2018年杭州市中考数学模拟试卷(含参考答案)
- 格式:pdf
- 大小:336.34 KB
- 文档页数:13
__ 第Ⅰ卷(选择题 共 30 分) ____ _ 1. - 3 = -------------------- ( ) 考 __A .3B . - 3C . 1___ ___ __ _ 上 __ _ __ A .1.8 6 B .1.8 ⨯ 10 6 C .18 ⨯ 10 5 D .18 ⨯ 10 6 _ __ _ _ 3.下列计算正确的是( ) _ _ _名 __ A . 2 2 = 2 B . 22 = ±2 C . 4 2 = 2 D . 4 2 = ±2 姓___ _____ __ 题 A .(θ + θ )- (θ + θ ) = 30︒B .(θ + θ )- θ+ θ 此_ 5.若线 _ A . x -. - . + 6B . 1----------------13C .-------------绝密★启用前在--------------------浙江省杭州市 2018 年初中毕业学业考试数学本试卷满分 120 分,考试时间 100 分钟.__ --------------------__ __ 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项符合题目要求的)_ 卷号生 _ 1 __ 3 D . - 32.数据 1 800 000 用科学计数法表示为( ) --------------------_ _ _ 答 --------------------4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据.统计时,出现了一处错误:将最高成绩写得更高了.计算结果不受影响的是( )__ A .方差 B .标准差 C .中位数 D .平均数___ -------------------- 段 AM ,AN 分别是 △ABC 边上的高线和中线,则( ) __ A . AM > AN B . AM ≥ AN C . AM < AN D . AM ≤ AN __ 校 6.某次知识竞赛共有 20 道题.规定:每答对一题得 +5 分,每答错一题得 -2 分,不答的题得 0 分.已知圆圆这次竞 学 业 赛得了 60 分,设圆圆答对了 x 道题,答错了 y 道题,则( )毕无 -------------------- y = 20 B . x + y = 20 C . 5 x - 2 y = 60 D . 5 x + 2 y = 607.一个两位数,它的十位数字是 3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字 1~6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是 3 的倍数的概率等于()( ) = 40︒ 1 4 2 3 2 4 1 3C (θ + θ )(θ + θ ) = 70︒D (θ + θ ) (θ + θ ) = 180︒1 2 3 4 1 2 3 49. 四位同学在研究函数 y = x 2 + b x + c(b , c 是常数)时 , 甲发现当 x = 1 时 , 函数有最小值;乙发现 -1 是方程x 2 + bx + c =0 的一个根;丙发现函数的最小值为 3;丁发现当 x = 2 时, y = 4 .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁 10.如图,在 △ABC 中,点 D 在 AB 边上, DE / / B C ,与边 AC 交于点 E ,连结 BE ,记 △ADE,△BCE 的面积分别为S , S ,( )1 2A .若 2 AD > AB ,则 3S > 2S B .若 2 AD > AB ,则 3S < 2S1 2 1 2C .若 2 AD < AB ,则 3S > 2S D .若 2 A D < AB ,则 3S < 2S1 2 1 2第Ⅱ卷(选择题 共 90 分)二、填空题(本大题共有 6 个小题,每小题 4 分,共 24 分.请把答案填在题中的横线上) 11.计算: a - 3a =12.如图,直线 a // b ,直线 c 与直线 a, b 分别交于 A,B,若 ∠1 = 45︒ ,则 ∠2 = .13.因式分解: (a - b )2 - (b - a ) =14.如图,AB 是 O 的直径,点 C 是半径 OA 的中点,过点 C 作 DE ⊥ AB ,交 O 于点 D 、E 两点,过点 D 作直径DF ,连结 AF ,则 ∠DFA =效A .1 2 D .238.如图 ,已知点 P 是矩形 ABCD 内一点 (不含边界 ),设 ∠P AD = θ , ∠PBA = θ , ∠PCB = θ , ∠PDC = θ ,若12 3 4∠APB = 80︒, ∠CPD = 50︒ ,则()数学试卷 第 1 页(共 4 页)15.某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地.甲车 8 点出发,如图是其行驶路程 s (千米)随行驶时间 t (小时)变化的图象.乙车 9 点出发,若要在 10 点至 11 点之间(含 10 点和 11 点)追上甲车,则乙车的速度 v (单位:千米/小时)的范围是 .数学试卷第2页(共4页)(),y)在该一次函数图象上,设m=(x-x)·(y-y),判断反比例函数y=m+1②若线段AD=EC,求aBC=k.20.(本题满分10分)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(-1,-1)两点.(1)求该一次函数的表达式;(2)若点2a+2,a2在该一次函数图象上,求a的值;16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC 边上,若AB=AD+2,EH=1,则AD=(3)已知点C(x,y),D(x11所在的象限,说明理由.221212x的图象三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?18.(本小题满分8分)某校积极参与垃圾分类活动,以班级为单位收集可回收的垃圾.下面是七年级各班一周收集的可回收垃圾的质量频数和频数直方图(每组含前一个边界值,不含后一个边界值).(1)求a的值.(2)已知收集的可回收垃圾以0.8元/k g被回收,该年级这周收集的可回收垃圾被回收后所得的金额能否达到50元?19.(本题满分8分)如图,在△ABC中,AB=AC,AD为BC边上的中线DE⊥AB于点E 21.(本题满分10分)如图,在△ABC中,∠ACB=90︒,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28︒,求∠ACD的度数;(2)设BC=a,AC=b①线段AD的长度是方程x2+2ax-b2=0的一个根吗?说明理由.b的值.22.(本小题满分12分)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0)(1)判断该二次函数图象与x轴交点的个数,说明理由;(2)若该二次函数的图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.23.(本小题满分12分)如图,在正方形ABCD中,点G在边BC上(不与点B、C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设BG(1)求证:AE=BF;(2)连接BE、DF,设∠EDF=α,∠EBF=β,求证:tanα=k tanβ;(3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为(1)求证:△BDE∽△CAD;(2)若AB=13,BC=10,求线段DE的长.S和S,求12SS2的最大值.1数学试卷第3页(共4页)数学试卷第4页(共4页), + =浙江省杭州市 2018 年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】解: - 3 = 3【考点】绝对值及有理数的绝对值2.【答案】B【解析】根据科学计数法的表示形式为:a ×10n ,其中1< a <10 .表示绝对值较大的数解:1800000 = 1.8 ⨯106【考点】科学记数法3.【答案】A【解析】解: Q 22 = 2 ,因此 A 符合题意;B 不符合题意; Q 42 = 4 ,因此 C 、D 不符合题意;故选 A.【考点】二次根式的性质与化简4.【答案】C【解析】解:Q 中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”不受极端值影响, 所以将最高成绩写得更高了∴计算结果不会受影响的是中位数,故选 C. 【考点】方差、标准差、中位数、平均数 5.【答案】D【解析】解:Q 线段 AM,AN 分别是 △ABC 边上的高线和中线,当 BC 边上的中线和高重合时,则 AM = AN 当 BC 边上的中线和高不重合时,则 AM < AN∴ AM ≤AN 故选 D.【考点】垂线段的性质6.【答案】C【解析】根据题意得: 5 x - 2 y (20 - x - y ) 60 ,即 5x - 2 y = 60 故选 C. 【考点】二元一次方程的实际应用鸡兔同笼问题 7.【答案】B【解析】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,一共有 6 种可能得到的两位数是3 的倍数的有 33、36 两种可能.∴ P(两位数是3的倍数) = 13【考点】概率公式,复合事件概率的计算8.【答案】A3 / 10-===2∴AD\设AD(【解析】解:Q矩形ABCD∴∠P AB+∠P AD=90︒即∠P AB=90︒-∠P ABQ∠P AB=80︒∴∠P AB+∠PBA=180︒-80︒=100︒90︒-∠PAB+∠PBA=100︒即∠PBA-∠PAB=10︒①同理可得:∠PDC-∠PCB=180︒-50︒-90︒=40︒②由②-①得:∠PDC-∠P CB(∠PBA-∠P AB)30︒\(θ+θ)-(θ+θ)30?故选A.2423【考点】三角形内角和定理,矩形的性质9.【答案】B【解析】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛物线的解析式为:y=a(x-1)3+3 Q a+3=4解之:a=1∴抛物线的解析式为:y(x-1)+3=x2-2x+4当x=1时,y=7,∴乙说法错误,故选B.【考点】二次函数图象与系数的关系,二次函数的最值10.【答案】D【解析】解:如图,过D作DF^AC于分,过B作BM⊥AC于M∴DF∥BM,设DF=h,BM=h1AE=AB ACQ DE∥BC2∴∴AD AE=AB ACAD h=1=AB h2AEACQ若2A D<ABh AE=1==k<0.50<k<0.5)AB h AC2数学试卷第3页(共4页)数学试卷第4页(共4页)( , 2 2 2 2∴ AE = AC k ,CE = AC - AE = AC 1- k )h = h k 12Q S = 1 1 1 1 1AE ⨯ h = AC ⨯ k ⨯ h , S = CE ⨯ h = AC (1- k)h1 12 2 2Q 0<k <0.5∴ 3 2k 2<(1- K )∴ 3S <2S12故选 D.【考点】三角形的判定与性质第Ⅱ卷二、填空题11.【答案】-2a【解析】解: a - 3a = -2a 故答案为:-2a【考点】整式的加减12.【答案】135︒【解析】解: Q a ∥b ∴ ∠1=∠3 = 45︒Q ∠2 +∠3 =180︒\ 邪2=180 - 45? 135? 故答案为:135︒【考点】对顶角、邻补角,平行线的性质13.【答案】 (a - b ) (a - b + 1)【解析】解:原式= (a - b )2 - (b - a ) = (a - b )2 + (a - b ) = (a - b )(a - b + 1).【考点】提公因式法因式分解14.【答案】30°【解析】解: Q DE ⊥ AB ∴∠DCO = 90︒Q 点 C 是半径 OA 的中点\ OC = 1 1OA = OD2 2\ ∠CDO = 30︒∴ ? AOD 60?Q 弧 AD =弧 AD1∴ ∠DEA = ∠AOD = 30︒2故答案为:30°【考点】垂径定理、锐角三角函数、三角形外角的性质 15.【答案】 60≤v ≤80【解析】解:根据题意得甲车的速度为120 - 3 = 40千米 \ 小时5 / 10则 v ≥ ( , . 5 1 6 5 2若 10 点追上,则 v = 2⨯ 40- 80 千米小时 若 11 点追上,则 2v =120,即 v = 60千米小时\ 60≤v ≤80 故答案为: 60≤v ≤80【考点】一次函数的图象,一次函数的实际应用,一次函数的性质16.【答案】 3 + 23【解析】Q 当点 H 在线段 AE 上时把 V ADE 翻折,点 A 落在 DC 边上的点 F 处,折痕为 DE ,点 E 在 AB 边上∴ 四边形 ADFE 是正方形∴ AD = AEQ AH = AE - EH = AD -1Q 把 VCDG 翻折,点 C 落在直线 AE 上的点 H 处,折痕为 DG ,点 G 在 BC 边上 \ DC = DH = AB = AD + 2在 RtVADH 中, AD 2 + AH 2 = DH 2解之: AD = 3 + 2 3,AD = 3 - 2 3AD = 3 + 2 3,AD = 3 - 2 3 (舍去)\ AD = 3 + 2 3【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)三、解答题17.【答案】(1)有题意可得: vt = 100 t>0)则 v =(2) Q 不超过 5 小时卸完船上的这批货物, \ t ≤5 ,100= 205100 t.答:平均每小时至少要卸货 20 吨.【解析】(1)根据已知条件易求出函数解析式.(2)根据要求不超过 5 小时卸完船上的这批货物,可得出 t 的取值范围,再求出 t=5 时的函数值,就可得出答案.【考点】一元一次不等式的应用,反比例函数的性质,根据实际问题列反比例函数关系式 18.【答案】(1)观察频数分布直方图可得出 a = 4(2) 设 收 集 的 可 回 收 垃 圾 总 质 量 为 W , 总 金 额 为 Q . 每 组 含 前 一 个 边 界 值 , 不 含 后 一 个 边 界W <2 ⨯ 4. 5+ 4⨯ 5+ 3⨯ + ⨯ = kg, Q <515 ⨯ 0.8 = 41. 元, 41.2 < 50所以该年级这周的可回收垃圾被回收后所得全额不能达到 50 元.【解析】(1)观察频数分布直方图,可得出 a 的值.(2)设收集的可回收垃圾总质量为 W ,总金额为 Q ,根据每组含前一个边界值,不含后一个边界,求出 W 和 Q 的 取值范围,比较大小,即可求解.数学试卷 第 3 页(共 4 页)数学试卷 第 4 页(共 4 页)20.【答案】(1)根据题意,得 ⎨ ,解得 k = 2,b =1 .【考点】频数(率)分布表,频数(率)分布直方图19.【答案】(1)证明: Q AB = AC , ∠ABC = ∠ACB , △ABC 为等腰三角形.Q AD 是 BC 边上中线, ∴ BD = CD , AD ⊥ BC 又∴ DE ⊥ AB . Q ∠DEB = ∠ADC ,又 ∠ABC = ∠ACB ,∴ △BDE ∽△CAD(2) Q AB = 13 , BC = 10BD = CD = 1BC = 5 ,2∴ AD 2 + BD 2 = AB 2 , AD = 12 .Q △BDE ∽△CAD∴ BD DE 5 DE = 即 = ,CA AD 13 1260∴DE = .13【解析】(1)根据已知易证 △ABC 为等腰三角形,再根据等腰三角形的性质及垂直的定义证明∠DEB =∠ADC ,根据两组角对应相等的两三角形是相似三角形,即可证得结论.(2)根据等腰三角形的性质求出 B D 的长,再根据勾股定理求出 AD 的长,再根据相似三角形的性质,得出对应边 成比例,就可求出 DE 的长.【考点】等腰三角形的性质,勾股定理,相似三角形的判定与性质⎧k + b = 33,⎩-k + b = -1,所以 y = 2x + 1 .(2)因为点 (2a + 2,a 2 ) 在函数 y = 2 x + 1 的图像上,所以 a 2 = 4a + 5解得 a = 5 或 a = -1(3)由题意,得 y - y = (2 x + 1) - (2 x + 1) = 2( x - x ) ,所以 m = ( x - x )( y - y ) = 2(x - x )2≥0,12 1 2 1 2 1 2 1 2 1 2所以 m + 1>0 ,所以反比例函数 y = m + 1 x的图像位于第一、第三象限.【解析】(1)根据已知点的坐标,利用待定系数法,就可求出一次函数的解析式.(2)将已知点的坐标代入所求函数解析式,建立关于 a 的方程,解方程求解即可.(3)先求出 y - y = 2( x - x ) ,根据 m = ( x - x )( y - y ) ,得出 m = ( x - x )( y - y ) = 2(x - x )2≥0, 从而可判121212121 2 1 2 1 2断 m +1 的取值范围,即可求解.【考点】因式分解法解一元二次方程,待定系数法求一次函数解析式,反比例函数的性质7 / 10⨯( 所以 + ab - b 2 = 0 ,即 4ab = 3b因为 b ≠ 0 ,所以 = .⎩ -(a + b ) = -1, - =21.【答案】(1)因为 ∠A = 28︒ ,所以 ∠B = 62︒ 又因为 BC -BD,所以 ∠BCD = 1180 ︒ - 62︒ )=59︒2∴∠ACD = 90︒- 59︒=31︒(2)因为 BC =a , AC =b ,所以 AB = a 2 + b 2 所以 AD = AB = BD = a 2 + b 2 - a①因为 ( a 2 +b 2 - a)2 + ?2a( a 2 +b 2 - a) - b 2 = ( a 2 + b 2 - 2a a 2 + b 2 +a 2 ) + 2a a 2 +b 2 - 2a 2 - b 2 = 0所以线段 AD 的是方程 x 2 + 2ax - b 2 = 0 的一个根.②因为 AD = EC = AE =b2所以 b 2号是方程 x 2 + 2ax - b 2 = 0 的根,b 24a 3b 4【解析】 (1)根据三角形内角和定理可求出 ∠B 的度数 ,再根据已知可得出 △BCD 是等腰三角形 ,可求出∠BCD 的度数,从而可求得 ∠ACD 的度数.(2)根据己知① BC = a ,AC = b ,利用勾股定理可求出 AB 的值,①再求出 AD 的值,再根据 AD 是原方程的一个根 , 将 AD 的 k 代入方程 , 可得出方程左右两边相等, 即可得出解; ② 根据已知条件可得出b2, 将AD = EC = AE = b 2代入方程化筒可得出 4ab = 3b ,就可求出 a 与 b 之比.【考点】一元二次方程的根,等腰三角形的性质,勾股定理,圆的认识22.【答案】(1)当 y = 0 吋, ax 2 + bx -(a + b ) = 0(a ≠ 0),因为 ∆ = b 2 + 4a(a + b )=(2 a + b )所以,当 2a + b = 0 ,即 ∆ =0 时,二次函数图像与 x 轴有 1 个交点,当 2a + b ≠ 0 ,即 ∆ > 0 时,二次函数图像与 x 轴有 2 个交点.(2)当 x = 1时, y = 0 ,所以函数图象不可能经过点 C (1,1)所以函数图象经过 A (-1,4),B (0,-1)两点,⎧a - b - (a + b ) = 4,所以 ⎨解得 a =3,b =-2 所以二次函数的表达式为 y = 3x 2 - 2x - 1(3)因为 P (2,m )在该二次函数的图像上,所以 m = 4a + 2b (a + b ) 3a + b因为 m > 0 ,所以 3a + b > 0 , 又因为 a + b > 0 ,数学试卷 第 3 页(共 4 页) 数学试卷 第 4 页(共 4 页)(2)易知 Rt △BFG ∽Rt △DEA , BF ,在 Rt △DEF 和 Rt ∆BEF 中, tan α = ,(3)设正方形 ABCD 的边长为 1,则 BG =k ,所以 △ABG 的面积等于 1 2(k + 1) )2 + ≤ , S S所以 2a =3a +b -(a +b )>0,所以 a > 0【解析】(1)根据题意求出 △= b 2 - 4ac 的值,再分情况讨论,即可得出答案.(2)根据已知点的坐标,可排除点 C 不在抛物线上,因此将 A 、B 两点代入函数解析式,建立方程组求出 a 、b 的值,就可得出函数解析式.(3)抓住已知条件点 P (2,m )( m > 0 )在该二次函数图象上,得出 m =3a +b ,结合已知条件 m 的取值范围,可得出3a +b >0,再根据 a + b > 0 ,可证得结论.【考点】待定系数法求二次函数解析式,二次函数图像与坐标轴的交点问题23 . 【 答 案 】 (1) 因 为 四 边 形 ABCD 是 正 方 形 , 所 以 ∠BAF + ∠EAD = 90︒ , 又 因 为 DE ⊥ AG , 所 以∠EAD + ∠ADE = 90︒,所以∠ADE = ∠BAF又因为 BF ⊥ AG ,∠DEA = ∠AFB = 90︒ ,又因为 AD = AB ,所以 △Rt DAE ≅ Rt △ABF , FD = AE = BF ,BG DE= DE AD EF tan β = EFBF,所以 ktan β = BG EF BG EF BF EF EF= = = = tan α ,BC BF AD BF DE BE DE所以 tan α = tan β .1k ,因为 △ABD 的面积等于 ,2 2又因为 BH BG=HD AD 1 = k ,所以 S 1 = ,所以 S2 = k 2 + k + 1 = (k -S11 5 52 4 4因为 0<k <1,所以当 k = 1 5 ,即点 G 为 BC 中点时, 2 有最大值 . 2 4 1【解析】(1)根据正方形的性质及垂直的定义,可证得∠ADE =∠BAF ,∠ADE =∠BAF 及 AD =AB,利用全等三角形的判定,可证得 △Rt DAE ≅ △Rt ABF ,从而可证得结论.(2)根据已知验证 Rt △BFG ∽Rt △DEA ,得出对应边成比例,再在 △Rt DEF 和 Rt △BEF 中,根据锐角三角函数 的定义,分别表示出 tan α、tan β ,从而可推出 tan α = tan β .(3)设正方形 ABCD 的边长为 1,则 BG = k ,分别表示出 △ABG , △ABD 的面积,再根据BH BG= = k ,求出 S HD AD1及 S ,再求出 S 与 S 之比与 k 的函数解析式,求出顶点坐标,然后根据 k 的取值范围,即可求解.212【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质,解直角三角形9 / 10数学试卷第3页(共4页)数学试卷第4页(共4页)。
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省杭州市2018年中考数学真题试题一、选择题(本题有10小题,每小题3分,共30分)1. 3-=( )A. 3B. 3-C. 31D. 31- 2.数据1800000用科学计数法表示为( )A.68.1B.6108.1⨯C. 51018⨯D. 61018⨯3.下列计算正确的是( ) A. 222= B. 222±= C. 242= D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A. 61 B. 31C. 21 D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCEADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
2018年杭州市中考数学试题一、选择题(本题有10小题,每小题3分,共30分) 1. 3-=( ) A. 3 B. 3- C.31 D. 31- 2.数据1800000用科学计数法表示为( ) A.68.1 B.6108.1⨯ C. 51018⨯ D. 61018⨯ 3.下列计算正确的是( ) A.222= B. 222±= C. 242= D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( ) A.方差 B. 标准差 C. 中位数 D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( ) A.AN AM > B. AN AM ≥ C. AN AM < D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A. 20=-y x B. 20=+y x C. 6025=-y x D. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A.61 B. 31C. 21D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A. ()︒=++30-3241θθθθ)(B. ()︒=++40-3142θθθθ)(C. ()︒=++70-4321θθθθ)(D. ()︒=+++1804321θθθθ)(9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A. 甲 B.乙 C. 丙 D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则23S S >B. 若AB AD >2,则23S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分) 11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1, 则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
2018年杭州市初中毕业升学文化考试数学试题一考生须知:1. 本试卷满分120分,考试时间100分钟.2. 答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明.4. 如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5. 考试结束后,试题卷和答题纸一并上交.参考公式:二次函数:y=ax2+bx+c(a≠0)图象的顶点坐标公式:(-b2a,4ac-b24a).试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列实数中,结果最大的是()A. |-3|B. -(-π)C. 7D. 32. 下列运算正确的是()A. a8÷a2=a4B. b3+b3=b6C. a2+ab+b2=(a+b)2D. (a+b)(4a-b)=4a2+3ab-b23. 某学习报经理通过对几种学习报订阅量的统计(如下表),得出应当多印刷《数学天地》报,他是应用了统计学中的()学习报《语文期刊》《数学天地》《英语周报》《中学生数理化》订阅数3000800040003000A. 平均数B. 众数C. 中位数D. 方差4. 下列几何体中,三视图有两个相同而另一个不同的是()第4题图A. (1)(2)B. (2)(3)C. (2)(4)D. (3)(4)5. 如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为( )第5题图A. 13B. 22C. 3D. 26. 现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③正八边形的每个内角度数为45°;④一组数据2,5,4,3,3的中位数是4,众数是3,其中假命题的个数是( )A. 1个B. 2个C. 3个D. 4个7. 如图,在平面直角坐标系中,正方形的中心在原点O 处,且正方形的一组对边与x 轴平行,点P (2a ,a )是反比例函数y =2x 的图象与正方形的一个交点,则图中阴影部分的面积是( )A. 2B. 3C. 4D. 5第7题图第9题图第10题图8. 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为()A. 160x+400-160(1+20%)x=18 B.160x+400(1+20%)x=18C. 160x+400-16020%x=18 D.400x+400-160(1+20%)x=189. 如图,直线y=nx+3n(n≠0)与y=-x+m的交点的横坐标为-1,则关于x的不等式-x+m>nx+3n>0的整数解为()A. -2B. -5C. -4D. -110. 如图,在Rt△ABC中,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°,得到△AFB,连接EF,则()A. ∠AED=∠AFEB. △ABE∽△ACDC. BE+DC=DED. BE2+DC2=DE2二、填空题:本大题有6个小题,每小题4分,共24分.11. 计算:4812=________.12. 为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是________个.13. 若随机向一个边长分别为3,4,5的三角形内投一根针,则针尖落在三角形的内切圆内的概率为________.14. 已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤4的情况下,若其对应的函数值y的最小值为5,则h的值为________.第15题图15. 如图,点C是⊙O上一点,⊙O的半径为22,D、E分别是弦AC、BC上的点,且OD=OE=2,则AB的最大值为________.16. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在和谐四边形ABCD中,AB=AD=BC,∠BAD=90°,若AC是四边形ABCD的和谐线,则∠BCD=____________.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分6分)以下是小华同学做的整式运算一题的解题过程:计算:2b2-(a+b)(a-2b).解:原式=2b2-(a2-2b2)…………第①步=2b2-a2+2b2……………第②步=4b2-a2…………………第③步老师说:“小华的过程有问题”.请你指出计算过程中错误的步骤,并改正.18. (本小题满分8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的点.(1)求证:△ACE≌△BCD;(2)若DE =13,BD =12,求线段AB 的长.第18题图19. (本小题满分8分)第十三届全国学生运动会将于2017年9月4日— 9月16日在杭州市举办,是首次将大、中学生运动会合并后举行的一次全国性学校体育重大活动.某校组织了主题为“我是运动会志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按A ,B ,C ,D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求此次抽取的作品中等级为B 的作品数,并补全条形统计图; (2)求扇形统计图中等级为D 的扇形圆心角的度数;(3)该校计划从抽取的这些作品中选取部分作品参加市区的作品展.已知其中所选取的到市区参展的A 类作品比B 类作品少4份,且A 、B 两类作品数量和正好是本次抽取的四个等级作品数量的15,求选到市区参展的B 类作品有多少份.第19题图20. (本小题满分10分)如图,甲、乙两只捕捞船同时从A 港出海捕鱼,甲船以152千米/小时的速度沿北偏西60°方向前进,乙船以15千米/小时的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.(1)甲船从C 处追赶上乙船用了多少时间? (2)求甲船追赶乙船时的速度.(结果保留根号)第20题图21. (本小题满分10分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:OC PD =OPAP;(2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.第21题图22. (本小题满分12分)过反比例函数y =kx (k <0)的图象上一点A 作x 轴的垂线交x 轴于点B ,O 为坐标原点,且S △ABO =4.(1)求k 的值;(2)若二次函数y =ax 2与反比例函数y =kx (k <0)的图象交于C (-2,m ).请结合函数图象写出满足ax 2<kx的x 的取值范围.23. (本小题满分12分)如图,已知▱ABCD 中,AC ⊥CD ,点E 在射线CB 上,点F 在射线DC 上,且∠EAF =∠B .(1)当∠BAD =135°时,若点E 在线段CB 上,点F 在线段DC 上,求证:BE +22DF =AD ;(2)当∠BAD =120°时,若点E 在线段CB 上,点F 在线段DC 上,求AD 、BE 、DF 之间有怎样的数量关系?并证明你的结论;(3)当∠BAD =120°时,连接EF ,设直线AF 、直线BC 交于点Q ,当AB =3,BE =2时,请分别求出EQ 和EF 的长.第23题图答案一、选择题1-5 BDBBC6-10DCaaD二、填空题11. 212. 613. π614. -1或615. 2616. 135°或90°或45°三、解答题17. (本小题满分6分)解:错误的步骤是第①步,(2分)改正:原式=2b2-(a2-2ab+ab-2b2) =2b2-a2+2ab-ab+2b2=4b2+ab-a2.(6分)18. (本小题满分8分)(1)证明:∵△aCb 与△E CD 都是等腰直角三角形, ∴C E =CD ,aC =bC ,∠aCb =∠E CD =90°,∠b =∠baC =45°,∴∠aC E =∠bCD =90°-∠aCD ,在△aC E 和△bCD 中,⎩⎪⎨⎪⎧CE =CD ∠ACE =∠BCD AC =BC, ∴△aC E ≌△bCD (SaS );(4分) (2)解:∵△aC E ≌△bCD , ∴a E =bD ,∠E aC =∠b =45°, ∵bD =12, ∴∠E aD =45°+45°=90°,a E =12, 在Rt △E aD 中,∠E aD =90°,D E =13,a E =12, 由勾股定理得:aD =5,∴ab =bD +aD =12+5=17.(8分) 19. (本小题满分8分) 解:(1)30÷25%=120(份).(2分)此次抽取的作品中等级为b 的作品数为120-36-30-6=48(份),补全条形统计图,如解图,第19题解图(4分)(2)扇形统计图中等级为D 的扇形圆心角的度数为6120×360°=18°;(6分)(3)设b 类作品共x 份,则a 类作品共(x -4)份, 根据题意得(x -4)+x =120×15,解得x =14,答:选到市区参展的b 类作品有14份.(8分) 20. (本小题满分10分)解:(1)如解图,过点a 作aD ⊥bC 于D ,第20题解图由题意得: ∠b =30°,∠baC =60°+45°=105°,则∠bCa =45°,aC =302千米, 在Rt △aDC 中,aD =CD =aC ·cos 45°=30(千米), 在Rt △abD 中,ab =2aD =60千米,t =6015=4(时).4-2=2(时),答:甲船从C 处追赶上乙船用了2小时;(5分)(2)由(1)知:bD =ab ·cos 30°=303千米, ∴bC =30+303(千米),甲船追赶乙船的速度v =(30+303)÷2=(15+153)千米/时. 答:甲船追赶乙船时的速度为:(15+153)千米/小时.(10分) 21. (本小题满分10分)(1)证明:∵四边形abCD 是矩形,∴aD =bC ,DC =ab ,∠Dab =∠b =∠C =90°,由折叠可得:a P =ab ,PO =b O ,∠P a O =∠ba O ,∠a PO =∠b . ∴∠a PO =90°. ∴∠a P D =90°-∠C PO =∠PO C . ∵∠D =∠C ,∠a P D =∠PO C . ∴△O C P ∽△P Da , ∴OC PD =OPAP ;(4分) (2)解:∵△O C P 与△P Da 的面积比为1∶4, ∴OC PD =OP PA =CP DA=14=12.∴P D =2O C ,P a =2OP ,Da =2C P ,∵aD =8,∴C P =4,bC =8.设OP =x ,则O b =x ,C O =8-x.在Rt △P C O 中,∵∠C =90°,C P =4,OP =x ,C O =8-x ,∴x 2=(8-x)2+42.解得:x =5.∴ab =a P =2OP =10.∴边ab 的长为10.(10分)22. (本小题满分12分)解:(1)设点a 的坐标为(n ,k n), ∵ab ⊥x 轴,∴O b =|n |,ab =|k n|, ∵△ab O 的面积S △ab O =12O b ·ab =|k|2=4,k <0, ∴k =-8;(4分)(2)依照题意画出图形,如解图所示.第22题解图令x =-2,y =-8-2=4, 即点C 的坐标为(-2,4).(7分)∵点C (-2,4)在二次函数y =a x 2的图象上,∴4=(-2)2·a ,解得:a =1.(9分)结合图象可知,:当-2<x <0时,y =-8x的图象在y =x 2的图象的上方, ∴满足x 2<-8x的x 的取值范围为:-2<x <0.(12分) 23. (本小题满分12分)(1)证明:∵∠baD =135°,且∠baC =90°,∴∠CaD =45°,即△abC 、△aDC 都是等腰直角三角形;∴aD =2aC ,且∠D =∠aCb =45°;又∵∠E aC =∠Da F =45°-∠F aC ,∴△a E C ∽△a F D ,∴AE AF =EC FD =AC AD =12,即E C =22F D ; ∴bC =b E +22D F ,即b E +22D F =aD ;(4分) (2)解:2b E +D F =aD ;理由如下:第23题解图①如解图①,取bC 的中点G ,连接a G ;易知:∠DaC =∠bCa =30°,∠b =∠D =60°;在Rt △abC 中,G 是斜边bC 的中点,则:∠a GE =60°,aD =bC =2a G ;∵∠G aD =∠a GE =60°=∠E a F ,∴∠E a G =∠F aD =60°-∠G a F ;又∵∠a GE =∠D =60°,∴△a GE ∽△aD F ,得:AG AD =EG FD =12; 即F D =2EG ;∴bC =2b G =2(b E +EG)=2b E +2EG =2b E +D F ,即aD =2b E +D F ;(7分)第23题解图② 第23题解图③(3)解:在Rt △abC 中,∠aCb =30°,ab =3,则bC =aD =6,E C =4.①当点E 、F 分别在线段bC 、CD 上时,如解图②,过F 作FH ⊥b Q 于H ;同(2)可知:D F =2EG =2,C F =CD -D F =1;在Rt △C FH 中,∠F C H =60°,则:C H =12,FH =32; 易知:△aD F ∽△Q C F ,由D F =2C F ,可得C Q =12aD =3; ∴EQ =E C +C Q =4+3=7;在Rt △EFH 中,EH =E C +C H =92,FH =32; 由勾股定理可求得:EF =21;(9分)②当点E 、F 分别在Cb 、DC 的延长线上时,如解图③;分别过点a 、F 作bC 的垂线,垂足分别为m 、n ,∵∠E a F =∠G aD =60°,∴∠E a G =∠F aD =60°+∠F a G ,又∵∠EG a =∠D =60°,∴△E a G ∽△F aD ,得:EG FD =AG AD =12; 即F D =2EG =10,F C =10-CD =7;在Rt △F Cn 中,∠F Cn =60°,易求得F n =732,nC =72,G n =12; 在等边△ab G 中,am ⊥b G ,易求得am =332,m G =32,mn =m G -G n =1; 由△am Q ∽△F n Q ,得:AM FN =MQ NQ =37,即Q n =710,m Q =310; EQ =E b +bm +m Q =2+32+310=195; 由勾股定理,得:EF =57;综上可知:EQ =7或195,EF =21或57.(12分)。
2018年杭州市中考数学模拟试卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2.答题时,应该在答题卷指定位置内写明校名、姓名和准考证号.3.所有答案都必须做在答题卷指定位置上,请务必注意试题序号和答题序号相对应.4.考试结束后,上交试题卷和答题卷.一. 选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1、下列各数中,比1小的数是( ▲ )A .-1+2B .C .π-D .0(3)-2、把y y x -2分解因式是( ▲ )A .2(1)y x -B .(1)y x +C .(1)y x -D .(1)(1)y x x +-3、如图,在△ABC 中,DE∥BC,AD=6,DB=3,则的值为( ▲ )A .B .C .D .4、一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ▲ )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球5、若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积为( ▲ )A . 4B .5.4C .5D .5.5 6、已知方程012=-+x x,下列说法中正确的是(▲ )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根,且它们互为相反数C .该方程有一根为251+D. 该方程有一根为黄金分割比7、下列各式计算正确的有( ▲ )A.323452)2()q (q p q p p =÷B. 25)5)(5(2--=--+-a a a C. 2322(5)210x x y x x y --=-- D.2121422+=---a a a a8、已知点A (﹣1,m ),B (1,m ),C (2,m +1)在同一个函数图象上,这个函数图象可以是( ▲ )A .B .C .D .9、已知⊙O 的半径为3,△ABC 内接于⊙O ,AB=32,AC=33,D 是⊙O 上一点,且AD=3,则CD 的长应是( ▲ ) (西湖区试题改编) A .3 B .3或6 C .3 D .3或610、如图,在菱形ABCD 中,AB CF AD CE BC AG CD AH ⊥⊥⊥⊥,,,,垂足分别为点H ,G ,E ,F.若图中四边形APCQ 的面积为菱形ABCD 的四分之一,则sinB 的值( ▲ ) (课本改编) A.23 B.43 C.55 D.54二. 填空题(本题有6个小题, 每小题4分, 共24分) )要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、用科学记数方法表示=0000907.0 .12、已知ab b a =+,则=--)1(1b a )( . 13、如图,直线AB ∥CD ,BC 平分∠ABD ,∠1=67°,则∠2= 度.14、为了喜迎2022年杭州承办第19届亚运会,某校举行文艺演出,组建46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调部分同学参加合唱队,使合唱队的人数恰好是舞蹈队人数的3倍.设从舞蹈队中抽调x 人参加合唱队,可列方程为 .(杭州市中考试题改编) 15、若关于x,y 方程组⎩⎨⎧+=--=+4633232k y x k y x 的解为⎩⎨⎧==by ax ,且3<k ,则t=a-3b 的取值范围是 .(杭州市中考试题改编) 16、如图,在平行四边形ABCD 中,AB=10,AD=15,tanA=34,点P 为AD 边上任意一点,连接PB ,将PB 绕着P 点逆时针旋转90得到线段PQ ,若点Q 恰好落在平行四边形ABCD 的边所在的直线上,则PB= . (杭州市中考试题改编)三. 解答题 (本题有7个小题, 共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有些题目有点困难,那么把自己能写出的解答写出一部分也可以. 17、(本题6分)“你记得父母的生日吗?”这是某校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A .父母生日都记得;B .只记得母亲生日;C .只记得父亲生日;D .父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图. (1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?18、(本题8分)已知111222---++=x xx x x A (1)化简A ; (2)当x 满足不等式组,且x 为整数时,求A 的值.19、(本题8分)如图,△ABC 中,AB=AC ,D 是BC 中点,BE⊥AC 于E , (1)求证:△ACD∽△BCE;(2)若AB=5,BC=6,求CE 的长.(课本改编)20、(本题10分)如图,正比例函数x y 21-=的图象与反比例函数1k y x-=的图象分别交于M ,N 两点,已知点M (﹣2,m ). (1)求N 的坐标;(2)若1122(,),(,)A x y B x y 是反比例函数1k y x-=图像上的两点,当12y y >时,比较12,x x 的大小.(课本改编)21、(本题10分)如图,在△ABC 中,BA=BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线与⊙O 的切线AF 交于点F . (1)求证:∠ABC=2∠CAF;(2)若AC=102,CE :EB=1:4,求CE ,AF 的长. (课本改编)22、(本题12分)设抛物线C 的解析式为k k kx x y )3(22++-=,k 为实数.(1)①求出该抛物线的顶点坐标(用k 表示);②说明当k 变化时,该抛物线的顶点在一条定直线上;(2)已知一直线与该抛物线中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.(全国数学竞赛试题改编) 23、(本题12分)如图1,在△ABC 中,BC=4,以线段AB 为边作△ABD,使得AD=BD ,连接DC ,再以DC 为边作△CDE,使得DC=DE ,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系; (2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ①若α=90°,依题意补全图3,求线段AF 的长; ②求出线段AF 的长(用含α的式子表示).数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11.51007.9-⨯ 12. 1 13. 46 14.)30(346x x -=+ 15. -14<t<14 16. 28,54,8 三、解答题 (本题有7个小题, 共66分)17、解:(1)一班中A 类的人数是:50﹣9﹣3﹣20=18(人). 1分 如图所示.1分(2)(名); 2分(3)设(2)班“只记得母亲生日”的学生有x 名,依题意得:,解得x=13,∴,即(2)班“只记得母亲生日”的学生所占百分比是26%. 2分 ﹣)∵19、(1)证明:∵AB=AC,D 是BC 中点, ∴AD⊥BC,∴∠ADC=90°, 1分 ∵BE⊥AC, ∴∠BEC=90°,∴∠ADC=∠BEC, 1分 而∠ACD=∠BCE,∴△ACD∽△BCE. 2分 (2)∵△ACD∽△BCE∴AC CDBC CE = 2分 ∴536=CE ∴518=CE 2分20、解:(1)∵点M (﹣2,m )在正比例函数y=﹣21x 的图象上, ∴m=﹣21×(﹣2)=1, ∴M(﹣2,1), 2分∴根据中心对称性得到N(2,-1) 2分(2)∵反比例函数y=1k x-的图象经过点M (﹣2,1), ∴反比例函数的解析式为y=﹣x2. 1分因为A,B 是反比例函数y=2x -图像上的两点,所以有121222,y y x x --==, 1分 ∵12y y >∴1222x x ->- ∴21122()0x x x x -> 2分①当12,x x 同号时,21x x >; ②当12,x x 异号时,有12x x <. 2分 (图像法分情况讨论也好,给分)21.(1)证明:如图,连接BD . ∵AB 为⊙O 的直径, ∴∠ADB=90°,∴∠DAB+∠ABD=90°. 2分 ∵AF 是⊙O 的切线, ∴∠FAB=90°, 1分 即∠DAB+∠CAF=90°. ∴∠CAF=∠ABD. ∵BA=BC,∠ADB=90°, ∴∠ABC=2∠ABD. ∴∠ABC=2∠CAF. 2分 (2)解:如图,连接AE . ∴∠AEB=90°. 设CE=x , ∵CE:EB=1:4,∴EB=4x,BA=BC=5x ,AE=3x . 在Rt△ACE 中,AC 2=CE 2+AE 2. 即(210)2=x 2+(3x )2. ∴x=2.∴CE=2, 3分∴EB=8,BA=BC=10,AE=6. ∵tan∠ABF BAAFEB AE ==∴1086AF =. ∴AF=7.5 2分22、(1)①配方得,()k k x y 32+-=,顶点坐标为()k k 3,; 3分②设顶点坐标为(x,y ),则x=k,y=k 3,消去k 得到直线x y 3=,该抛物线的顶点在定直线x y 3=上; 3分(2)要使该直线与抛物线中任意一条相截且截得线段长都是6,则该直线必须平行于x y 3=, 2分设其为b x y +=3,考虑其与2x y =相交于点A,B ,分别过点A 作x 轴的垂线,过点B 作y 轴的垂线,交于点C ,则⎩⎨⎧+==bx y x y 32,即有032=--b x x ,解出2433,bx C B +±=, 2分所以BC=321=AB ,即有3=-C B x x ,所以有4b+3=9,解之23=b ,所以这条直线的解析式为233+=x y . 2分23、解:(1)AD+DE=4,理由是:如图1,∵∠ADB=∠EDC=∠α=90°,AD=BD ,DC=DE , ∴AD+DE=BC=4; 2分(2)①补全图形,如图2, 2分 设DE 与BC 相交于点H ,连接AE , 交BC 于点G ,∵∠ADB=∠CDE=90°, ∴∠ADE=∠BDC, 1分 在△ADE 与△BDC 中,,∴△ADE≌△BDC,∴AE=BC,∠AED=∠BCD. 2分 ∵DE 与BC 相交于点H , ∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,∵线段CB 沿着射线CE 的方向平移,得到线段EF , ∴EF=CB=4,EF∥CB, ∴AE=EF,∵CB∥EF,∴∠AEF=∠EGH=90°,∵AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4; 2分②如图2,过E作EM⊥AF于M,∵由①知,AE=EF=BC,∴∠AEM=∠FME=,AM=FM,∴AF=2FM=EF×sin=8sin. 3分。
2018年杭州市中考模拟试题数学试卷第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2 C.0×(﹣2017)D.2﹣32.若代数式有意义,则实数x的取值范围是()A .x=0 B.x=4 C.x≠0 D.x≠43.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A .0.555×104B.5.55×104C.5.55×103D.55.5×1034.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠25.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5 B.若a=b,则ac=bcC.若x=y,则=D.若=,则a=b6.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.37.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B .x(x﹣1)=1035×2 C.x(x﹣1)=1035 D2x(x+1)=1035 8.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min9.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.10.如图,在△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB,AC 于D,E两点,连接CD,如果AD=1,那么tan∠BCD的值是()A. B .C.D.第Ⅱ卷(非选择题)二.填空题(本大题共6小题,每小题4分,共24分)11.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.12.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.13.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是.14.已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.15.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.16.如图,已知边长为4的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点H,且AE=CF=m,则四边形EBFD的面积为;△AHE与△CHF的面积的和为(用含m的式子表示).三.解答题(本大题共7小题,共66分)17.(6分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)18.(8分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.19.(8分)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.20.(10分)家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加kΩ.(1)求当10≤t≤30时,R和t之间的关系式;(2)求温度在30℃时电阻R的值;并求出t≥30时,R和t之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 kΩ?21.(10分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.22.(12分)如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.23.(12分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.参考答案:一.1.A2.D3.C4.C5.C6.C7.C8.D9.B10.C二.11.同位角相等,两直线平行12.m<n13.14.115.16.16;2m三.17.(6分)解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+18.(8分)解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).19.(8分)解(1)∵A (8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).20.(10分)解:(1)∵温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,∴可设R和t之间的关系式为R=,将(10,6)代入上式中得:6=,k=60.故当10≤t≤30时,R=;(2)将t=30℃代入上式中得:R=,R=2.∴温度在30℃时,电阻R=2(kΩ).∵在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加kΩ,∴当t≥30时,R=2+(t﹣30)=t﹣6;(3)把R=6(kΩ),代入R=t﹣6得,t=45(℃),所以,温度在10℃~45℃时,电阻不超过6kΩ.21.(10分)解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC ,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.22.(12分)解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AC=2x∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x +)2=(2)2,∴解得:x=﹣或x=,∴CE=;23.(12分)解:(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.∵四边形CDHO是矩形,∴OC=DH=6,∵tan∠DAH==2,∴AH=3,∵OA=4,∴CD=OH=1,∴D(1,6),把D(1,6),A(4,0)代入y=ax2+bx中,则有,解得,∴抛物线M1的表达式为y=﹣2x2+8x.(2)如图1﹣1中,设P(2,m).∵∠CPA=90°,∴PC2+PA2=AC2,∴22+(m﹣6)2+22+m2=42+62,解得m=3±,∴P(2,3+),P′(2,3﹣).(3)①如图2中,易知直线AE的解析式为y=﹣x+4,x=1时,y=3,∴D′(1,3),平移后的抛物线的解析式为y=﹣2x2+8x﹣m,把点D′坐标代入可得3=﹣2+8﹣m,∴m=3.②由,消去y得到2x2﹣9x+4+m=0,当抛物线与直线AE有两个交点时,△>0,∴92﹣4×2×(4+m)>0,∴m <,③x=m时,﹣m+4=﹣2m2+8m﹣m,解得m=2+或2﹣(舍弃),综上所述,当2+≤m<时,抛物线M2与直线AE有两个交点.。
浙江省杭州市2018年中考数学试题一、选择题1.=()A.3B.-3C.D.2.数据1800000用科学计数法表示为()A.1.86B.1.8×106C.18×105D.18×1063.下列计算正确的是()A.B.C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数5.若线段AM ,AN 分别是△ABC 边上的高线和中线,则()A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A.B.C.D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.8.如图,已知点P 矩形ABCD 内一点(不含边界),设,,,,若,,则()A. B.C.D.9.四位同学在研究函数(b ,c 是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.如图,在△ABC 中,点D 在AB 边上,DE ∥BC ,与边AC 交于点E ,连结BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,()A.若,则B.若,则C.若,则D.若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省杭州市2018年中考数学真题试题一、选择题(本题有10小题,每小题3分,共30分)1. 3-=( )A. 3B. 3-C. 31D. 31- 2.数据1800000用科学计数法表示为( )A.68.1B.6108.1⨯C. 51018⨯D. 61018⨯3.下列计算正确的是( ) A. 222= B. 222±= C. 242= D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A. 61 B. 31C. 21 D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCEADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
2018年数学中考模拟试卷本试卷由选择题、填空题和解答题三大题组成.共23小题,满分120分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.(原创)-5的相反数是( )A .B .C .5D .-515152.(原创)下列运算正确的是 ()A .(-2x 2)3=-6x 6 B .(y +x )(-y +x )=y 2-x 2 C .4x +2y =6xy D .x 4÷x 2=x 23.(原创)下列各式中,是8a 2b 的同类项的是 ( )A .4x 2y B .―9ab 2 C .―a 2b D .5ab 4.(原创)某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是 ( )A .15,15 B .15,15.5 C .15,16 D .16,155.(原创)下列几何体中,有一个几何体的俯视图与主视图的形状不一样,这个几何体是().A.B .C .D .6.(根据余姚市中考模拟试卷第4题改编)已知二次函数(a <0)的图象经过点2y ax bx c =++A (-2,0)、O (0,0)、B (-5,y 1)、C (5,y 2)四点,则y 1与y 2的大小关系正确的是()年龄(单位:岁)1415161718人数26343A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定7.(根据丽水市中考模拟试卷第7题改编)已知⊙O 的直径AB 与弦∠C 的夹角为30︒,过C 点的切线PC 与AB 长线交于点P .PC=12,则⊙O 的半径为 ( )A .6 B .4C .10 D .3528.(2017上海市中考一模第23题)直线与直线在同一平面直角坐标系中的图象1y k x b =+2y k x c =+如图所示,则关于的不等式的解集为 ( )x 12k x b k x c +<+A .>1 B .<1 C .>-4 D .<-1x x x x 9.(原创)若△ABC ∽△DEF ,相似比为2:3,且△ABC 的面积为12,则△DEF 的面积为( ) A.16 B.24 C.18 D.2710.(张家港市中考模拟第10题)如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60︒,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP⊥AF 于P ,DQ⊥CE 于Q ,则DP :DQ 等于 ( )A .3:4BCD .二、填空题:本大题共6小题,每小题4分,共24分.把答案直接填在答题卡相应位置上.11.(原创)24的算术平方根是.12.(原创)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为_______.13.(原创)如图,菱形ABCD 的对角线相交于点O ,AC =6 cm ,BD =8 cm ,则高AE 为_______cm .14. (原创)如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=62°,则∠B 的度数为_______。
15.(原创)关于的一元二次方程有两个不相等的实数根,则的取值范围是.x 0122=-+x kx k 16.(原创)已知,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为。
三、解答题:本大题共7小题,共66分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明。
17.(6分)(原创)化简,再求值:22221121xx x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组⎪⎩⎪⎨⎧<-≤+4212321x x 的整数解。
18.(8分)(2017杭州市中考试卷第18题)在平面直角坐标系中,一次函数y=kx+b (k ,b 都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y 的取值范围;(2)已知点P (m ,n )在该函数的图象上,且m﹣n=4,求点P 的坐标.19.(8分)(奉贤区2016-2017学年调研测试试卷第23题)已知:如图6,菱形ABCD ,对角线AC 、BD 交于点O ,BE ⊥DC ,垂足为E ,交AC 于点F .求证:(1)△ABF ∽△BED ;(2)求证:.AC BDBE DE=20.(10分)(根据扬州市2017模拟试题第25题改编)如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE ⊥AC ,垂足为E .(1)证明:DE 为⊙O 的切线;(2)连接OE ,若BC =8,求△OEC 的面积.21.(10分)(浦东新区2016初三教学质量检测第23题)已知:如图,在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点B 、C 在第一象限,且四边形OABC是平行四边形,,,反比例函数的图像经过点C 以及边AB 的中点D .OC =sin AOC ∠=ky x=求:(1)求这个反比例函数的解析式;(2)四边形OABC 的面积.22.( 12分)(徐州市2017年第二次模拟考试第27题)如图1,菱形ABCD 中,∠A =60º.点P 从A 出发,以2cm/s 的速度,沿边AB 、BC 、CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边AD 匀速运动到D 终止,设点P 运动的时间为t 秒.△APQ 的面积S (cm 2)与t (s )之间函数关系的图像由图2中的曲线段OE 与线段EF 、FG 给出.(1)求点Q 运动的速度;(2)求图2中线段FG 的函数关系式;(3)问:是否存在这样的t ,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.23.(12分)(常州市2017中考第28题)如图,在平面直角坐标系中,直线与抛物线 交于A 、B 两点,点A 在x 轴121-=x y c bx x y ++-=241(图2)C(图1)上,点B的横坐标为-8.点P是直线AB上方的抛物线上的一动点(不与点A、B重合).(1)求该抛物线的函数关系式;(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使△PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;(3)过P作PD∥y轴交直线AB于点D,以PD为直径作⊙E,求⊙E在直线AB上截得的线段的最大长度.考点分析参 考 答 案一、选择题:本大题共10小题,每小题3分,共30分.12345678910C D C C C A B B D C二、填空题:本大题共6小题,每小题4分,共24 分.11.212. 1.5×108 13.(或4.8) 14. 28624515.且 16.(2,4)或(8,4).1k >-0k ≠三、解答题:本大题共10小题,共84分.17. 解:原式=,解不等式结果,x 为整数,…………………… (2分)2xx +1223≤≤-x 所以或或或 ……………………… (2分)1-=x 0=x 1=x 2=x 原式要有意义,所以2=x 代入原式= ……………………… (2分)1,0,1-≠x 4318.解:设解析式为:y=kx+b ,将(1,0),(0,﹣2)代入得:, ………………………… (2分)解得:,∴这个函数的解析式为:y=﹣2x+2;把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y 的取值范围是﹣4≤y<6.………………………………………… (2分)(2)∵点P (m ,n )在该函数的图象上,∴n=﹣2m+2, ………………………………………… (2分)∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P 的坐标为(2,﹣2)………………………………………… (2分)19. 证明:(1)∵四边形ABCD 是菱形,∴AC⊥BD,AB∥CD,∴△ABF∽△CEF,∵BE⊥DC,∴∠FEC=∠BED, ………………………………………… (2分)由互余的关系得:∠DBE=∠FCE,∴△BED∽△CEF,∴△ABF∽△BED; ………………………………………… (2分)(2)∵AB∥CD,∴=AF AC BF BE∴=………………………………………… (2分)AC BE AFBF ∵△ABF∽△BED,∴=BD DE AF BF∴=………………………………………… (2分)AV BE BDDE 20.21. 证明:连接OD.∵OB=OD,∴∠OBD=∠ODB.又∵∠A=∠B=30° ∴∠A=∠ODB,∴DO∥AC ………………………………………… (2分)∵DE⊥AC ∴OD⊥DE.∴DE 为⊙O 的切线. ………………………………………… (2分)(2)连接DC . ∵∠OBD=∠ODB=30°,∴∠DOC=60°.∴△ODC 为等边三角形.∴∠ODC=60°,∴∠CDE=30° ………………………………………… (2分)又∵BC=8,∴DC=4,∴CE=2. …………………………………………(2分)过点E 作EF⊥BC,交BC 的延长线于点F . ∵∠ECF=∠A+∠B=60°,∴EF=CE·sin60°=2×=323∴S△OEC = OC*EF=×4×=2………………………………………… (2分)12123321.(1)先证△BCF ≌△DCE ;…………………………………… (2分)再证四边形ABED 是平行四边;…………………………………… (2分)从而得AB =DE =BF .…………………………………… (2分)(2)延长AF 交BC 延长线于点M ,从而CM =CF ;又由AD ∥BC 可以得到……………………… (2分)1DG ADGE EH==从而DG =GE .……………………… (2分)22. (12分)(1)∵点Q 始终在AD 上作匀速运动,∴它运动的速度可设为a cm/s .当点P 在AB 上运动时,AP =2t ,过点P 作PH ⊥AD 于H ,则PH =AP ·sin60º=t ,3此时,S =·at ·t =a t 2, S 是关于t 的二次函数. ……………… (2分)123当点P 在BC 上运动时,P 到AD 的距离等于定长AB ,此时,△APQ 的面积S 与t 之间的函数关系是一次函数由图2可知∶t =3时,S = ,∴ = a ·9,∴a =1,即Q 点运动速度为1 cm /s . …………………………… (2分)(2)∴当点P 运动到B 点时,t =3,∴AB =6.当点P 在BC 上运动到C 时,点Q 恰好运动到D 点;当点P 由C 运动到D 时,点Q 始终在D 点,∴图2中的图像FG 对应的是点Q 在D 点、点P 在CD 上运动时S 与t 之间的函数关系,此时,PD =18-2t , 点P 到AD 的距离PH =PD ·sin60º=(9-t ), ………………………………… (2分)3此时S =×6×(9-t ),∴FG 的函数关系式为S =3 (9―t ),即S =―3t +27123333(6≤t <9). ………………………………………… (2分)(3)当点P 在AB 上运动时,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ ,此时,△APQ 的面积S =t 2,根据题意,得t 2=S 菱形ABCD =×6·6sin60º,解得t =(秒).16166……………………………… (2分)当点P 在BC 上运动时,PQ 将菱形ABCD 分成四边形ABPQ 和四边形PCDQ ,此时,有S 四边形ABPQ =S 菱形ABCD ,即 (2t ―6+t )×6× = ×6×6×,解得t =(秒)561256163∴存在t =和t =,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分. 6163…………………………………… (2分)23.(12分)(1)设抛物线的解析式为y=ax2+bx+c (a≠0),由已知得:C (0,-3),A (-1,0),∴a-b+c=09a+3b+c=0c=-3,解得a=1b=-2c=-3,∴抛物线的解析式为y=x2-2x-3,答:抛物线的解析式为y=x2-2x-3. ……………………………………… (1分)(2)过点P 作y 轴的平行线与AG 交于点F ,由y=x2-2x-3,令x=2,则y=-3,∴点G 为(2,-3), …………………………………… (1分)设直线AG 为y=kx+n (k≠0),∴-k+n=0 2k+n=-3,解得k=-1 n=-1,…………………………………… (2分)即直线AG为y=-x-1,S三角形APG设P(x,x2-2x-3),则F(x,-x-1),PF=-x2+x+2,∵S三角形APG=S三角形APF+S三角形GPF=12•(-x2+x+2)•(x+1)+12•(-x2+x+2)•(2-x)=-32x2+32x+3,∴当x=12时,△APG的面积最大,…………………………………… (2分)此时P点的坐标为(12,-154),S△APG的最大值为278,答:当点P运动到(12,-154)位置时,△APG的面积最大,此时P点的坐标是(12,-154),△APG的最大面积是278.(3)存在.∵MN∥x轴,且M、N在抛物线上,∴M、N关于直线x=1对称,设点M为(m,m2-2m-3)且m>1,∴MN=2(m-1),…………………………………… (1分)当∠QMN=90°,且MN=MQ时,△MNQ为等腰直角三角形,∴MQ⊥MN即MQ⊥x轴,∴2(m-1)=|m2-2m-3|,即2(m-1)=m2-2m-3或2(m-1)=-(m2-2m-3),解得m1=2+5,m2=2-5(舍)或m1=5,m2=-5(舍),∴点M为(2+5,2+25)或(5,2-25),∴点Q为(2+5,0)或(5,0),…………………………………… (2分)当∠QNM=90°,且MN=NQ时,△MNQ为等腰直角三角形,同理可求点Q为(-5,0)或(2-5,0),…………………… (1分)当∠NQM=90°,且MQ=NQ时,△MNQ为等腰直角三角形,过Q作QE⊥MN于点E,则QE=12MN=12×2(m-1)=|m2-2m-3|,∵方程有解∴由抛物线及等腰直角三角形的轴对称性,知点Q为(1,0),综上所述,满足存在满足条件的点Q,分别为(-5,0)或(5,0)或(2+5,0)或(2-5,0)或(1,0),…………………… (2分)答:存在,点Q的坐标分别为(-5,0)或(5,0)或(2+5,0)或(2-5,0)或(1,0).。