《流体力学》实验报告书2
- 格式:doc
- 大小:223.87 KB
- 文档页数:16
实验数据处理及计算:
150mm截面数据
250mm截面数据
数据结果分析:
1.由雷诺数判断流态:
临界雷诺数Re=3∗10
流态判断:150mm截面为层流流动
250mm截面为层流向紊流过度区域2.根据边界层的速度分布判断流态:
由绘制的曲线分析,实测曲线均与紊流理论曲线吻合较好。
判断结果为:150mm截面、250mm截面均为紊流流态
3.根据边界层厚度判断流态:
层流:δ=5∗√υx
V
紊流:δ=0.37*υ1
5*x
由以上数据判断结果为:150mm截面流态为:紊流250mm截面流态为:紊流
实验总结与思考:
通过如上三种方法认为,通过实验,该平板模型在实验流场中,150mm截面处与250mm界面处均为紊流流态。
原因可能是风洞中流速过快,以及1截面选择过于靠后,因而测不到或测得层流流态。
建议下次试验对100mm截面进行测试。
思考题:
1.流体的流动状态受到哪些因素的影响?
答:Re=LVρ/μ,影响因素有特征长度L,,流速u,流体密度ρ,流体粘度μ.而温度会影响流体的粘度和密度。
2.为何层流和紊流呈现不同的速度分布规律?
答:两种状态和流动的雷诺数雷诺数小,意味着流体流动时各质点间的粘性力占主要地位,流体各质点平行于管路内壁有规则地流动,呈层流流动状态.雷诺数大,意味着惯性力占主要地位,流体呈紊流流动状态。
实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
流体力学及气体动力学综合实验实验报告册(二)班级姓名学号成绩西北工业大学动力与能源学院2015年11月实验三沿程损失实验一、实验目的1、验证沿程水头损失与平均流速的关系。
2、掌握管道沿程阻力系数λ的测量方法。
二、实验设备实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。
接水盒图3-1 沿程损失实验原理图三、实验原理四、实验方法与步骤1. 确定出水阀完全开启,进水阀半开启。
启动水泵,排出实验管道、测压计中的气泡。
2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重法测定流量。
每次测量流量的时间应大于10秒。
3. 调整流量,继续测量,直至进水阀全开。
4. 如此测量10次以上,其中层流流动时测量3~5次。
5. 每次实验均要测量温度。
6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。
五、实验成果及要求实验台号No1.记录计算有关常数:管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。
运动粘度621.7751010.03370.000221t t υ-⨯==++2/m s2.实验数据记录与计算六、实验分析与讨论:1.什么是沿程损失,影响沿程损失的因素有哪些?2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。
实验四局部损失实验一、实验目的1、掌握管路中测定局部阻力系数的方法。
2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。
3、加深对局部阻力损失机理的了解。
二、实验装置实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。
实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。
流体力学及气体动力学综合实验实验报告册(二)班级姓名学号成绩西北工业大学动力与能源学院2015年11月实验三沿程损失实验一、实验目的1、验证沿程水头损失与平均流速的关系。
2、掌握管道沿程阻力系数λ的测量方法。
二、实验设备实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。
接水盒图3-1 沿程损失实验原理图三、实验原理四、实验方法与步骤1. 确定出水阀完全开启,进水阀半开启。
启动水泵,排出实验管道、测压计中的气泡。
2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重法测定流量。
每次测量流量的时间应大于10秒。
3. 调整流量,继续测量,直至进水阀全开。
4. 如此测量10次以上,其中层流流动时测量3~5次。
5. 每次实验均要测量温度。
6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。
五、实验成果及要求实验台号No1.记录计算有关常数:管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。
运动粘度621.7751010.03370.000221t t υ-⨯==++2/m s2.实验数据记录与计算六、实验分析与讨论:1.什么是沿程损失,影响沿程损失的因素有哪些?2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。
实验四局部损失实验一、实验目的1、掌握管路中测定局部阻力系数的方法。
2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。
3、加深对局部阻力损失机理的了解。
二、实验装置实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。
实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。
《流体力学》实验报告册专业:班级:姓名:学号:南京工业大学环境学院2013年11月目录实验一能量方程实验 (1)实验二文丘里流量计实验 (3)实验三动量方程实验 (6)实验四雷诺实验 (9)实验五局部阻力系数测定实验 (13)1组别 实验日期 报告日期实验一 能量方程实验一、实验目的1.观察恒定流的情况下,通过管道水流的位置势能、压力势能、动能的沿程转化规律,验证能量方程,加深对能量方程物理意义与几何意义的理解。
2.观察均匀流、渐变流断面及其水流特征。
3.观察急变流断面压强分布规律。
二、实验原理实际液体在有压管道中作恒定流动时,其能量方程如下:2211221222w p v p v z z h g g g gρρ++=+++均匀流及渐变流断面压强分布符合静水压强分布规律:12120p pz z C p p gh g gρρρ+=+==+以及图1 能量方程实验装置三、实验要求1.测定管道的测压管水头及总水头值。
2.绘制管道的测压管水头线及总水头线图,验证能量方程式。
四、实验步骤1.熟悉仪器设备,记录铭牌上有关数据,分辨测压管与毕托管。
2.启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。
3.检查尾阀全关时,测压管及毕托管的液面是否齐平,若不平,则需排气调平。
4、打开尾阀,使管道通过一定的流量,量测各测压管水头值及其总水头值。
5.观察急变流断面B处及C处的压强分布规律。
6.本次实验共做两次,绘制测压管水头线及总水头线。
五、注意事项1、尾阀的开启一定要缓慢,并注意测压管中水位的变化,不要使测压管水面下降太多,以免空气倒吸入管路系统,影响实验进行。
2.阀门开启后,至少需等待3-5分钟,待流量稳定后才能读数记录。
3.流量较大时,测压管水面有波动现象,可取用波动水位最高与最低读数的平均值。
六、实验数据记录及处理七、绘制测压管水头线及总线头线并分析23组别 实验日期 报告日期实验二 文丘里流量计实验一、实验目的1、掌握文丘里流量计的原理和测量方法;2、测定文丘里流量计的流量系数μ;3、绘制文丘里流量计压差(h ∆)与实测流量(实Q )的关系曲线。
流体力学实验报告书编者xxxxx班级学号姓名指导老师xxxxxx建筑环境与设备工程实验室二O一O年六月流体力学实验报告书目录实验一静水压强特性实验 (2)实验二伯努利方程实验 (3)实验三文丘里流量计流量系数测定实验 (5)实验四动量定律实验 (7)实验五雷诺数实验 (9)实验六毕托管测流速实验 (10)实验七沿程水头损失实验 (11)实验八局部阻力损失实验 (14)实验一 静水压强特性实验实验时间 指导老师 组号一、实验数据记录及计算实验装置编号 数据记录计算用表见表1 表1 单位:mm实验条件序号水箱液面高度▽0开口管液面高度 ▽H静压强水头测压管水头o h ∆W h ∆w owO h h γγ∆∆=A H AP ∇-∇=γBH BP ∇-∇=γZ A + γAPZ B +γBPP=0 1 P>01 2 P<01 2注:表中基准面选在 ,A ∇= ,B ∇= 。
二、思考题1. 如果测压管(U 形管)管径太细,对测压管液面读数有何影响?2. 当P O <0时,试根据实测数据确定水箱的真空区域?实验二 伯努利方程实验实验时间 指导老师 组号一、试验数据记录与整理1、记录有关度数 实验装置编号No d 1= ㎝,d 2= ㎝,d 3= ㎝,d 4= ㎝2、测读记录Z+γP值表表1 Z+γP(单位:cm )值表 流量(cm 3/s) 基准线选在序号 测点编号 流量 Ⅰ ⅡⅢⅣ1 2 3 4 5 6 7 8 1 1 23、速度水头值计算表 表2 速度水头计算表 管径cm Q= cm 3/s Q= cm 3/sQ= cm 3/sd 1A cm 2vcm/s v 2/(2g) cm Acm 2 vcm/s v 2/(2g) cm Acm 2 vcm/s v 2/(2g)cm d 2 d 3 d 44、总水头Z+γP+gav 22值计算表表3 总水头Z+ P+gav 22值计算表序号 测点编号 流量 ⅠⅡⅢⅣ1 2 3二、思考题1、流量增大,测压管水头线有何变化?为什么?2、毕托管所测试的总水头线与实测(体积法测流)的总水头线,一般略有差异,试分析其原因。
(二)不可压缩流体恒定流能量议程(伯诺里方程)实验一、实验目的要求1.验证流体恒定总流的能量议程;2.通过对动水力学诸多水力现象的实验分析研讨,进一步掌握有压管流中动水力学的能量转换特性;3.掌握流速、流量、压强等动水力学水力要素的实验量测技能。
二、实验装置本实验的装置如图2.1所示。
说明本仪器测压管有两种:1.毕托管测压管(表2.1中标*的测压管),用以测读毕托管探头对准点的总水头2()2pu H Z gγ'=++,须注意一般情况下H '与断面总水头2()2pH Z gυγ=++不同(因一般u υ≠),它的水头线只能定性表示总水头变化趋势;2.普通测压管(表2.1未标*者),用以定量量测测压管水头。
实验流量用阀13调节,流量由体积时间法(量筒、秒表另备)、重量时间法(电子称另备)或电测法测量(以下实验类同)。
三、实验原理在实验管路中沿管内水流方向取n 个过水断面。
可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,……,n )221111122i i i i i P a P a Z Z hw g gυυγγ-++=+++取a 1=a 2=…a n =1,选好基准面,从已设置的各断面的测压管中读出pZ γ+值,测出通过管路的流量,即可计算出断面平均流速υ及22gαυ,从而即可得到各断面测管水头和总水头。
四、实验方法与步骤1.熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。
2.打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。
如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。
3.打开阀13,观察思考1)测压管水头线和总水头线的变化趋势;2)位置水头、压强水头之间的相互关系;3)测点(2)、(3)测管水头同否?为什么?4)测点(12)、(13)测管水头是否不同?为什么?5)当流量增加或减少时测管水头如何变化?4.调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕托管供演示用,不必测记读数)。
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P<0时,试根据记录数据,确定水箱内的真空区域。
B,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
实验一 雷诺实验一、实验目的与要求1、了解流体的流动形态:观察实际的流线形状,判断其流动形态的类型;2、熟悉雷诺准数的测定和计算方法;3、确立“层流与湍流与Re 之间有一定关系”的概念。
二、基本原理流体在流动过程中有3种不同的流动形态,即层流、湍流和介于两者之间的过渡流。
雷诺用实验的方法研究流体流动时,发现影响流体流动类型的因素除了流速u 以外,还有管径d 、流体的密度ρ以及粘度μ,由这四个物理量组成的无因次数群μρdu =Re称之为雷诺数。
实验证明,流体在直管内流动时:当Re ≤2000时,流体的流动类型为层流。
当Re ≥4000时,流体的流动类型为湍流。
当2000<Re <4000,流体的流动类型可能是层流,也可能为湍流,将这一范围称之为不稳定的过渡区。
从雷诺数的定义式来看,对于同一管路d 为定值时,u 仅为流量的函数。
对于流体水来讲,ρ及μ仅为温度的函数。
因此确定了温度及流量即可计算出雷诺数Re 。
三、实验装置及流程实验装置如图所示,实验时水从玻璃水槽3流进玻璃管4(内径20mm ),槽内水由自来水供应,供水量由阀6控制,槽壁外有进水稳定槽7及溢流槽10,过量的水进溢流槽10排入图1-3 雷诺示范实验装置1-红墨水瓶 2.6.8.12-阀门 3-玻璃水槽 4-带喇叭口玻璃管(Φ20) 5-进水管 7-进水稳定槽 9-转子流量计 10-溢流槽 11-排水管下水道。
实验时打开阀门8,水即由玻璃槽进入玻璃管,经转子流量计9后,流进排水管排出,用阀8调节水量,流量由转子流量计9测得。
高位墨水瓶贮藏墨水之用,墨水由经墨水调节阀2流入玻璃管4。
四、实验数据记录表表1-2 雷诺实验数据记录表水温__________[℃] 水粘度_______________[10-3×Pa·S]水密度_____________[kg/m3] 管内径_______________[mm]五、讨论1、流量从小做到大,当刚开始湍流,测出雷诺数是多少?与理论值2000有否差距?请分析原因。
流体力学
实验报告书
编者xxxxx
班级
学号
姓名
指导老师
xxxxxx建筑环境与设备工程实验室
二O一O年六月
流体力学实验报告书目录
实验一静水压强特性实验 (2)
实验二伯努利方程实验 (3)
实验三文丘里流量计流量系数测定实验 (5)
实验四动量定律实验 (7)
实验五雷诺数实验 (9)
实验六毕托管测流速实验 (10)
实验七沿程水头损失实验 (11)
实验八局部阻力损失实验 (14)
实验一 静水压强特性实验
实验时间 指导老师 组号
一、实验数据记录及计算
实验装置编号 数据记录计算用表见表1 表1 单位:mm
实验条件
序号
水
箱液面高度▽0
开口管液面高度 ▽H
静压强水头
测压管水头
o h ∆
W h ∆
w o
w
O h h γγ∆∆=
A H A
P ∇-∇=
γ
B
H B
P ∇-∇=
γ
Z A + γ
A
P
Z B +
γ
B
P
P=0 1 P>0
1 2 P<0
1 2
注:表中基准面选在 ,A ∇= ,B ∇= 。
二、思考题
1. 如果测压管(U 形管)管径太细,对测压管液面读数有何影响?
2. 当P O <0时,试根据实测数据确定水箱的真空区域?
实验二 伯努利方程实验
实验时间 指导老师 组号
一、试验数据记录与整理
1、记录有关度数 实验装置编号No d 1= ㎝,d 2= ㎝,d 3= ㎝,d 4= ㎝
2、测读记录Z+γ
P
值表
表1 Z+
γ
P
(单位:cm )值表 流量(cm 3/s) 基准线选在
序号 测点编号 流量 Ⅰ Ⅱ
Ⅲ
Ⅳ
1 2 3 4 5 6 7 8 1 1 2
3、速度水头值计算表 表2 速度水头计算表 管径cm Q= cm 3/s Q= cm 3/s
Q= cm 3/s
d 1
A cm 2
v
cm/s v 2/(2g) cm A
cm 2 v
cm/s v 2/(2g) cm A
cm 2 v
cm/s v 2/(2g)
cm d 2 d 3 d 4
4、总水头Z+γP
+g
av 22
值计算表
表3 总水头Z+ P
+g
av 22
值计算表
序号 测点编号 流量 Ⅰ
Ⅱ
Ⅲ
Ⅳ
1 2 3
二、思考题
1、流量增大,测压管水头线有何变化?为什么?
2、毕托管所测试的总水头线与实测(体积法测流)的总水头线,一般略有差异,试分析其原因。
3、测压管水头线和总水头线的沿程变化有何不同?为什么?
实验三文丘里流量计流量系数测定实验
实验时间指导老师组号
一、实验数据记录与计算
1、记录计算有关数据d1= cm, d2= cm, 水温t= ℃水箱液面标尺值H o = cm,管轴线高程表尺值H= cm。
2、试验数据记录与整理见表1
表1 试验数据记录及计算表
序号
测压管
度数(cm)
压差(cm)
水量
(cm3)
时
间
(s)
雷诺
数
测定流
量
(cm3/s)
理论流
量
(cm3/s)
流量
系数h1h2∆h=h1-h2∆∇t R el Q Q’μ
1
2
3
4
5
6
7
8
二.思考题
1、本试验中,影响文丘里管流量系数大小的因素有那些?哪些因素最
为敏感?可从h g d d Q ∆-=--24
414
2
π
μ着手分析。
2、对一个具体的文丘里管最大作用水头可为多大?可从文丘里管喉颈处容易产生真空,允许最大真空值为6~7mH 2O 着手分析。
实验四 动量定律实验
实验时间 指导老师 组号
一、实验数据记录与整理
1、记录水箱实验数据并计算
d= cm ,高L = cm ,低L = cm ,O S = m ,G= N 实验装置编号NO 表1 水箱实验数据记录及计算用表
S (m) S ∆ S -O S (m)
S G M O ∆=
(N*M) V (m 3) t (s) Q (m 3/s) V (m/s) )(N Qv R X ρ= )(M N L R M X ⋅= M 0/M (%)
高 孔 1 2 低
孔 1
2
2、记录平板实验数据并计算
仪器常数(实测):d= cm ,L 1= m ,L 2= m 表2 平板实验数据记录及计算用表
G
(N) )
(2M N GL M O ⋅=
V (m 3) t (s) Q (m 2
/s) V (m/s) )
(N Qv R X ρ=
)(1M N L R M X ⋅=
M 0/M
(%)
1 2 3
二、思考题
1、分析理论计算M与测定M0产生偏差的原因。
实验五雷诺数实验
实验时间指导老师组号
一、实验数据记录与计算
d= mm 水温= ℃次数ΔV(m3)T(s)Q(m3/s)V C(m/s)Re c2
1
2
3
4
5
6
二、思考题
1、判断流态采用临界雷诺数,为什么不采用临界流速?
2、分析实测实验装置的临界雷诺数与公认值(2300)产生偏离的原因。
实验六 毕托管测流速实验
实验时间 指导老师 组号
一、数据记录与整理
1、记录有关数据 实验台号NO 管径d= mm ,水温t= ºC
2、数据记录与计算用表 表1 数据记录与计算用表 流 量
平均流速v m/s
测压管指示 (H2Omm ) 测点
流速 v ’m/s
v ’/v
雷
诺
数
Re
水量(m 3
) 时间(s ) 体积流量×
510-
m3/s
动压管
静压管
水头损失h ∆
1 2 3 4 5
二、思考题
1、 v ’/v 值说明了什么?
2、 流速系数ζ为什么小于1.0?
项
目 测 试 序 号
实验七沿程水头损失实验
实验时间指导老师组号
一、数据记录与整理
1、记录与计算见表1;
2、绘制lg v~lgh f曲线,以lg v为横坐标,以lgh f为纵坐标;
3、绘制lgRe~lg100λ对数曲线,lgRe为横坐标,以lg100λ为纵坐标;
表1 S=8λL/π2d5g= s2/m5
序号体积
cm3
时间
s
流量Q
Cm3/s
流速v
cm/s
水温t
℃
运动粘度ν
cm2/s
雷诺数
R c
压差数
cm
沿程损
失h f
cm
lgh f
沿程损失系
数λ
lg100λ
h1h2
1 2 3 4 5 6 7 8 9
10
11
12
二、思考题
1、如何从lg v~lgh f曲线得到的m=(lgh f2-lgh f1)/(lgv2-lgv1)值,判定流区(m=1,m=2, 1.75>m<2,m=2)。
本次实验结果是否与莫迪图吻合?试分析其原因。
实验八局部阻力损失实验实验时间指导老师组号一、实验数据记录与整理
表1 实验数据记录表
次序
流量(cm3/s)测压管读数cm
体积时间流量 1 2 3 4 5 6
1
2
3
4
表2 数据计算用表
阻力形式次
序
流量
cm3/s
前断面后断面
h j
cm
ζ'
g
av
2
2
cm
E
cm g
av
2
2
cm
E
cm
突
然
扩
大
突
然
缩
小
二、实验分析与讨论
1、分析比较突扩与突缩在相应条件下的局部损失大小关系。
2、结合流动演示的水力现象,分析局部阻力损失机理和产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?
3、试设计用两点法测量阀门的阻力系数的实验装置和数据处理方法。
4、试设计建立《局部阻力系数经验公式》的实验装置及数据处理方法。