2019-2020年高中数学综合学习第一章算法初步教案3新课标人教版必修3(A)
- 格式:doc
- 大小:68.00 KB
- 文档页数:8
教学目标:1.进一步体会算法的思想,能设计解决简单问题的算法;2.进一步学习有条理地、清晰地表达问题,提高逻辑思维能力;3.在理解的基础上进一步熟练几种算法的使用,并能根据程序框图来编写循环结构及伪代码.教学重点:1.系统化本章的知识结构;2.提高对几种常见算法思想的认识;3.提升算法设计、优化和表达的能力.教学难点:1.算法的设计和优化;2.对算法思想的认识.教学方法:1.通过实例,发展对解决具体问题的过程与步骤进行分析的能力;2.通过模仿、操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程发展应用算法的能力;3.在解决具体问题的过程中学习一些程序框图及循环结构,感受算法的重要意义.教学过程:三、建构数学1.本章知识结构2.三种基本逻辑结构;3.五种基本算法语句;4.三个算法案例.四、数学运用2.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( )A.一个算法只能含有一种逻辑结构;B.一个算法最多可以包含两种逻辑结构;流程图算法的描述算法自然语言顺序结构选择结构循环结构顺序结构选择结构循环结构输语句伪代码循环语句赋值语句条件语句入C.一个算法必须含有上述三种逻辑结构;D.—个算法可以含有上述三种逻辑结构的任意组合.3.下列给出的赋值语句中正确的是( )A.3←A B.M←-MC.B←A←2 D.x+y←0例2 算法、程序框图和算法语句的设计、编写1.设计一个程序语句,输入任意三个实数,将它们按从小到大的顺序排列后输出.2.某市电信部门规定:拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过3分钟,则不超过部分收取0.2元,超过部分以每分钟0.1元收取通话费(通话时间以分钟计,不足1分钟时按1分钟计),试设计一个计算通话费用的算法.要求写出算法,画出流程图,编制程序.3.适合方程a2+b2=c2的一组正整数称为勾股数或商高数,设计一个满足a≤30,b≤40,c≤50的勾股数的算法.五、要点归纳与方法小结1.算法思想作为数学的一种基本思想,就是探求解决问题的一般性方法,并将解决问题的步骤用具体化、程序化的语言加以表述,主要作用是使计算机能代替人完成某些工作,这也是学习算法的重要原因之一.算法思想在解决某些问题时,只要能设计出一系列可操作或可计算的有限而明确的步骤,就可以通过实施这些步骤来解决问题.2.算法设计并不是一次就能成功的.我们应先有一个基本的框架,其中含有最典型最重要或最核心的算法语句或结构.然后再来思考其中的每一步的执行情况,增添一些细节,逐步完善流程图与程序......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
1.1.1算法的概念一、三维目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab 求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
必修3第一章算法初步复习教案一.课标要求:1.通过对解决具体问题过程与步骤的分析〔如,二元一次方程组求解等问题〕,体会算法的思想,了解算法的含义;2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中〔如,三元一次方程组求解等问题〕,理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
二.要点精讲1.算法的概念〔1〕算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等。
在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。
〔2〕算法的特征:①确定性:算法的每一步都应当做到准确无误、“不重不漏〞。
“不重〞是指不是可有可无的、甚至无用的步骤,“不漏〞是指缺少哪一步都无法完成任务。
②逻辑性:算法从开始的“第一步〞直到“最后一步〞之间做到环环相扣。
分工明确,“前一步〞是“后一步〞的前提,“后一步〞是“前一步〞的继续。
③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行。
〔3〕算法的描述:自然语言、程序框图、程序语言。
2.程序框图〔1〕程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;〔2〕构成程序框的图形符号及其作用一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字。
3.几种重要的结构 〔1〕顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
它是由假设干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
见示意图和实例:顺序结构在程序框图中的表达就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
人教版高中必修3第一章算法初步教学设计一、教学目标1.1 知识目标•掌握算法的基本概念和算法设计的流程;•能够正确理解和应用算法中的常用术语和符号;•学习并实现常见的算法,如冒泡排序、选择排序等。
1.2 能力目标•培养学生分析问题、解决问题的能力;•培养学生运用算法设计解决实际问题的能力;•培养学生的团队合作精神,提高学生的学习兴趣和学习效果。
二、教学内容2.1 什么是算法?•算法的定义;•算法与计算的关系;•算法的特点。
2.2 算法设计的流程•算法设计的步骤;•算法设计时需要考虑的问题。
2.3 常见算法•冒泡排序;•选择排序;•插入排序;•快速排序。
三、教学过程3.1 任务型学习1.让学生自己搜索和学习算法的定义,掌握算法的基本概念;2.将学生分为小组,分别针对冒泡排序、选择排序、插入排序、快速排序这四个常见算法进行深入学习;3.鼓励学生在小组内交流讨论,互相帮助,通过任务型学习的方式掌握每一种算法的实现过程和应用场景。
3.2 理论讲解1.讲解算法设计的流程,强调算法设计的基本思想;2.结合具体算法进行详细介绍;3.帮助学生掌握常用术语和符号的意义和用法。
3.3 多媒体展示1.利用计算机多媒体技术对算法的基本概念、算法设计的流程和常见算法进行展示;2.通过多媒体展示帮助学生理解算法中的关键点和难点。
3.4 实践操作1.让学生利用所学知识,对一些简单的排序问题进行解决;2.鼓励学生在实践中发现问题和总结经验;3.引导学生在实践中培养合作精神,培养团队意识。
四、教学评价4.1 测试评价1.设计一份测试题,测评学生对算法设计的基本概念、设计思想、常见算法等方面的掌握情况;2.给出具体的分值和评分标准。
4.2 成果展示1.让学生利用所学知识,针对一些复杂实际问题进行算法设计和实现;2.要求学生用合适的方式进行成果展示和说明;3.通过成果展示,评价学生团队合作精神和算法设计能力。
五、教学反思通过本次教学,学生基本掌握了算法的定义、算法设计的基本流程和常见算法的实现方法。
高一数学第一章算法初步教学设计(名师精选试题+详细解答过程,值得下载)重点列表:重点名称重要指数重点1 算法的概念★★★重点2 顺序结构★★★★重点3 分支结构★★★★重点详解:1.算法的概念及特点(1)算法的概念在数学中,算法通常是指按照一定______解决某一类问题的________和________的步骤.(2)算法的特点之一是具有______性,即算法中的每一步都应该是确定的,并能有效的执行,且得到确定的结果,而不应是模棱两可的;其二是具有______性,即算法步骤明确,前一步是后一步的前提,只有执行完前一步才能进行后一步,并且每一步都准确无误才能解决问题;其三是具有______性,即一个算法应该在有限步操作后停止,而不能是无限的;另外,算法还具有不唯一性和普遍性,即对某一个问题的解决不一定是唯一的,可以有不同的解法,一个好的算法应解决的是一类问题而不是一两个问题.2.程序框图(1)程序框图的概念程序框图又称流程图,是一种用、及来表示算法的图形.(2)构成程序框图的图形符号、名称及其功能图形符号名称功能①表示一个算法的起始和结束②表示一个算法输入和输出的信息③赋值、计算④判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”⑤连接程序框○⑥连接程序框图的两部分3.算法的基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按__________的顺序进行的.它是由若干个__________的步骤组成的,它是任何一个算法都离不开的基本结构.顺序结构可用程序框图表示为如图所示的形式:(2)条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.常见的条件结构可以用程序框图表示为如图所示的两种形式:程序语句1.输入(INPUT)语句输入语句的一般格式:.要求:(1)输入语句要求输入的值是具体的常量;(2)提示内容提示用户输入的是什么信息,必须加双引号,“提示内容”原原本本地在计算机屏幕上显示,提示内容与变量之间要用分号隔开;(3)一个输入语句可以给多个变量赋值,中间用“,”分隔.2.输出(PRINT)语句输出语句的一般格式:.功能:实现算法输出信息(表达式).要求:(1)表达式是指算法和程序要求输出的信息;(2)提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开;(3)如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.3.赋值语句赋值语句的一般格式:.赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样.作用:赋值语句的作用是将表达式所代表的值赋给变量.要求:(1)赋值语句左边只能是变量,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的;(2)赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”、“B=A”的含义和运行结果是不同的,如x=5是对的,5=x是错的,A+B=C 是错的,C=A+B是对的;(3)不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等).4.条件语句语句(1)“IF—THEN”格式:____________________.语句时,首先对IF后的条件进行判断,如果(IF)条件符合,说明:当计算机执行“IF—THEN”那么(THEN)执行语句体,否则执行END IF之后的语句.(2)“IF—THEN—ELSE”语句格式:____________________.说明:当计算机执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体 2.【答案】1.(1)规则明确有限(2)确定有序有穷2.(1)程序框流程线文字说明(2)①终端框(起止框)②输入、输出框③处理框(执行框)④判断框⑤流程线⑥连接点3.(1)从上到下依次执行程序语句1.INPUT“提示内容”;变量2.PRINT“提示内容”;表达式3.变量=表达式4.(1)IF条件THEN语句体END IF(2)IF条件THEN语句体 1ELSE语句体 2END IF重点1:算法的概念【要点解读】算法是指按照一定规则解决某一类问题的明确和有限的步骤.【考向1】算法的概念【例题】下列语句是算法的个数为()①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否为大树;④已知三角形的两边及夹角,利用三角形的面积公式求出该三角形的面积.A.1B.2C.3D.4【评析】算法过程要做到一步一步地执行,每一步执行的操作必须确切,不能含糊不清,且在有限步后必须得到问题的结果.【考向2】经典算法【例题】“韩信点兵”问题.韩信是汉高祖刘邦手下的大将,为了保守军事机密,他在点兵时采用下述方法:先令士兵从1~3报数,结果最后一个士兵报2;再令士兵从1~5报数,结果最后一个士兵报3;又令士兵从1~7报数,结果最后一个士兵报 4.这样,韩信很快就知道了自己部队士兵的总人数.请设计一个算法,求出士兵至少有多少人.解:在本题中,士兵从1~3报数,最后一个士兵报2,说明士兵的总人数是除以3余2,其他两种情况依此类推.(算法一)步骤如下:第一步:先确定最小的满足除以7余4的数是4;第二步:依次加7就得到所有满足除以7余4的数:4,11,18,25,32,39,46,53,60,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:18;第四步:依次加上35,得18,53,88,…;第五步:在第四步得到的一列数中,找到最小的满足除以3余2的正整数:53,这就是我们要求的数.(算法二)步骤如下:第一步:先确定最小的满足除以3余2的数是2;第二步:依次加3就得到所有满足除以3余2的数:2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:8;第四步:然后依次加15就得8,23,38,53,…,不难看出,这些数既满足除以3余2,又满足除以5余3;第五步:在第四步所得的一列数中找到满足除以7余4的最小数是53,这就是我们要求的数.【评析】给出一个问题,设计算法时要注意:(1)认真分析问题,研究解决此问题的一般方法;(2)将解决问题的过程分解成若干步骤;(3)用简练的语言将各步骤表示出来;(4)把解题过程条理清楚地表达出来,就得到一个明确的算法.对于同一问题,可以设计不同的算法,其最终的结果是一样的,但解决问题的繁简程度不同,我们要寻找最优算法.重点2:顺序结构【要点解读】(1)程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.(2)程序框图通常由程序框和流程线组成.(3)基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框.输入语句、输出语句、赋值语句的格式与功能语句一般格式功能输入语句INPUT“提示内容”;变量输入信息输出语句PRINT“提示内容”;表达式输出常量、变量的值和系统信息赋值语句变量=表达式将表达式的值赋给变量【考向1】顺序结构程序框图【例题】已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出流程图.解:算法如下:第一步:输入x0,y0及直线方程的系数A,B,C.第二步:计算z1=Ax0+By0+C.第三步:计算z2=A2+B2.第四步:计算d=||z1 z2.第五步:输出 d. 流程图如图所示:【评析】顺序结构是一种最简单、最基本的结构,可严格按照传统的解题思路写出算法步骤,画出程序框图.注意语句与语句之间,框与框之间是按从上到下的顺序进行的.【考向2】顺序结构语句【例题】请写出下面运算输出的结果.(1)a=5b=3c=(a+b)/2d=c*cPRINT“d=”;d(2)a=1b=2c=a+bb=a+c-bPRINT“a=,b=,c=”;a,b,c(3)a=10b=20c=30a=bb=cc=aPRINT“a=,b=,c=”;a,b,c是将a,b之和的一半赋值给变量c,语句“d=c*c”是将c的平方赋值解:(1)语句“c=(a+b)/2”给d,最后输出d的值.故输出结果为d=16.(2)语句“c=a+b”是将a,b之和赋值给c,语句“b=a+c-b”是将a+c-b的值赋值给了 b.故输出结果为a=1,b=2,c=3.(3)经过语句“a=b”后a,b,c的值是20,20,30,经过语句“b=c”后a,b,c的值是20,30,30,经过语句“c=a”后a,b,c的值是20,30,20.故输出结果为a=20,b=30,c=20. 【评析】①将一个变量的值赋给另一个变量,前一个变量的值保持不变;②可先后给一个变量赋多个不同的值,但变量的取值总是最后被赋予的值.重点3:分支结构【要点解读】条件语句(1)算法中的条件结构与条件语句相对应.(2)条件语句的格式及框图①IF-THEN格式②IF-THEN-ELSE格式【考向1】分支机构程序框图【例题】某铁路客运部门规定甲、乙两地之间旅客托运行李的费用c(单位:元)与行李的重量w(单位:kg)之间的关系为c=0.53w,w≤50,50×0.53+(w-50)×0.85,w>50.写出计算费用c的算法并画出程序框图.解:算法如下:第一步:输入行李的重量w;第二步:如果w≤50,那么c=0.53w,否则c=50×0.53+(w-50)×0.85;第三步:输出托运费 c.程序框图如图所示:【评析】条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构.【考向2】条件语句【例题】设计算法,求关于x的方程ax+b=0的解.解:程序框图如图所示.根据框图可写出程序语言:INPUT a,bIF a〈〉0 THENPRINT “x=”;-b/aElSEIF b=0 THENPRINT “解集为R”ELSEPRINT “此方程无解”END IFEND IFEND【评析】对于三段或三段以上的分段函数求函数值的问题,通常需用条件语句的嵌套结构.本例是条件语句内套条件语句,即用了两个条件语句,必须有两个END IF,请读者指出前后END IF分别结束的条件语句.难点列表:。
1.1.2 程序框图(第二、三课时)一、教学目标:1、知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
二、重点与难点:重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构,难点是能综合运用这些知识正确地画出程序框图。
三、学法与教学用具:1、通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。
有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端。
2、我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
例如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。
另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
3、教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
人教版高中必修3第一章算法初步课程设计课程目标本课程旨在帮助学生了解算法的基本概念和常用算法的实现方式,以及培养学生的编程思维能力和解决问题的能力。
教学内容1.算法的基本概念2.常用排序算法:冒泡排序、选择排序、插入排序、快速排序3.常用查找算法:顺序查找、二分查找4.算法的复杂度分析教学重点和难点教学重点•算法的基本概念和特点•常用排序算法和查找算法的原理和实现方式教学难点•快速排序的原理和实现方式•算法的复杂度分析教学方法本课程采用“理论讲授+案例分析+编程实践”的教学方法,具体如下:1.理论讲授:教师通过讲解PPT、示意图等形式,介绍算法的基本概念、常用算法的原理和实现方式。
2.案例分析:教师通过具体的案例,让学生在实践中理解算法的应用和优化。
3.编程实践:教师通过提供一些编程练习题,让学生进行算法实现和分析。
并在课堂上展示部分学生的优秀代码。
课程安排本课程共计4个课时,具体安排如下:1.第1课时:算法的基本概念。
介绍算法的定义、特点、效率和正确性等基本概念。
2.第2-3课时:排序算法。
介绍冒泡排序、选择排序、插入排序、快速排序的实现方式和时间复杂度分析。
3.第4课时:查找算法和复杂度分析。
介绍顺序查找、二分查找的实现方式和时间复杂度分析,以及算法的复杂度分析方法。
课程评价本课程考核方式为闭卷笔试和编程实践,笔试占60%,编程实践占40%。
针对学生的不同水平,编程实践的难度分为初级和高级两个难度级别,学生可以自主选择挑战。
同时,教师也将根据学生的课堂表现和编程作业进度,对学生进行平时成绩评价。
总结本课程以算法初步为主要内容,重点介绍了排序算法和查找算法,并通过编程实践提高学生的编程能力和解决问题的能力。
希望学生能通过本课程的学习,了解算法的概念和特点,掌握常用算法的实现方式,培养良好的编程思维和解决问题的能力,为后续专业学习打下基础。
综合学习第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
示范教案整体设计教学分析前面学习了算法、程序框图与几种算法语句,本节课作为本章的小结,旨在和学生一起站在全章的高度,以算法思想为灵魂,以问题解决为主线,以典型例题为操作平台,以巩固知识、发展能力、提高素养为目的对本章作全面的复习总结,帮助学生进一步提高对算法的理解和认识,优化知识结构.三维目标1.对本章知识形成知识网络,提高学生的逻辑思维能力,培养学生的归纳能力.2.熟练应用算法、程序框图与基本算法语句来解决问题,培养学生的分析问题和解决问题的能力,逐步学会用数学方法去认识世界、改造世界.重点难点教学重点:应用算法、程序框图与基本算法语句解决问题.教学难点:形成知识网络.课时安排1课时教学过程导入新课思路1(情境导入).大家都熟悉围棋高手“石佛”李昌镐吧,他曾经打遍天下无敌手,你知道他最令人可怕的地方吗?他的技术很全面,但他最厉害的技术是“官子”,他的“官子”层次分明,可以说滴水不漏,堪称世界第一.我们的这次复习也要像围棋中的“官子”,也要做到层次分明、滴水不漏.思路2(直接导入).前面我们学习了算法、程序框图与基本算法语句等内容,今天我们对本章知识、方法、数学思想进行全面、系统的总结与复习.推进新课新知探究提出问题(1)请同学们自己梳理本章知识结构.(2)回顾算法的定义及特征.(3)回忆程序框图的三种逻辑结构.(4)总结算法语句.讨论结果:(1)本章知识结构如下图.(2)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.算法的特征:①确定性:算法的每一步都应当做到“准确无误、不重不漏”“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣、分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(3)顺序结构、条件分支结构、循环结构.(4)赋值语句:变量=表达式.输入语句:变量=input.输出语句:print(%io(2),变量).条件语句:格式1:if表达式语句序列1;else语句序列2;end格式2:if表达式语句序列1;end循环语句:for语句:for循环变量=初值:步长:终值循环体;endwhile语句:while表达式循环体;end应用示例例1如下图所示,该程序框图输出的结果为________.解:该程序框图的运行过程是:A=1;S=1;S=1+9=10;A=1+1=2;A≤2,成立;S=10+9=19;A=2+1=3;A=3≤2,不成立;输出S=19.答案:19点评:解决同一个问题,可以有多种算法,那么就有多种程序框图和语句,再就是不同版本的教材算法语句的语言形式也不相同,因此高考试题中通常不会考查画程序框图或编写程序.由于学习本章的目的是体会算法的思想,所以已知程序框图或程序,判断其结果是高考考查本章知识的主要形式,这也是课程标准和考试说明对本章的要求.其判断方法是具体∴y =π2×2-5=π-5. 例2到银行办理个人异地汇款(不超过100万元),银行收取一定的手续费.假设汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取;超过5 000元,一律收取50元手续费.试用程序框图描述汇款额为x 元时,银行收取手续费y 元的过程.分析:这是一个实际问题,故应先建立数学模型,y =⎩⎪⎨⎪⎧ 1(0<x ≤100),0.01x (100<x ≤5 000),50(5 000<x ≤1 000 000).由此看出,要求手续费,需先判断x 的范围.解:程序框图如下图:点评:条件分支结构经常与分段函数有密切的关联;判断框里要写明分支的条件,从而决定下一步该作出怎样的选择.例3已知函数y =⎩⎪⎨⎪⎧ 2x -1,x ≤-1,log 3(x +1),-1<x<2,x 4,x ≥2,试设计一个算法,输入x 的值,求对应的函数值.分析:对输入x 的值与-1和2比较大小,即分类讨论.解:算法如下:S1 输入x 的值;S2 当x ≤-1时,计算y =2x -1,否则执行下一步;S3 当x ≥2时,计算y =x 4,否则执行下一步;S4 计算y =log 3(x +1);S5 输出y.点评:分段函数是高考考查的重点,在考虑算法步骤时,要用到分类讨论思想,这为复习程序框图和算法语句打好了基础.知能训练1.下面程序框图输出的结果是( )A .11B .12C .132D .1 320分析:该程序框图的运行过程是:i =12;s =1;i =12≥10,成立;s =1×12=12;i =12-1=11;i =11≥10,成立;s =12×11=132;i =11-1=10;i =10≥10,成立;s =132×10=1 320;i =10-1=9;i =9≥10,不成立;输出s =1 320.答案:D2.下图是表示求解方程x 2-(a +1)x +a =0(a ∈R ,a 是常数)过程的程序框图.请在标有序号(1)(2)(3)(4)处填上你认为合适的内容将框图补充完整.(1)____________;(2)____________;(3)____________;(4)____________.解析:所解方程是一元二次方程,先计算判别式Δ=(a +1)2-4a =(a -1)2,所以(1)处填(a -1)2;计算判别式Δ的大小后,再判断其符号,由于Δ=(a -1)2,则只需判断a 是否等于1即可,则(2)有两种填法a =1或a ≠1,当(2)处填a =1时,(3)处填x 1=x 2=1,(4)处填x 1=a ,x 2=1;当(2)处填a ≠1时,(3)处填x 1=a ,x 2=1,(4)处填x 1=x 2=1.答案:(1)(a -1)2 (2)a =1 (3)x 1=x 2=1 (4)x 1=a ,x 2=1或(1)(a -1)2 (2)a ≠1(3)x 1=a ,x 2=1 (4)x 1=x 2=13.下列程序的功能是________.s =0;for i =1:1:100s =s +1/i ;endprint(%io(2),s);解析:该程序的执行过程是:s =0;i =1,s =0+11=1; i =2,s =1+12;i =3,s =1+12+13; ……i =100,s =1+12+13+…+1100. 答案:计算1+12+13+…+1100的值 拓展提升数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1 000的所有“水仙花数”.(1)写出算法步骤;(2)画出程序框图.分析:由于需要判断大于100,小于1 000的整数是否满足等于它各位上的数字的立方的和,所以需要用循环结构.解:(1)算法步骤如下:S1 i =101;S2 如果i 不大于999,则执行第3步,否则算法结束;S3 若这个数i 等于它各位上的数字的立方的和,则输出这个数;S4 i =i +1,返回第2步.(2)程序框图如下图所示.课堂小结(1)复习了本章知识,形成了知识网络.(2)判断算法的功能或输出结果.作业本章小结Ⅲ.巩固与提高 4、5.设计感想本节通过大量生动活泼的例题对本章进行系统的总结,通过精彩的点评渗透算法的基本思想,使学生的知识得到进一步巩固,使学生的思想方法不断升华.备课资料人机大战的启示人类的许多进步之所以产生,多半是发明了一个更好、更有力的工具.物质工具使工作速度加快并使人们从重体力劳动中解脱出来,而信息工具则扩大人们的智力.物质工具如犁、起重机、推土机、内燃机、电动机等等,是人的四肢的延伸,而计算机是人的大脑的延伸.它最初只能进行数值计算,但随着其发展,应用范围不断扩大.它不仅能够进行计算,还能进行记忆、判断、推理、设计、控制、自动化处理等等.一句话,只要是能输入计算机里的信息,它都能按照人的要求对信息进行迅速而圆满的处理.因此,计算机也被称为电脑.在短短十几年的时间里,我们经历了计算机深入生活每一个角落的过程,深深感受到了计算机多方面的强大的功能.其中,国际象棋大师卡斯帕罗夫与IBM“深蓝”的人机大战的结果曾引起世人瞩目和激烈讨论,留下了有关计算机与人的关系的种种思考.1989年,美国IBM公司成立了“深蓝”(Deep Blue)项目小组,开始着手研究有关计算机下棋方面的技术,其实就是设计下棋的算法.其目的是证明它具有能够处理复杂博弈模式的能力,而真正的意图是,以此作为一个模型,将并行技术深入到其他各种复杂应用领域.1988年,“深蓝”的前身“深思”(Deep Thought)在华裔科学家许峰雄等人的开发下,已经具备与人进行国际象棋比赛的能力.“深蓝”在开始设计时就以超越“深思”为目的,特别在运算速度与处理能力部分.经过不断的努力,1996年2月,当今最优秀的国际象棋棋手、世界冠军卡斯帕罗夫与“深蓝”计算机展开了第一次真正的角逐.比赛为六局对抗赛.虽然卡斯帕罗夫最终以4∶2的比分取胜,但今天计算机所达到的能力,也着实让全世界吃了一惊.尤其是第一局,“深蓝”以获胜来了个“开门红”.卡斯帕罗夫在赛后承认,“深蓝”是必须认真对待的劲敌,他说:“我没有料到它如此难以对付,我输掉第一局非常幸运,因为那是给我发出的最严重警告.”由于卡斯帕罗夫战胜“深蓝”,他预言“在严肃、经典的比赛中,计算机在本世纪没有赢棋的机会.”然而,卡斯帕罗夫对计算机技术的飞速发展估计错了.仅仅一年后,“深蓝”就战胜了这位大师.1997年5月人机大战重开.前五局战平,5月11日第六局决胜局的比赛,卡斯帕罗夫仅走了19步便向“深蓝”认输.“深蓝”的重量达1.4吨,拥有32个节点,每一节点有8块专门为进行国际象棋对弈设计的处理器,从而拥有每秒运算超过2亿步的惊人速度.为了使“深蓝”能拥有更多的资源规划棋步,开发小组汇集了一个开放棋局的数据库,输入了100年来世界顶级棋手的棋局,此外还有残局数据库,即最后五步时的走法,形成了汇集10亿个棋局的数据库.自1996年在输给卡斯帕罗夫之后,美国特级大师本杰明加盟“深蓝”,将他对象棋的理解编成语句输入“深蓝”,且在1997年的比赛中,每场对局结束后,小组都会根据卡斯帕罗夫的情况相应地修改特定的参数.“深蓝”在比赛中,不会疲倦、不会有心理和情绪上的起伏,只是不动声色地进行高速准确的运算.因此,卡斯帕罗夫的对手并不是“深蓝”主机,而是一群人如何运用电脑的硬、软件来向一个人的智慧和反应挑战.电脑的胜利说到底是人脑的胜利.但是“深蓝”的这次胜利,毕竟标志着计算机技术又上了一个新台阶,更准确地说,这次“深蓝”胜利,是人脑经过电脑胜过人脑.它也反过来让人们思考,什么是思维的本质?它第一次让人类如此真切地感受到了电脑与人的相异却又能够与人对抗的能力,这种力量还会从人们今后的努力中得到滋养从而不断壮大.有人曾将人机大战称为捍卫人类尊严的比赛,此次“深蓝”获胜,绝不意味人类的尊严丧失殆尽.许峰雄博士说得好:“棋王卡斯帕罗夫的胜利是为人类的过去赢了一盘棋;今年,‘深蓝’胜卡斯帕罗夫,是为人类的未来赢了一盘棋.”另外,深具意义的是,“深蓝”证明了人类的极限.超越人类的极限是一件很大的事情,人类就是在不断超越自己的极限中而进步的.。
2019-2020年高中数学综合学习第一章算法初步教案3新课标人教版必修3(A)一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。
2、通过模仿、操作和探索,经历设计程序流程图表达解决问题的过程。
在具体问题的解决过程中理解程序流程图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
3、通过实际问题的学习,了解构造算法的基本程序。
4、经历将具体问题的程序流程图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。
5、需要注意的问题1) 从熟知的问题出发,体会算法的程序化思想,而不是简单呈现一些算法。
2) 变量和赋值是算法学习的重点之一,因为设置恰当的变量,学习给变量赋值,是构造算法的关键,应作为学习的重点。
3) 不必刻意追求最优的算法,把握算法的基本结构和程序化思想才是我们的重点。
4) 本章所指的算法基本上是能在计算机上实现的算法。
三、教学内容及课时安排:1.1算法与程序框图 (约2课时)1.2基本算法语句(约3课时)1.3算法案例(约5课时)复习与小结(约2课时)四、评价建议1.重视对学生数学学习过程的评价关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
2.正确评价学生的数学基础知识和基本技能关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。
算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法2019-2020年高中数学综合学习第一章算法小结复习教案新课标人教版必修3(A)教学目的:总结算法解题的一般思路,即算法分析(提炼问题的数学本质)——画出程序框图——按框图编写伪代码;通过本章学习增强解题的规范性.教学重点:在准确理解算法的基础上,掌握流程图的画法及判断;掌握伪代码的编写.教学过程:例1.阅读下列伪代码,并指出当时的计算结果:(1)read a, b (2) read a, b (3) read a, bX←a+b a←a+b a←a+by←a-b b←a-b b←a-ba←(x+y)/2 a←(a+b)/2 a←(a-b)/2b←(x-y)/2 b←(a-b)/2 b←(a+b)/2Print a, b Print a, b Print a, ba=____,b___ a=____,b___ a=____,b___例2.写出用二分法求方程在区间内的一个近似解(误差不超过)的一个算法.说明:此题主要再次强调算法的问题根本上是一个思维的问题以及算法语言的基本规则;如何通过语句的结构形式规范处理及简化问题,从而增强解题的规范性.流程图与伪代码10 Rend a,b,c20 x0 ←(a+b)/230 f(a) ←a3-a-140 f(x0) ←x03-x0-150 If f(x0)=0 then Goto 12060 If f(a)f(x0)<0 then70 b ←x080 Else90 a ←x0100 End if110 If |a-b|≧c then Goto 20120 Print x0以上两例重点理解赋值语句,尤其是在循环结构中如何根据对变量的理解灵活赋值,从而用简炼的语句表示算法。
例3.满足方程的一组正整数称为勾股数或商高数,设计计算某一范围内的勾股数的算法.For b from a+1 to 40For c from b+1 to 50If a2+b2=c2 thenP a, b, cEnd ifEndEndEnd例四.已知钱数(不足10元),要把它用于1元、5角、1角、1分的硬币表示,若要用尽量少的硬币个数表示,设计一个算法,求各硬币的个数.分析:要用尽量少的硬币表示钱数,也就是要尽可能地用大面值的硬币.以1元钱的个数就是的整数部分,记为,则5角钱的个数就是(-)/0.5的整数部分,记为;1角钱的个数就是(-*1-*0.5)的整数部分,记为;1分钱的个数就是(-*1-*0.5-*0.1)的整数部分.解:Read=int()=int((-)/0.5)= int((-*1-*0.5)/0.1)=int((-*1-*0.5-*0.1)/0.01)Print,,,例五. 在日常生活中,人们经常要把一些记录中的数据排序,如招生录取中按照成绩对考生进行排序,汉字拼音检索中按照字母顺序对汉字进行排序等等。
排序就是按照一定的规则,对数据加以排列整理,从而提高查找效率.(1)直接插入排序法:(2)冒泡排序法:现用直接插入排序法对任意输入的n个数进行从小到大的排序,其伪代码程序如下:BeginRead nFor i=1 to nRead a(i)End ForFor i=2 to nFor j=1 to i-1If a(j)>a(i) Thenm=a(i)a(i)=a(j)a(j)=mEnd ifEnd ForEnd ForFor k=1 to nPrint a(k)End ForEnd再用直接冒泡排序法对任意输入的n个数进行从小到大的排序,其伪代码程序如下:10 Begin20 Read n30 For i=1 to n40 Read a(i)50 End For60 For j=1 to n-170 w=080 For i=1 to n-190 If a(i)>a(i+1) Then100 m=a(i)110 a(i)=a(i+1)120 a(i+1)=m130 w=w+1140 end if150 End For160 If w=0 Then Goto 180170 End For180 For k=1 to n190 Print a(k)200 End For210 End用DO循环语句表示如下:BeginRead nFor i=1 to nRead a(i)End ForDow=0For i=1 to n-1If a(i)>a(i+1) Thenm=a(i)a(i)=a(i+1)a(i+1)=mw=w+1end ifNext iLoop Until w=0For k=1 to nPrint a(k)End ForEnd例三与例五及算经中的“百钱百鸡”问题均对循环语句的应用提出更高要求,在算法理解及流程图的设计上思路一定要清晰。
例六.(李白买酒)“无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒”.设计求酒壶中原有多少酒的一个算法并写出伪代码.S=0For I from 1 to 3S←(S+1)/2End ForPint S例七.一个三位数,如果每一位数字的立方和等于它本身,则称之为“水仙花数”.设计一个算法,找出所有的水仙花数,用伪代码表示.For n from 100 to 999←int(n/100)←int((n-100x)/10)z←n-100-10If n=3+3+z3 thenPint nEnd IfNext nEnd for例八.一辆邮车依次前往城市A1,A2,A3,…A m (),每到一个城市先卸下前面各城市发往该城市的邮袋1个,然后再装上该城市发往后面各城市的邮袋各1个,设n是邮车从第n个(1≤n <m ,n ∈N *)城市出发时邮车上邮袋的个数,设计一个算法,对任给两个正数m>n,求n.分析:到达第n 个城市时,邮袋个数为前一个城市的邮袋个数减去前面城市发往该市的n-1个邮袋,再加上发往后面各城市的(m-n )个邮袋,可用循环计算I 从1至n时,n的变化。
解: 伪代码为: Read m,nIf m ≤n then Print “错误!m必须大于n” Else S ←0For I from 1 to n S ←S+(m- I)-(I-1) Next I End For End If Print S例九.进位制与秦九韶算法1.用程序把进制数(共有位)转换为十进制数2.把一个十进制数化为k 进制数Begin Read a , k i=1 Dor=mod(a,k) a(i)=r a=(a-r)/k i=i+1 Loop Until a=0 m=i-1For j=m to 1 Step -1 Print a(j); Next jPrin “(”;k;”)” End3.求次多项式0111)(a x a x a x a x f n n n n ++++=-- 当(是任意实数)的值解析:把111)(a x a x a x a x f n n n n ++++=-- 次多项式改写如下形式:0111)(a x a x a x a x f n n n n ++++=--01211)(a x a x a x a n n n n ++++=--- 012312))((a a x a x a x a n n n n +++++=---0121)))((a x a x a x a x a n n n ++++=--发现规律结合所掌握算法,通过模仿,操作,探索,寻找解决问题的通法。