于点D,|AD|=1,则△ABC面积的取值范围是()A.[,]B.[,]C.[,)D.[,)【考点】正弦定理.【分析】根据余弦定理和角平分线定理,求出△ABC是正三角形时面积取得最小值,当AB⊥BC时,△ABC面积取得最大值,由此求出结果.【解答】解:如图所示,锐角△ABC中,∠A=,∠BAC的平分线交边BC于点D,|AD|=1,根据余弦定理,BD2=c2+1﹣2c•cos=c2﹣c+1,CD2=b2+1﹣2b•cos=b2﹣b+1;根据角平分线定理,=,即=;∴b2c2﹣b2c+b2=b2c2﹣bc2+c2,即bc(c﹣b)=(c﹣b)(c+b);当b=c时,△ABC是正三角形,由|AD|=1,=bcsin=;得AB=AC=,则S△ABC当b≠c时,bc=b+c≥2,当且仅当b=c时“=”成立,所以bc≥,即b=c=时S取得最小值为;△ABC又当AB⊥BC时,BD=,AB=,DC=AD=1,S△ABC=××(1+)=为最大值,△ABC面积的取值范围是[,].故选:D.二、填空题:(本大题共4小题,每小题5分,共20分)13.(文科)已知α∈(,π),sinα=,则tan=.【考点】两角和与差的正切函数;同角三角函数间的基本关系.【分析】利用同角三角函数的基本关系求出cosα 和tanα的值,利用两角和的正切公式求出tan的值.【解答】解:∵α∈(,π),sinα=,∴cosα=﹣,∴tanα=﹣.∴tan==,故答案为:.14.点P(x0,y0)是曲线y=3lnx+x+k(k∈R)图象上一个定点,过点P的切线方程为4x﹣y﹣1=0,则实数k的值为2.【考点】利用导数研究曲线上某点切线方程.【分析】求出曲线的导函数,把x=x0代入即可得到切线的斜率,然后根据过点P0的切线方程为4x﹣y﹣1=0得出切线的斜率从而求出切点的坐标,最后将切点的坐标代入曲线方程即可求出实数k的值.【解答】解:由函数y=3lnx+x+k知y′=3×+1=+1,把x=x0代入y′得到切线的斜率k=+1,因切线方程为:4x﹣y﹣1=0,∴k=4,∴+1=4,得x0=1,把x0=1代入切线方程得切点坐标为(1,3),再将切点坐标(1,3)代入曲线y=3lnx+x+k,得3=3ln1+1+k,∴k=2.故答案为:2.15.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若,,则m+n的取值范围为[2,+∞).【考点】平面向量的基本定理及其意义.【分析】由三点共线时,以任意点为起点,这三点为终点的三向量,其中一向量可用另外两向量线性表示,其系数和为1得到+=1,然后利用基本不等式求最值【解答】解:∵△ABC中,点O是BC的中点,∴=(+),∵,,∴=+,又∵O,M,N三点共线,∴+=1,∴m+n=(m+n)(+)=(2++)≥(2+2)=2,当且仅当m=n=1时取等号,故m+n的取值范围为[2,+∞),故答案为:[2,+∞)16.已知函数f(x)满足xf′(x)=(x﹣1)f(x),且f(1)=1,若A为△ABC的最大内角,则f[tan(A﹣)]的取值范围为(﹣,0)∪[1,+∞).【考点】利用导数研究函数的单调性;导数的运算.【分析】根据条件构造函数g(x)=xf(x),求函数的导数,结合函数极值和导数之间的关系求函数的极值和单调性即可得到结论.【解答】解:∵xf′(x)=(x﹣1)f(x),∴f(x)+xf′(x)=xf(x)设g(x)=xf(x),则g′(x)=f(x)+xf′(x),即g′(x)=g(x),则g(x)=ce x,∵f(1)=1,∴g(1)=f(1)=1,即g(1)=ce=1,则c=,则g(x)=xf(x)=•e x,则f(x)=,(x≠0),函数的导数f′(x)==,由f′(x)>0得x>1,此时函数单调递增,由f′(x)<0得x<0或0<x<1,此时函数单调递减,即当x=1时,函数f(x)取得极小值,此时f(1)==1,即当x>0时,f(x)≥1,当x<0时,函数f(x)单调递减,且f(x)<0,综上f(x)≥1或f(x)<0,∵A为△ABC的最大内角,∴≤A<π,则0≤A﹣<,则设m=tan(A﹣),则m≥0或m<﹣,∴当m≥0时,f(m)≥1,当m<﹣,f(m)∈(f(﹣),0),即f(m)∈(﹣,0),即f[tan(A﹣)]的取值范围为的值域为(﹣,0)∪[1,+∞),故答案为:(﹣,0)∪[1,+∞)三、解答题:(本大题共6小题,共70分)17.已知=(sinωx+cosωx,cosωx),=(cosωx﹣sinωx,2sinωx)(ω>0),函数f(x)=•,若f(x)相邻两对称轴间的距离不小于.(1)求ω的取值范围;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=2,当ω最大时,f(A)=1,求△ABC面积的最大值.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;余弦定理.【分析】(1)函数f(x)==(sinωx+cosωx)(cosωx﹣sinωx)+2cosωx•sinωx=cos2ωx+sin2ωx=2sin(2ωx+),由f(x)相邻两对称轴间的距离不小于,则,解得ω的范围;(2)当ω=1时,,求得A,由余弦定理、不等式的性质,得bc的最大值,【解答】解:(1)函数f(x)==(sinωx+cosωx)(cosωx﹣sinωx)+2cosωx•sinωx=cos2ωx+sin2ωx=2sin(2ωx+),f(x)相邻两对称轴间的距离不小于∴T≥π,则,解得0<ω≤1;(2)∵当ω=1时,,且A∈(0,π),∴,,∴b2+c2=bc+4,又b2+c2≥2bc,∴bc+4≥2bc,即bc≤4,当且仅当b=c=2时,bc=4,∴.…18.某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,如图所示茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.【考点】离散型随机变量的期望与方差;众数、中位数、平均数.【分析】(1)根据所给的茎叶图看出16个数据,找出众数和中位数,中位数需要按照从小到大的顺序排列得到结论.(2)由题意知本题是一个古典概型,至多有1人是“极幸福”包括有一个人是极幸福和有零个人是极幸福,根据古典概型公式得到结果.(3)由于从该社区任选3人,记ξ表示抽到“极幸福”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.【解答】解:(1)由茎叶图得到所有的数据从小到大排,8.6出现次数最多,∴众数:8.6;中位数:8.75;(2)设A i表示所取3人中有i个人是“极幸福”,至多有1人是“极幸福”记为事件A,则(3)ξ的可能取值为0、1、2、3.;;,ξ的分布列为所以Eξ=.另解:ξ的可能取值为0、1、2、3.则,.ξ的分布列为所以Eξ=.19.一个多面体的直观图(图1)及三视图(图2)如图所示,其中M、N分别是AF、BC的中点,(1)求证:MN∥平面CDEF;(2)求平面MNF与平面CDEF所成的锐二面角的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)由三视图知,该多面体是底面为直角三角形的直三棱柱ADE﹣BCF,且AB=BC=BF=4,DE=CF=4,∠CBF=90°,由此能证明MN∥平面CDEF.(2)以EA,AB,AD所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出平面MNF与平面CDEF所成的锐二面角的大小.【解答】证明:(1)由三视图知,该多面体是底面为直角三角形的直三棱柱ADE﹣BCF,且AB=BC=BF=4,DE=CF=4,∠CBF=90°,连结BE,M在BE上,连结CEEM=BM,CN=BN,所以MN∥CE,CE⊂面CDEF,MN⊄面CDEF,所以MN∥平面CDEF.(2)以EA,AB,AD所在直线为x轴,y轴,z轴,建立空间直角坐标系,A(0,0,0),B(0,4,0),C(0,4,4),D(0,0,4),E(﹣4,0,0),F(﹣4,4,0),N(﹣2,2,0),M(0,4,2),=(﹣2,2,﹣2),=(﹣4,4,﹣2),=(0,4,0),=(﹣4,0,﹣4),设面MNF法向量为=(x,y,z),则,取x=1,得=(1,1,0),设平面CDEF的法向量=(a,b,c),则,取a=1,得=(1,0,﹣1),设平面MNF与平面CDEF所成的锐二面角为θ,则cosθ==,θ=60°,∴平面MNF与平面CDEF所成的锐二面角的大小为60°.20.已知椭圆C: +=1(a>b>0)的离心率为,右焦点到直线l1:3x+4y=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l2:y=kx+m(km≠0)与椭圆C交于A、B两点,且线段AB中点恰好在直线l1上,求△OAB的面积S的最大值.(其中O为坐标原点).【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)由点到直线的距离公式可得,得c值,由离心率可得a值,再由b2=a2﹣c2可得b值;(Ⅱ)设A(x1,y1),B(x2,y2),把直线l2:y=kx+m代入椭圆方程得到:(4k2+3)x2+8kmx+4m2﹣12=0,利用韦达定理及中点坐标公式可得AB中点横坐标,代入l2得纵坐标,由中点在直线l1上可求得k值,用点到直线的距离公式求得原点O到AB的距离为d,弦长公式求得|AB|,由三角形面积公式可表示出S△OAB,变形后用不等式即可求得其最大值;【解答】解:(Ⅰ)由右焦点到直线l1:3x+4y=0的距离为,得,解得c=1,又e=,所以a=2,b2=a2﹣c2=3,所以椭圆C的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),把直线l2:y=kx+m代入椭圆方程得到:(4k2+3)x2+8kmx+4m2﹣12=0,因此,,所以AB中点M(,),又M在直线l1上,得3×+=0,因为m≠0,所以k=1,故,,所以|AB|==•=,原点O到AB的距离为d=,得到S=≤,当且仅当m2=取到等号,检验△>0成立.所以△OAB的面积S的最大值为.21.已知函数f(x)=x2+bx﹣alnx.(1)当a>0时,函数f(x)是否存在极值?判断并证明你的结论;(2)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),求自然数n的值;(3)若对任意b∈[﹣2,﹣1],都存在x∈(1,e),使得f(x)<0成立,求实数a的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数f(x)的导数,通过判断导函数的符号,得到函数的单调区间,从而判断出函数的极值即可;(2)先求导得到f′(x),由f′(2)=4﹣+b=0,f(1)=1+b=0,得到a与b的值,再令导数大于0,或小于0,得到函数的单调区间,再由零点存在性定理得到得到x0∈(3,4),进而得到n的值;(3)令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],则g(b)为关于b的一次函数且为增函数,由于对任意b∈[﹣2,﹣1],都存在x∈(1,e),使得f(x)<0成立,则g(b)max=g(﹣1)=x2﹣x﹣alnx<0在x∈(1,e)有解.令h(x)=x2﹣x﹣alnx,只需存在x0∈(1,e)使得h(x0)<0即可.【解答】解:(1)f(x)=x2+bx﹣alnx,(x>0),f′(x)=2x+b﹣,f″(x)=2+>0,故f′(x)在(0,+∞)递增,故x→0时,f′(x)→﹣∞,x→+∞时,f(x)→+∞,故存在x0∈(0,+∞),使得:x∈(0,x0)时,f′(x)<0,f(x)递减,x∈(x0,+∞)时,f′(x)>0,f(x)递增,故函数f(x)存在极小值,但不存在极大值;(2)f′(x)=2x﹣+b,∵x=2是函数f(x)的极值点,∴f′(2)=4﹣+b=0.∵1是函数f(x)的零点,得f(1)=1+b=0,由,解得a=6,b=﹣1,∴f(x)=x2﹣x﹣6lnx,令f′(x)=2x﹣﹣1=>0,x∈(0,+∞),得x>2;令f′(x)<0得0<x<2,所以f(x)在(0,2)上单调递减;在(2,+∞)上单调递增故函数f(x)至多有两个零点,其中1∈(0,2),x0∈(2,+∞),因为f(2)<f(1)=0,f(3)=6(1﹣ln3)<0,f(4)=6(2﹣ln4)=6ln>0,所以x0∈(3,4),故n=3.(3)令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],则g(b)为关于b的一次函数且为增函数,根据题意,对任意b∈[﹣2,﹣1],都存在x∈(1,e),使得f(x)<0成立,则g(b)max=g(﹣1)=x2﹣x﹣alnx<0在x∈(1,e)有解,令h(x)=x2﹣x﹣alnx,只需存在x0∈(1,e)使得h(x0)<0即可,由于h′(x)=2x﹣1﹣=,令φ(x)=2x2﹣x﹣a,φ′(x)=4x﹣1>0,∴φ(x)在(1,e)上单调递增,φ(x)>φ(1)=1﹣a,①当1﹣a≥0,即a≤1时,φ(x)>0,即h′(x)>0,h(x)在(1,e)上单调递增,∴h(x)>h(1)=0,不符合题意.②当1﹣a<0,即a>1时,φ(1)=1﹣a<0,φ(e)=2e2﹣e﹣a.若a≥2e2﹣e>1,则φ(e)<0,∴在(1,e)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合题意.若2e2﹣e>a>1,则φ(e)>0,∴在(1,e)上一定存在实数m,使得φ(m)=0,∴在(1,m)上φ(x)<0恒成立,即h′(x)<0恒成立,h(x)在(1,m)上单调递减,∴存在存在x0∈(1,m)使得h(x0)<h(1)=0,符合题意.综上所述,当a>1时,对∀b∈[﹣2,﹣1],都有∂x∈(1,e)(e为自然对数的底数),使得f(x)<0成立.22.已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2﹣2ρcos(θ﹣)=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)设两圆交点分别为A、B,求直线AB的参数方程,并利用直线AB的参数方程求两圆的公共弦长|AB|.【考点】简单曲线的极坐标方程.【分析】(1)利用x=ρcosθ、y=ρsinθ把圆O1,圆O2的极坐标方程化为直角坐标方程.(2)把2个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为参数方程.利用直线AB的参数方程求两圆的公共弦长|AB|.【解答】解:(1)圆O1的极坐标方程为ρ=2,直角坐标方程x2+y2=4,O的极坐标方程为,ρ2﹣2ρcos(θ﹣)=2,直角坐标方程x2+y2﹣2x﹣2y﹣22=0;(2)两圆的方程相减,可得直线AB的方程为x+y+1=0,参数方程为(t为参数),代入x2+y2=4,可得t2﹣t﹣3=0∴|AB|==.2017年2月11日。
四川省成都七中2017届高三上学期入学(理科)数学试卷答 案1~5.DCCAA6~10.ADADA 11~12.DB13. 14.7415.816.12717.解:(Ⅰ)Q 对任意实数α、β,恒有()cos 0f α≤,()2sin 0f β-≥, ()()cos010f f ∴=≤,且()π2sin 102f f ⎛⎫-=≥ ⎪⎝⎭, 即()10f =,则13044m +-=,解得12m =, ()2113424f x x x ∴=+-, ()()2n n n n S f a a a n +∴==+∈-N , 可得2111113424n n n S a a ++++-=, 故()()22111114n n n n n n n a S S a a a a ++++==+---, 即()()1120n n n n a a a a ++--+=,{}n a Q 是正数数列,10n n a a +∴+>,12n n a a +-∴=,即数列{}n a 是等差数列, 又2111113424a a a =+-,且10a >,可得13a =, ()32121n a n n ∴=+-=+;11122n a n ==++, 则()()()()22111212322221n b n n n n =<=++++-11122123n n ⎛⎫=- ⎪++⎝⎭ 16n T ∴<,证明如下: 12n n T b b b =++⋯+1111111235572123n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦K ()111111232362236n n ⎛⎫=-=-< ⎪++⎝⎭. 18.解:(Ⅰ)根据频率分布表知,第一组的人数为1202000.6=, 频率为0.0450.2⨯=,所以样本容量为20010000.2n ==; 由题可知,第二组的频率为()10.040.040.030.020.0150.3-++++⨯=,所以第二组的人数为10000.3300⨯=,所以1950.65300p ==; 第四组的频率为0.0350.15⨯=,所以第四组的人数为10000.15150⨯=, 所以1500.460a =⨯=;补全频率分布直方图如下;(Ⅱ)根据频率分布直方图知, 众数为最高小矩形的底边中点坐标,是303532.52+=; 又0.20.30.5+=,所以中位数为35; 平均数为27.50.232.50.337.50.242.50.1547.50.152.50.0536.5x =⨯+⨯+⨯+⨯+⨯+⨯=;(Ⅲ)年龄在[]40,55的三组“经纪人”的数量是60、30和15,现从中采用分层抽样法抽取7人,则分别抽取的人数为4、2和1;这7人站成一排照相,相同年龄段的人必须站在一起,共有423423288A A A =g g 种不同站法.19.解:(1)该组合体的主视图和侧视图如图示:证明:(2)EC PD Q ∥,PD ⊂平面PDA ,EC ⊄平面PDA ,EC ∴∥平面PDA ,同理可得BC ∥平面PDA ,EC ⊂Q 平面EBC ,BC ⊂平面EBC ,且EC BC C =I ,∴平面BEC ∥平面PDA ,又BE ⊂Q 平面EBC ,BE ∴∥平面PDA .解:(3)Q 底面ABCD 为正方形,PD ⊥平面ABCD ,EC PC ∥,且22PD AD EC ===,∴以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,()2,0,0A ,()0,0,2P ,()2,2,0B ,()0,2,1E ,()2,0,2PA =-u u u r ,()2,2,2PB =-u u u r ,()0,2,1PE =-u u u r ,设平面APB 的法向量(),,n x y z =r ,则2202220n PA x z n PB x y z ⎧=-=⎪⎨=+-=⎪⎩r u u u r g r u u u r g ,取1x =,得()1,0,1n =r , 设平面PBE 的法向量(),,n a b c =r ,则222020m PB a b c m PE b c ⎧=+-=⎪⎨=-=⎪⎩u r u u u r g u u u r g ,取1b =,得()1,1,2m =u r , 设二面角A PB E --的平面角为θ,则cos m n m nθ===u r r g u r r g ∴二面角A PB E --.20.解:(Ⅰ)由题意可知,1224PF PF a ==+,可得2a =,又c a =222a c b -=, 可得1b =,即有椭圆1C 的方程为2214x y +=; (Ⅱ)椭圆2C :22143x y +=. 将直线l 的方程y kx m =+代入椭圆C 的方程223412x y +=中,得()2224384120k x kmx m +-++=. 由直线l 与椭圆C 仅有一个公共点知,()()2222644434120k m k m +-∆-==, 化简得:2243m k =+.设11d F M ==22d F M ==当0k ≠时,设直线l 的倾斜角为θ, 则12tan d d MN θ=⨯-,()121222118121m S d d d d k k m m∴=-+==++g g g2243m k =+Q ,∴当0k ≠时,m >,1m m ∴+>,S ∴<.当0k =时,四边形12F MNF是矩形,S =所以四边形12F MNF 面积S的最大值为.21.(1)解:()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.0a ∴>,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;当ln x a >时,()0f x '>,()f x 是单调增函数;于是当ln x a =时,()f x 取得极小值.Q 函数()()e x f x ax a a -=+∈R 的图象与x 轴交于两点()1,0A x ,()2,0B x ()12x x <,()()ln 2ln 0f a a a ∴=-<,即2e a >.此时,存在1ln a <,()1e>0f =;存在3ln ln a a >,()3323ln 3ln 30f a a a a a a a a -+>-=+>,又()f x 在R 上连续,故2e a >为所求取值范围.(2)证明:1212e 0e 0x x ax a ax a ⎧-+=⎪⎨-+=⎪⎩Q ,两式相减得2121e e x x a x x -=-. 记212x x t -=,则()121221212221e e e e 2e e 22x x x x x x t t x x f t x x t ++-+-⎛⎫⎡⎤'=-=-- ⎪⎣⎦-⎝⎭, 设()()2e e t t g t t =--﹣,则()()2e e 0t t g t '=-+<﹣, ()g t ∴是单调减函数,则有()()00g t g <=,而122e 02x x t +>,1202x xf +⎛⎫'∴< ⎪⎝⎭. 又()e x f x a '=-是单调增函数,且122x x +0f '∴<. 22.解:(1)曲线C 的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数)()0p >,消去t 可得:22y px =. 直线l 经过曲线C 外一点()2,4A --且倾斜角为π4,可得参数方程为:2242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩. (2)把直线l的参数方程代入抛物线方程可得:()28320t t p ++=-,12t t ∴+=,1212832.0t t p t t =+<<. 不妨设11AM t =,1221M M t t -=,22AM t =, 则1221M M t t ===- 1AM Q ,12M M ,2AM 成等比数列,21212M M AM AM ∴=⨯, 2832832p p p ∴+=+,化为2340p p +-=,0p >.解得1p =.23.解:(Ⅰ)1x a -<Q ,11a x a ∴-<<+,()1,1x ∈-Q ,不等式1x a -<恒成立,1111a a -≥-⎧∴⎨+≤⎩,解得0a =,∴实数a 的取值范围构成的集合{}0四川省成都七中2017届高三上学期入学(理科)数学试卷解析1.【考点】交、并、补集的混合运算.【分析】确定集合A,B,求出∁R B,再根据集合的基本运算即可求A∩∁R B【解答】解:由题意:全集U=R,集合A={x∈N||x﹣2|<3}={0,1,2,3,4},B={x|y=lg(9﹣x2)}={x|﹣3<x<3},则∁R B={x|x≥3或x≤﹣3},那么:A∩∁R B={3,4}故选D2.【考点】复数代数形式的乘除运算.【分析】先由复数代数形式的乘除运算化简,再由复数相等的条件求出实数x、y的值,得到复数z,求出,再由复数求模公式得到|z|,代入,然后运用复数的除法运算化简即可得答案.【解答】解:∵复数z=x+yi(x、y∈R),且有=1+yi,∴.∴x+xi=2+2yi∴x=2y=2.解得:y=1,x=2.则z=2+i,|z|=|2+i|=,.∴==.则的虚部为:.故选:C.3.【考点】线性回归方程.【分析】求出样本中心,代入回归方程求出a.【解答】解:∵=3.2, =,回归直线方程=x+1.∴=3.2+1,解得m=1.675.故选:C.4.【考点】定积分在求面积中的应用.【分析】利用阴影部分与矩形的面积比等于落入阴影部分的豆子数与所有豆子数的比,由此求出阴影部分的面积.【解答】解:由题意设阴影部分的面积为S,则,所以S=;故选:A.5.【考点】简单线性规划的应用.【分析】先根据向量数量积化简约束条件,画出可行域,数形结合得答案.【解答】解:∵P(3,3),Q(3,﹣3),O为坐标原点,∴,又动点M(x,y),即,∴由,得,画出可行域如图,由点到直线的距离公式可得O到直线x+y﹣3=0的距离d=.∴点M所构成的平面区域的内切圆和外接圆半径之比为=.故选:A.6.【考点】点、线、面间的距离计算.【分析】记A1在面ABCD内的射影为O,O在∠BAD的平分线上,说明∠BAD的平分线即菱形ABCD 的对角线AC,在三角形AA1O中,求出A1O即为高.【解答】解:记A1在面ABCD内的射影为O,∵∠A1AB=∠A1AD,∴O在∠BAD的平分线上,又AB=AD,∴∠BAD的平分线即菱形ABCD的对角线AC,故O在AC上;∵cos∠A1AB=cos∠A1AO×cos∠OAB∴cos∠A1AO=,∴sin∠A1AO=,在△A1AO中,AA1=∴点A1到平面ABCD的距离为A1O=1.故选:A.7.【考点】余弦定理;正弦定理.【分析】先根据正弦定理找到角与边的关系,即用角的正弦表示出边,然后再用余弦定理可求出角C的余弦值,从而利用二倍角公式化简所求得到答案.【解答】解:在△ABC中,根据正弦定理设ka=sinA,kb=sinB,kc=sinC,∵4(sin2A+sin2B﹣sin2C)=3sinA•sinB.∴4(k2a2+k2b2﹣k2c2)=3ka•kb,即:a2+b2﹣c2=a•b,∴由余弦定理cosC===.∴sin2====.故选:D.8.【考点】直线与圆的位置关系.【分析】由条件利用直线和圆相切的性质,点到直线的距离公式求得sinθ=.再结合θ为锐角,可得θ=,从而求得直线xcosθ+ysinθ﹣1=0的斜率﹣的值.【解答】解:由题意可得圆心(cosθ,1)到直线xcosθ+ysinθ﹣1=0的距离等于半径,即=,化简可得|sinθ﹣sin2θ|=,即sinθ﹣sin2θ=,求得sinθ=.再结合θ为锐角,可得θ=,故直线xcosθ+ysinθ﹣1=0的斜率为﹣=﹣,故选:A.9.【考点】根的存在性及根的个数判断.【分析】求出f(x)的周期及对称中心,作出f(x)的函数图象草图,利用对称性得出四个根之和.【解答】解:∵f(x﹣2)=﹣f(x),∴f(x)=﹣f(x+2),∴f(x+2)=f(x﹣2),∴f(x)的周期为4.又f(x﹣1)关于(1,0)对称,∴f(x)的图象关于(0,0)对称,∴f(x)是奇函数.作出f(x)的大致函数图象如图所示:设方程f(x)=m在区间[﹣4,4]上有4个不同的根从小到大依次为a,b,c,d,当m>0,a+b=﹣6,c+d=2,∴a+b+c+d=﹣4,当m<0时,a+b=﹣2,c+d=6,∴a+b+c+d=4.故选:D.10.【考点】直线与圆锥曲线的关系.【分析】由方程可得渐近线,可得A,B,P的坐标,由已知向量式可得λ+μ=1,λ﹣μ=,解之可得λμ的值,由λ•μ=,可得a,c的关系,由离心率的定义可得.【解答】解:双曲线的渐近线为:y=±x,设焦点F(c,0),则A(c,),B(c,﹣),P(c,),因为=λ+μ所以(c,)=((λ+μ)c,(λ﹣μ)),所以λ+μ=1,λ﹣μ=,解得:λ=,μ=,又由λ•μ=得: =,解得:b2=c2,所以a2=c2,所以,e=.故选:A.11.【考点】根的存在性及根的个数判断.【分析】令h(x)=0得出g(f(x))=1,设g(t)=1的解,作出f(x)的函数图象,根据图象判断f (x)=t的解得个数.【解答】解:令h(x)=0得g(f(x))=1,令g(x)=1得或,解得x=0或x=e或x=.∴f(x)=0或f(x)=e或f(x)=.作出f(x)的函数图象如图所示:由图象可知f(x)=0有4个解,f(x)=e有两个解,f(x)=有4个解,∴h(x)共有10个零点.故选:D.12.【考点】函数恒成立问题.【分析】设f(x)=lnx﹣x+1+a,g(x)=x2e x,求函数的导数,利用导数研究函数的单调性和最值,建立条件关系进行求解即可.【解答】解:设f(x)=lnx﹣x+1+a,f′(x)=,当x∈[e﹣1,1)时,f′(x)>0,当x∈(1,e]时,f′(x)<0,∴f(x)在[e﹣1,1)上是增函数,在x∈(1,e]上是减函数,∴f(x)max=a,又f(e﹣1)=a﹣,f(e)=2+a﹣e,∴f(x)∈[a+2﹣e,a],设g(x)=x2e x,∵对任意的x1∈[e﹣1,e],总存在唯一的x2∈[﹣1,1],使得lnx1﹣x1+1+a=x22e成立,∴[a+2﹣e,a]是g(x)的不含极值点的单值区间的子集,∵g′(x)=x(2+x)e x,∴x∈[﹣1,0)时,g′(x)<0,g(x)=x2e x是减函数,当x∈(0,1],g′(x)>0,g(x)=x2e x是增函数,∵g(﹣1)=<e=g(1),∴[a+2﹣e,a]⊆(,e],∴,解得.故选:B.13.【考点】简单曲线的极坐标方程.【分析】由条件求得cos()的值,可得cosθ的值,再利用两个向量的数量积的定义、两个向量的数量积公式求得x1x2+y1y2的值.【解答】解:由题意可得<θ<π,sin()=>0,∴还是钝角,∴cos()=﹣,∴,∴cosθ=﹣.∴•=x1•x2+y1•y2=||•||cosθ=1×1×(﹣)=﹣,故答案为:.14.【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加S的值并输出,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序运行过程中,各变量值变化情况如下表:第一(i=1)步:s1=s1+x i=0+1=1第二(i=2)步:s1=s1+x i=1+1.5=2.5第三(i=3)步:s1=s1+x i=2.5+1.5=4第四(i=4)步:s1=s1+x i=4+3=7,s=×7=第五(i=5)步:i=5>4,输出s=.故答案为:74.15.【考点】二次函数的性质.【分析】由题意可得b>a>0,再由△≤0,得到c≥,把c代入M,将关于a,b的不等式利用基本不等式的性质就能求得最小值.【解答】解:∵a<b,二次函数y=ax2+bx+c≥0对任意实数x恒成立.∴△≤0,解得:c≥,a>0,b﹣a>0,∴M=≥==≥=8.当且仅当2a=b﹣a,取得等号.∴M的最小值是8,故答案为:816.【考点】根的存在性及根的个数判断;函数零点的判定定理.【分析】根据定义分别求出f(x)=0和g(x)=0,将函数方程转化为sin2[x]+sin2{x}﹣1=0和[x]•{x}=+1,分别利用图象讨论两个函数零点的个数.【解答】解:由f(x)=sin2[x]+sin2{x}﹣1=0得sin2{x}=1﹣sin2[x]=cos2[x].则{x}=+2kπ+[x]或{x}=﹣+2kπ+[x],即{x}﹣[x]= +2kπ或{x}﹣[x]=﹣+2kπ.即x=+2kπ或x=﹣+2kπ.若x=+2kπ,∵0≤x≤100,∴当k=0时,x=,由x=+2kπ≤100,解得k≤15.68,即k≤15,此时有15个零点,若x=﹣+2kπ,∵0≤x≤100,∴当k=0时,x=﹣不成立,由x=﹣+2kπ≤100,解得k≤16.28,此时有15个零点,综上f(x)=sin2[x]+sin2{x}﹣1的零点个数为15+15=30个.∵{x }=,∴[x ]•{x }=,由g (x )=0得[x ]•{x }=+1,分别作出函数h (x )=[x ]{x }和y =+1的图象如图:由图象可知当0≤x <1和1≤x <2时,函数h (x )=[x ]{x }和y =+1没有交点,但2≤x <3时,函数h (x )=[x ]{x }和y =+1在每一个区间上只有一个交点,∵0≤x <100,∴g (x )=[x ]•{x }﹣﹣1的零点个数为100﹣2﹣1=97个.故m =30,n =97.m +n =127.故答案为:127.17.【考点】数列递推式;数列的求和.【分析】(1)令α=0,β=,根据f (cosα)≤0,f (2﹣sinβ)≥0化简后,列出方程求出m ,根据函数解析式和条件表示出S n 和S n +1,根据a n +1=S n +1﹣S n 化简后,由等差数列的定义判断出{a n }是等差数列,求得a 1利用等差数列的通项公式求出a n ;(Ⅱ)把a n 代入中求得b n ,利用裂项法求出T n ,即可证明T n <.【解答】解:(Ⅰ)Q 对任意实数α、β,恒有()cos 0f α≤,()2sin 0f β-≥,()()cos010f f ∴=≤,且()π2sin 102f f ⎛⎫-=≥ ⎪⎝⎭, 即()10f =,则13044m +-=,解得12m =, ()2113424f x x x ∴=+-, ()()2n n n n S f a a a n +∴==+∈-N , 可得2111113424n n n S a a ++++-=, 故()()22111114n n n n n n n a S S a a a a ++++==+---, 即()()1120n n n n a a a a ++--+=,{}n a Q 是正数数列,10n n a a +∴+>,12n n a a +-∴=,即数列{}n a 是等差数列, 又2111113424a a a =+-,且10a >,可得13a =, ()32121n a n n ∴=+-=+;11122n a n ==++, 则()()()()22111212322221n b n n n n =<=++++- 11122123n n ⎛⎫=- ⎪++⎝⎭ 16n T ∴<,证明如下: 12n n T b b b =++⋯+1111111235572123n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦K ()111111232362236n n ⎛⎫=-=-< ⎪++⎝⎭. 18.【考点】频率分布直方图;分层抽样方法.【分析】(Ⅰ)根据频率分布表,结合频率分布直方图,即可求出n 、p 和a 的值;再补全频率分布直方图即可;(Ⅱ)根据频率分布直方图,求出众数、中位数和平均数;(Ⅲ)求出年龄在[40,55]的三组“经纪人”的数量以及采用分层抽样法抽取7的人数,利用排列组合法求出不同的站法即可.【解答】解:(Ⅰ)根据频率分布表知,第一组的人数为1202000.6=, 频率为0.0450.2⨯=,所以样本容量为20010000.2n ==; 由题可知,第二组的频率为()10.040.040.030.020.0150.3-++++⨯=,所以第二组的人数为10000.3300⨯=,所以1950.65300p ==; 第四组的频率为0.0350.15⨯=,所以第四组的人数为10000.15150⨯=, 所以1500.460a =⨯=;补全频率分布直方图如下;(Ⅱ)根据频率分布直方图知, 众数为最高小矩形的底边中点坐标,是303532.52+=; 又0.20.30.5+=,所以中位数为35; 平均数为27.50.232.50.337.50.242.50.1547.50.152.50.0536.5x =⨯+⨯+⨯+⨯+⨯+⨯=;(Ⅲ)年龄在[]40,55的三组“经纪人”的数量是60、30和15,现从中采用分层抽样法抽取7人,则分别抽取的人数为4、2和1;这7人站成一排照相,相同年龄段的人必须站在一起,共有423423288A A A ••=种不同站法. 19.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)按照三视图所在的平面两两垂直,看不见的线用虚线,看得见的用实线画出.(2)由EC ∥PD ,得EC ∥平面PDA ,同时,有BC ∥平面PDA ,因为EC ⊂平面EBC ,BC ⊂平面EBC 且EC ∩BC =C ,得到平面BEC ∥平面PDA ,进而有BE ∥平面PDA .(3)以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣PB ﹣E 的余弦值.【解答】解:(1)该组合体的主视图和侧视图如图示:证明:(2)EC PD Q ∥,PD ⊂平面PDA ,EC ⊄平面PDA ,EC ∴∥平面PDA ,同理可得BC ∥平面PDA ,EC ⊂Q 平面EBC ,BC ⊂平面EBC ,且EC BC C =I ,∴平面BEC ∥平面PDA ,又BE ⊂Q 平面EBC ,BE ∴∥平面PDA .解:(3)Q 底面ABCD 为正方形,PD ⊥平面ABCD ,EC PC ∥,且22PD AD EC ===,∴以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,()2,0,0A ,()0,0,2P ,()2,2,0B ,()0,2,1E ,()2,0,2PA =-u u u r ,()2,2,2PB =-u u u r ,()0,2,1PE =-u u u r ,设平面APB 的法向量(),,n x y z =r ,则2202220n PA x z n PB x y z ⎧•=-=⎪⎨•=+-=⎪⎩r u u u r r u u u r ,取1x =,得()1,0,1n =r , 设平面PBE 的法向量(),,n a b c =r ,则222020m PB a b c m PE b c ⎧•=+-=⎪⎨•=-=⎪⎩u r u u u r u u u r ,取1b =,得()1,1,2m =u r , 设二面角A PB E --的平面角为θ,则cos m n m nθ•===•u r r u r r . ∴二面角A PB E --.20.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)运用椭圆的离心率公式和a ,b ,c 的关系,计算即可得到b ,进而得到椭圆C 的方程;(Ⅱ)将直线l 的方程y =kx +m 代入椭圆C 的方程3x 2+4y 2=12中,得到关于x 的一元二次方程,由直线l与椭圆C 仅有一个公共点知,△=0,即可得到m ,k 的关系式,利用点到直线的距离公式即可得到d 1=|F 1M |,d 2=|F 2N |.当k ≠0时,设直线l 的倾斜角为θ,则|d 1﹣d 2|=|MN |×|tanθ|,即可得到四边形F 1MNF 2面积S 的表达式,利用基本不等式的性质即可得出S 的最大值【解答】解:(Ⅰ)由题意可知,1224PF PF a ==+,可得2a =,又c a =222a c b -=, 可得1b =,即有椭圆1C 的方程为2214x y +=; (Ⅱ)椭圆2C :22143x y +=.将直线l 的方程y kx m =+代入椭圆C 的方程223412x y +=中,得()2224384120k x kmx m +-++=. 由直线l 与椭圆C 仅有一个公共点知,()()2222644434120k m k m +-∆-==, 化简得:2243m k =+.设11d F M ==22d F M ==当0k ≠时,设直线l 的倾斜角为θ, 则12tan d d MN θ=⨯-,()121222118121m S d d d d k k m m∴=••-•+==++2243m k =+Q ,∴当0k ≠时,m >,1m m ∴+>,S ∴<.当0k =时,四边形12F MNF是矩形,S =所以四边形12F MNF 面积S的最大值为.21.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)由f (x )=e x ﹣ax +a ,知f ′(x )=e x ﹣a ,再由a 的符号进行分类讨论,能求出f (x )的单调区间,然后根据交点求出a 的取值范围;(2)由x 1、x 2的关系,求出<0,然后再根据f ′(x )=e x ﹣a 的单调性,利用不等式的性质,问题得以证明.【解答】(1)解:()'e x f x a =-.若0a ≤,则()'0f x >,则函数()f x 是单调增函数,这与题设矛盾.0a ∴>,令()'0f x =,则ln x a =.当ln x a <时,()'0f x <,()f x 是单调减函数;ln x a >时,()'0f x >,()f x 是单调增函数;于是当ln x a =时,()f x 取得极小值.Q 函数()()e x f x ax a a -=+∈R 的图象与x 轴交于两点()1,0A x ,()2,0B x ()12x x <,()()ln 2ln 0f a a a ∴=-<,即2e a >.此时,存在1ln a <,()1e>0f =;存在3ln ln a a >,()3323ln 3ln 30f a a a a a a a a -+>-=+>,又()f x 在R 上连续,故2e a >为所求取值范围.(2)证明:1212e 0e 0x x ax a ax a ⎧-+=⎪⎨-+=⎪⎩Q ,两式相减得2121e e x x a x x -=-. 记212x x t -=,则()121221212221e e e 'e 2e e 22x x x x x x t t x x f t x x t ++-+-⎛⎫⎡⎤=-=-- ⎪⎣⎦-⎝⎭, 设()()2e e t t g t t =--﹣,则()()2e e 0t t g t '=-+<﹣, ()g t ∴是单调减函数,则有()()00g t g <=,而122e 02x x t +>,12'02x xf +⎛⎫∴< ⎪⎝⎭. 又()'e x f x a =-是单调增函数,且122x x +0f ∴'<. 22.【考点】参数方程化成普通方程.【分析】(1)曲线C 的参数方程为(t 为参数)(p >0),消去t 可得普通方程.利用点斜式可得直线l 的参数方程.(2)把直线l 的参数方程代入抛物线方程可得:t 2﹣+8p +32=0,可得t 1+t 2=p ,t 1t 2=8p +32.0<t 1<t 2.不妨设|AM 1|=t 1,|M 1M 2|=t 2﹣t 1,|AM 2|=t 2,则|M 1M 2|=t 2﹣t 1=.由于|AM 1|,|M 1M 2|,|AM 2|成等比数列,可得=|AM 1|×|AM 2|.【解答】解:(1)曲线C 的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数)()0p >,消去t 可得:22y px =. 直线l 经过曲线C 外一点()2,4A --且倾斜角为π4,可得参数方程为:24x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩. (2)把直线l的参数方程代入抛物线方程可得:()28320t t p ++=-,12t t ∴+=,1212832.0t t p t t =+<<. 不妨设11AM t =,1221M M t t -=,22AM t =, 则1221M M t t ===- 1AM Q ,12M M ,2AM 成等比数列,21212M M AM AM ∴=⨯, 2832832p p p ∴+=+,化为2340p p +-=,0p >.解得1p =.23.【考点】函数恒成立问题.【分析】(Ⅰ)先解绝对值不等式,再根据集合之间的关系即可求出a 的范围(Ⅱ)化简|f (x )﹣f (a )|为|x ﹣a ||x +a ﹣1|,小于|x +a ﹣1|即|(x ﹣a )+(2a ﹣1)|.再由|(x ﹣a )+(2a ﹣1)|≤|x ﹣a |+|2a ﹣1|<1+2|a |+1,从而证得结论.【解答】解:(Ⅰ)1x a -<Q ,11a x a ∴-<<+, ()1,1x ∈-Q ,不等式1x a -<恒成立,1111a a -≥-⎧∴⎨+≤⎩, 解得0a =,∴实数a 的取值范围构成的集合{}0(Ⅱ)证明:Q 函数()2f x x x c =-+,实数a 满足1x a -<,()()()2211f x f a x x c a a c x a x a x a ∴-=--<+-+=-+-+-()()21x a a =-+-()2112121x a a a a ≤-+-<++=+,即()()()21f x f a a <-+成立.。
高2017届2016~2017学年度下期入学考试
数学(理科)试题
一、选择题:本大题共12小题,每小题5分.
1、已知集合{}1,0,1A =-,{}|sin ,B y y x x A π==∈,则A B =I ( )
A .{}1-
B .{}0
C .{}1
D .∅
2、复数z 满足,则z 等于( )
A
.1 C
3、下列命题中正确的是( )
A .“1x <-”是“2
20x x -->”的必要不充分条件.
B .对于命题p :0x R ∃∈,使得20010x x +-<,则p ⌝:x R ∀∈,均有210x x +->.
C .命题“2
230ax ax -+>恒成立”是假命题,则实数a 的取值范围是0a <或3a ≥.
D .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”.
4、若α为锐角,,则cos2β等于( ) A
5、已知平面直角坐标系中的区域由不等式组给定,若为上的动点,点的坐标为,则的最大值为( ) A
. C
.
6、若偶函数()f x 在(,0]-∞上单调递减,32(log ),a f =54(log ),b f =32
(2)c f =,则,,a b c 满足( )
A .a b c <<
B .c a b <<
C .b a c <<
D .c b a <<
7、设函数()sin cos f x x x x =+的图象在点(,())t f t 处切线的斜率为k ,则函数()k g t =的部分图象为( ) xOy D (),M x y D
A z OM OA =•u u u u r u u u r 43
8、如图所示,在直三棱柱111ABC A B C -中,BC AC =,1AC ⊥1A B ,
M ,N 分别是11A B ,AB 的中点,下列结论错误..
的是( ) A .1C M ⊥平面11A ABB B .1A B ⊥1NB
C .平面1//AMC 平面1CNB
D .平面1A BC ⊥平面1ABC
9、从5名学生中选出4名分别参加A ,B ,C ,D 四科竞赛,其中甲不能参
加C ,D 两科竞赛,则不同的参赛方案种数为( )
A.24
B.48
C.72
D.120
10、棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视
图如图所示,那么该几何体各表面面积的最大值为( )
A.26
B.5
C.25
D.4
11、过曲线的左焦点F 作曲线2222:C x y a +=的切线,设切点为M ,延长FM 交曲线于点N ,其中曲线C 1与C 3有一个共同的焦点,
若OF ON =(O 为坐标原点),则曲线C 1的离心率为( )
A .
B .3+1
C .+1
D .3+1
12、设函数321()3(8)53
f x x x a x a =-+---,若恰好存在两个正整数12x x ,,使得()0i f x <,1,2i =,则a 的取值范围是( )
)0,0(1:22
221>>=-b a b
y a x C )0(2:23>=p px y C 2
15+5
A.
11
(,]
156
B.
11
(,]
154
C.
11
(,]
64
D.
18
(,]
415
二、填空题:本大题共4小题,每小题5分.
13、在25
3
1
()
2
x
x
-的展开式中,常数项为 .
14、如图所示的茎叶图为高三某班50名学生的化学考试成绩,
算法框图中输入的
i
a为茎叶图中的学生成绩,则输出的m n
,
值的和是 .
15、已知ABC
∆中,过中线AD的中点E任作一条直线分别交边AB,AC于M,N两点,设AM xAB
=
u u u u r u u u r
,AN y AC
=
u u u r u u u r
(0
xy≠),则4x y
+的最小值.
16、如图,四边形ABCD中,ABC
V为等腰三角形,AC BC
=,120o
ACB
∠=,
30o
ADC
∠=,若3
ABD
S=
V
,则AD=.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17、(本小题满分12分)已知数列{}
n
a满足21*
123
222(1)21()
n n
n
a a a a n n N
-
++++=-⋅+∈
L.
(1)求数列{}
n
a的通项公式;
(2)若
1
tan tan
n n n
b a a
+
=⋅,求数列{}
n
b的前n项和
n
T.
18、(本小题满分12分)某单位会计小王从今年起参加中级会计师资格考试,考试合格
需要通过《财务管理》、《经济法》、《中级会计实务》三个科目,每个科目每年可考一次,考试以二年为一个周期,参考人员须在连续的二个考试年度内通过全部科目的考试方可获得证书(第一年考过的科目第二年不需再考).已知小王第一年三科通过的概率分别为
211
,,
333
,若第一年没有考过,通过复习,第二年三科通过的概率分别为
311
,,
422
.三科考试相互独立.
(1)记ξ为小王第一年参加考试通过的科目数,求随机变量ξ的分布列及数学期望;
(2)求小王在二年内获得中级会计师资格证的概率.
19、(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,AC BD O =I ,112A B A D == ,21==AA AB .
(1)证明:平面1
ACO ⊥平面11BB D D ; (2)若60BAD ∠=o ,直线1B C 上是否存在点M ,
使得AM 与平面1ABA 所成角的正弦值为
4235
;若存在,求
1B M MC 的值. 20、(本小题满分12分)已知椭圆()22
22:10x y C a b a b
+=>>的焦距为2,离心率为22
,y 轴上一点Q 的坐标为(0,5). (1)求该椭圆的方程;
(2)若对于直线:l y x m =+,椭圆C 上总存在不同的两点A 与B 关于直线l 对称,求QAB V 面积的最大值,及取得最大值时l 的方程.
21、(本小题满分12分)已知()ln(1)(0)1x f x x a ax
=+-
>+,已知 2.71828e =...是自然对数的底数.
(Ⅰ)当2a =时,求()f x 的单调递增区间;
(Ⅱ)若()0f x ≥恒成立,求a 的取值集合;
(Ⅲ)比较ln2和58的大小.
22、4-4:坐标系与参数方程
已知直线112:(32
x t l t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),曲线1cos :(sin x C y θθθ=⎧⎨=⎩为参数).
(1)设l 与1C 相交于,A B 两点,求AB ;
(2)若把曲线1C 上各点的横坐标不变,纵坐标变为原来的3倍,得到2C ,设点P 是曲线2C 上的一个动点,求点P 到直线l 的距离的最大值.。