08_2007年高考数学试题知识汇编圆锥曲线
- 格式:doc
- 大小:4.75 MB
- 文档页数:51
2008年高考数学试题分类汇编圆锥曲线一. 选择题:1.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为BA.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (41,-1) B. (41,1)C. (1,2)D. (1,-2)3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22ca . 其中正确式子的序号是BA. ①③B. ②③C. ①④D. ②④4.(湖南卷8)若双曲线22221x y a b-=(a >0,b >0)上横坐标为32a 的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是CA .(0,1)B .1(0,]2 C.(0,2 D.[26.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) AB .3 CD .927.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( B ) A.B.C .(25),D.(28.(山东卷(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为A(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x9.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B ) ABCD.3AB-CD-10.(四川卷12)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK =,则AFK ∆的面积为( B )(A)4 (B)8 (C)16 (D)3211.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x=的焦点相同,离心率为12,则此椭圆的方程为B (A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y += 12.(浙江卷7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D(A )3 (B )5 (C )3 (D )513.(浙江卷10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是B(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线14.(重庆卷(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为C(A )22x a -224y a =1(B)222215x y a a-=(C)222214x y b b-=(D)222215x y b b-=二. 填空题:1.(海南卷14)过双曲线221916x y -=的右顶点为A ,右焦点为F 。
【2012年高考试题】一、选择题1.【2012高考真题浙江理8】如图,F1,F2分别是双曲线C:22221x ya b-=(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是B【答案】B2.【2012高考真题新课标理8】等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线xy162=的准线交于,A B两点,AB=;则C的实轴长为()()A ()B ()C 4 ()D 83.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C. 4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( )A 、、、4 D 、 【答案】B【解析】设抛物线方程为22y px =,则点(2,M ±Q 焦点,02p ⎛⎫⎪⎝⎭,点M 到该抛物线焦点的距离为3,∴ 22492p P ⎛⎫-+= ⎪⎝⎭, 解得2p =,所以OM ==.5.【2012高考真题山东理10】已知椭圆2222:1(0)x y C a b a b +=>>双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y +=6.【2012高考真题湖南理5】已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1 B.25x -220y =1 C.280x -220y =1 D.220x -280y =1【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴=∴C 的方程为220x -25y =1.7.【2012高考真题福建理8】已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于8.【2012高考真题安徽理9】过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为( )()A ()B ()C ()D 【答案】C【解析】设(0)AFx θθπ∠=<<及BF m =;则点A 到准线:1l x =-的距离为3,得:1323cos cos 3θθ=+⇔=又232cos()1cos 2m m m πθθ=+-⇔==+,AOB ∆的面积为113sin 1(3)22232S OF AB θ=⨯⨯⨯=⨯⨯+⨯=。
历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。
(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。
当时,求双曲线离心率4332≤≤λ的取值范围。
e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。
年高考数学试题知识分类大全圆锥曲线LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】2007年高考数学试题汇编圆锥曲线重庆文(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A )23(B )62(C )72(D )24(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
题(21)图(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明|FP|-|FP|cos2a 为定值,并求此定值。
(21)(本小题12分)(Ⅰ)解:设抛物线的标准方程为px y 22=,则82=p ,从而.4=p 因此焦点)0,2(p F 的坐标为(2,0). 又准线方程的一般式为2p x -=。
从而所求准线l 的方程为2-=x 。
答(21)图(Ⅱ)解法一:如图(21)图作AC ⊥l ,BD ⊥l ,垂足为C 、D ,则由抛物线的定义知 |FA |=|FC |,|FB |=|BD |.记A 、B 的横坐标分别为x x x z ,则 |FA |=|AC |=4cos ||22cos ||2+=++=+a FA p p a FA p x x 解得aFA cos 14||-=, 类似地有a FB FB cos ||4||-=,解得aFB cos 14||+=。
记直线m 与AB 的交点为E ,则aaa a FB FA FB FA FA AE FA FE 2sin cos 4cos 14cos 1421|)||(|212||||||||||||=⎪⎭⎫ ⎝⎛+--=-=+-=-= 所以aa FE FP 2sin 4cos ||||==。
2007-1018年高考全国卷1数列题解答题汇总2018年4.C.解:根据题意,可知所以椭圆 C.20.设抛物线,过点的直线(1轴垂直时,求直线(2解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,–2).所以直线BM的方程为y(2)当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.当l与x轴不垂直时,设l的方程为M(x1,y1),N(x2,y2),则x1>0,x2>0.ky2–2y–4k=0,可知y1+y2y1y2=–4.直线BM,BN的斜率之和为将,及y1+y2,y1y2的表达式代入①式分子,可得所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .点评:该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.2017年5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .12C .23D .3 2答案:D 12.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞答案:A20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.20.(12分)解:(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2xy'=.设M (x 3,y 3),由题设知312x=,解得32x =,于是M (2,1).设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24x y =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,22x =±从而12||AB x x -=.由题设知||2||AB MN =,即2(1)m =+,解得7m =. 所以直线AB 的方程为7y x =+.2016年5.答案:B 20.在直角坐标系xOy 中,直线)0(:≠=t t y l 交y 轴于点M ,交抛物线)0(2:2>=p px y C 于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.解析:(Ⅰ)由已知得,. ),0(t M ),2(2t pt P又为关于点的对称点,故,的方程为,代入整理得,解得,,因此. 所以为的中点,即. (Ⅱ)直线与除以外没有其它公共点.理由如下: 直线的方程为,即.代入得,解得,即直线与只有一个公共点,所以除以外直线与没有其它公共点.2015年5、已知椭圆E 的中心为坐标原点,离心率为,E 的右焦点与抛物线的焦点重合,是C 的准线与E 的两个交点,则(A ) (B ) (C ) (D ) 答案:B16.已知是双曲线的右焦点,P 是C 左支上一点, ,当周长最小时,该三角形的面积为 . 答案:20.已知过点且斜率为k 的直线l 与圆C :交于M ,N 两点. (I )求k 的取值范围;(II )若,其中O 为坐标原点,求. 解:(I )由题设,可知直线的方程为. 因为与C 交于两点,所以.N M P ),(2t p t N ON x t p y =px y 22=0222=-x t px 01=x p t x 222=)2,2(2t pt H N OH 2||||=ON OH MH C H MH x tp t y 2=-)(2t y p tx -=px y 22=04422=+-t ty y t y y 221==MH C H MH C 122:8C y x =,A B AB =36912F 22:18y C x -=(A APF ∆()1,0A ()()22231x y -+-=12OM ON ⋅=MN l 1y kx =+l 1解得所以k 的取值范围为. ……5分 (II )设.将代入方程,整理得.所以.. 由题设可得=12,解得k=1,所以的方程是y=x+1. 故圆心C 在上,所以.2014年4.已知双曲线的离心率为2,则 A. 2 B. C. D. 1 答案:D10.已知抛物线C :的焦点为F,A(x 0,y 0)是C 上一点,,则x 0=( ) A. 1 B. 2 C. 4 D. 8 答案:C 20已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.k 44(33-()1122,,(,)M x y N x y 1y kx =+22(2)(3)1x y -+-=22(1)4(1)70k x k x +-++=1212224(1)7,11k x x x x k k ++==++1212OM ON c x y y ⋅=+()()2121211kx xk x x =++++()24181k k k+=++()24181k k k+=++l l2MN =)0(13222>=-a y a x =a 2625x y =2x F A 045=)2,2(P C 0822=-+y y x P l C B A ,AB M O(1)求的轨迹方程;(2)当时,求的方程及的面积 解:(1)方法一:圆的方程可化为,所以,圆心为,半径为4, 设,则, 由题设知,故,即由于点在圆的内部,所以的轨迹方程是……………6分方法二:圆的方程可化为,所以,圆心为,半径为4, 设,设, 则 所以化简得,,即 所以的轨迹方程是(2)方法一: 由(1)可知的轨迹是以点为半径的圆由于,故在线段的垂直平分线上,又在圆上,从而因为的斜率为3,所以的斜率为, 所以的方程为 又,到的距离为,所以的面积为 M OM OP =l POM ∆C 22(4)16x y +-=(0,4)C (,)M x y (,4),(2,2)CM x y MP x y =-=--0CM MP ⋅=(2)(4)(2)0x x y y -+--=22(1)(3)2x y -+-=P C M 22(1)(3)2x y -+-=C 22(4)16x y +-=(0,4)C (,)M x y 24,2AB CM y y k k x x --==-24,2AB CM y y k k x x--==-2412AB CM y y k k x x--==--222680x y x y +--+=22(1)(3)2x y -+-=M 22(1)(3)2x y -+-=M (1,3)N ||||OP OM =O PM P N ON PM ⊥ON l 13-l 1833y x =-+||||OM OP ==O l ,||55PM =POM ∆165方法二:依题意,,因为 所以,M 也在上所以 两式相减,得,即,此方程也就是的方程 由(1)知,的轨迹方程是,设此方程的圆心为,则 所以 又所以 到的距离所以, 综上所述,的方程为,的面积为2013年4已知双曲线C :(a>0,b >0)的离心率为,则C 的渐近线方程为( ).A .y =B .y =C .y =D .y =±x 解:∵,即.∵c 2=a 2+b 2,∴.∴.∵双曲线的渐近线方程为,∴渐近线方程为.故选C.||OP =||||OM OP ==228x y +=222282680x y x y x y ⎧+=⎪⎨+--+=⎪⎩26160x y --+=1833y x =-+l M 22(1)(3)2x y -+-=N (1,3)N d =||NP ==||MP ==O l h =11625POM S ∆==l 1833y x =-+POM ∆1652222=1x y a b-214x ±13x ±12x±e =c a =2254c a =2214b a =12b a =by x a=±12y x =±8.O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=则△POF的面积为( ).A .2B ...4 解:利用|PF |=x P =∴y P =.∴S △POF =|OF |·|y P |=故选C. 21.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C. (1)求C 的方程;(2)l 是与圆P ,圆M都相切的一条直线,l 与曲线C 交于A ,B两点,当圆P 的半径最长时,求|AB |.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P(x ,y ),半径为R .(1)因为圆P与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则,可求得Q (-4,0),所以可设l :y =k (x +4). 由l 与圆M =1,解得k =当k =时,将,并整理得7x 2+8x -8=0,解得x 1,2=, 所以|AB ||x 2-x 1|=.当k =时,由图形的对称性可知|AB |=.综上,|AB |=|AB |=.2012年4.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角P x =±1222=143x y +1||||QP RQM r =44y x =+22=143x y +1874-187187为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )45答案:C 10等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8 答案:C 20.(本小题满分12分)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
四川理21.(本小题满分12分)设椭圆22221x y a b +=(0a b >>)的左、右焦点分别为12F F ,,离心率e =,右准线为l ,M N ,是l 上的两个动点,120FM F N =. (Ⅰ)若 1225F M F N ==,求a b ,的值;(Ⅱ)证明:当MN 取最小值时,12FM F N +与12F F 共线.21.解:由222a b c -=与2c e a ==,得222a b =. 10F ⎛⎫ ⎪⎪⎝⎭,,20F ⎫⎪⎪⎝⎭,,l 的方程为x =. 设12))M y N y ,,, 则113F M y ⎛⎫= ⎪⎪⎝⎭,,222F N y ⎛⎫= ⎪⎪⎝⎭,, 由120FM F N =得 212302y y a =-<. ①(Ⅰ)由1225F MF N === ②= ③ 由①、②、③三式,消去12y y ,,并求得24a =.故2a =,b ==. (Ⅱ)22222121212121212()22246MNy y y y y y y y y y y y a =-=+---=-=≥,当且仅当122y y a =-=或212y y =-=时,MN 取最小值. 此时,12121212322(22)(220)222F M F N a y a y a y y a F F ⎛⎫⎛⎫+=+=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,.故12FM F N +与12F F 共线. 广东文B 卷20.(本小题满分14分)设0b >,椭圆方程为222212x y b b +=,抛物线方程为28()x y b =-.如图6所示,过点(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .(1)求满足条件的椭圆方程和抛物线方程;(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).20.解:(1)由28()x y b =-得218y x b =+ 当2y b =+时,4x =±,G ∴点的坐标为(42)b +,14y x '=,4|1x y ='= 过点G 的切线方程为(2)4y b x -+=-,即2y x b =+-, 令0y =得2x b =-,1F ∴点的坐标为(20)b-,; 由椭圆方程得1F 点的坐标为(0)b ,, 2b b ∴-=,即1b =,因此所求的椭圆方程及抛物线方程分别为2212x y +=和28(1)x y =-. (2)过A 作x 轴的垂线与抛物线只有一个交点P , ∴以PAB ∠为直角的Rt ABP △只有一个, 同理以PBA ∠为直角的Rt ABP △只有一个;若以APB ∠为直角,设P 点的坐标为2118x x ⎛⎫+ ⎪⎝⎭,,则A B ,坐标分别为(由22212108AB AB x x ⎛⎫=-++= ⎪⎝⎭得421510644x x +-=, 关于2x 的一元二次方程有一解,x ∴有二解,即以APB ∠为直角的Rt ABP △有二个; 因此抛物线上共存在4个点使ABP △为直角三角形.全国卷2文科11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心图6率为( ) A .221+ B .231+ C . 21+ D .31+15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .15.2全国卷2文科 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+ 化简得2242560k k -+=, 解得23k =或38k =. ······················································································ 6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F,到AB的距离分别为1h==,2h==·······················································9分又AB==AEBF的面积为121()2S AB h h=+1525(14k=+==≤当21k=,即当12k=时,上式取等号.所以S的最大值为 ························ 12分解法二:由题设,1BO=,2AO=.设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ····································································································9分===当222x y =时,上式取等号.所以S的最大值为 ······································· 12分全国卷I 文科14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .14.12全国卷I 文科15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .15.12全国卷I 文科 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.解:(1)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =则离心率e =(2)过F 直线方程为()ay x c b=-- 与双曲线方程22221x y a b-=联立将2a b =,c 代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b =最后求得双曲线方程为:221369x y -=. 全国理II14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .14.2 全国理II15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .15.38全国理II 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 21.解(Ⅰ)设双曲线方程为22221(00)x y a b a b-=>>,,右焦点为(0)(0)F c c >,,则222c a b =+.不妨设10l bx ay -=:,20l bx ay +=:, 则b FA b ⨯==,OA OF a =.因为222AB OA OB +=,2OB AB OA =-, 所以222(2)AB OA AB OA +=-, 于是得4tan 3AB AOB OA∠==. 又BF 与FA 同向,故12AOF AOB ∠=∠, 所以22tan 41tan 3AOF AOF ∠=-∠.解得1tan 2AOF∠=,或tan 2AOF ∠=-(舍去).因此12ba =,2ab =,c ==.所以双曲线的离心率2ce a ==. (Ⅱ)由2a b =知,双曲线的方程可化为22244x y b -=.① 由1l 的斜率为12,c =知,直线AB 的方程为2()y x =-.② 将②代入①并化简,得2215840x b --=. 设AB 与双曲线的两交点的坐标分别为1122()()x y x y ,,,,则12x x +=,2128415b x x =.③AB 被双曲线所截得的线段长12l x x =-=将③代入④,并化简得43bl =,而由已知4l =,故36b a ==,. 所以双曲线的方程为221369x y -=. 全国卷2理科(+选修II )9.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(2全国卷2理科(+选修II )15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .15.3+全国卷2理科(+选修II ) 21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=, 故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+ 化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==,2h ==······················································· 9分又AB ==AEBF 的面积为121()2S AB h h =+ 1525(14k =+==≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分 江苏卷12.在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = ▲ . ? ?【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c =,解得2c e a ==.【答案】2山东理 22.(本小题满分14分)如图,设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,.(Ⅰ)求证:A M B ,,三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(22)p -,时,AB =(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.22.(Ⅰ)证明:由题意设221212120(2)22x x A x B x x x M x p p p ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,,,,,,.由22x py =得22x y p=,得x y p '=,所以1MA x k p =,2MB xk p=. 因此直线MA 的方程为102()x y p x x p+=-, 直线MB 的方程为202()x y p x x p+=-. 所以211102()2x x p x x p p+=-,①222202()2x xp x x p p+=-.② 由①、②得121202x x x x x +=+-, 因此1202x x x +=,即0122x x x =+.所以A M B ,,三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当02x =时,将其代入①、②并整理得:2211440x x p --=,2222440x x p --=,所以12x x ,是方程22440x x p --=的两根, 因此124x x +=,2124x x p =-,又222101221222ABx x x x x p p k x x p p-+===-,所以2AB k p=.由弦长公式得AB ==又AB = 所以1p =或2p =,因此所求抛物线方程为22x y =或24x y =.(Ⅲ)解:设33()D x y ,,由题意得1212()C x x y y ++,, 则CD 的中点坐标为12312322x x x y y y Q ++++⎛⎫⎪⎝⎭,, 设直线AB 的方程为011()x y y x x p-=-, 由点Q 在直线AB 上,并注意到点121222x x y y ++⎛⎫⎪⎝⎭,也在直线AB 上,代入得033x y x p=.若33()D x y ,在抛物线上,则2330322x py x x ==,因此30x =或302x x =.即(00)D ,或2022x D x p ⎛⎫ ⎪⎝⎭,.(1)当00x =时,则12020x x x +==,此时,点(02)M p -,适合题意.(2)当00x ≠,对于(00)D ,,此时2212022x x C x p ⎛⎫+ ⎪⎝⎭,,2212022CDx x pk x +=221204x x px +=, 又0AB x k p=,AB CD ⊥, 所以22220121220144AB CDx x x x x k k p px p ++===-, 即222124x x p +=-,矛盾.对于20022x D x p ⎛⎫ ⎪⎝⎭,,因为2212022x x C x p ⎛⎫+ ⎪⎝⎭,,此时直线CD 平行于y 轴,又00AB x k p=≠, 所以直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点(02)M p -,适合题意.山东文13.221412x y -= 山东文22.解:(Ⅰ)由题意得2ab ⎧=⎪⎨=又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k +=+=+=+++.设()M x y ,,由题意知(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线, 所以直线l 的方程为1y x k=-, 即x k y=-, 因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠, 所以2225420x y λ+=,故22245x y λ+=.又当0k =或不存在时,上式仍然成立.综上所述,M 的轨迹方程为222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k=+, 由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k+=+. 解法一:由于22214AMB S AB OM =△ 2222180(1)20(1)44554k k k k++=⨯⨯++ 2222400(1)(45)(54)k k k +=++ 22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△.综上所述,AMB △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++2224554920(1)20k k k +++==+, 又22112OA OMOAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=>△.当k不存在时,140429AMB S ==>△.综上所述,AMB △的面积的最小值为409.福建文12.双曲线22221x y a b-=(00)a b >>,的两个焦点为F 1,F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( ) A .(1,3)B .(]13,C .(3,+∞)D .[)3+∞,福建文 22.(本小题满分14分)如图,椭圆C :22221(0)x y a b a b+=>>的一个焦点为F (1,0),且过点(20),. (Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :4x =与x 轴交 于点N ,直线AF 与BN 交于点M .(ⅰ)求证:点M 恒在椭圆C 上;(ⅱ)求AMN △面积的最大值.22.本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力.满分14分. 解法一:(Ⅰ)由题设2a =,1c =,从而2223b a c =-=.所以椭圆C 的方程为22143x y +=. (Ⅱ)(ⅰ)由题意得(10)F ,,(40)N ,,设()A m n ,,则()(0)B m n n -≠,,22143m n +=.……① AF 与BN 的方程分别为:(1)(1)0n x m y ---=,(4)(4)0n x m y -+-=.设00()M x y ,,则有0000(1)(1)0(4)(4)0n x m y n x m y ---=⎧⎨-+-=⎩, ②,③由②,③得05825m x m -=-,0325ny m =-由于222222(58)3434(25)(25)x y m n m m -+=+-- 2222(58)34(25)(25)m n m m -=+-- 222(58)124(25)m n m -+=- 222(58)3694(25)m m m -+-=- 1=.所以点M 恒在椭圆C 上.(ⅱ)设AM 的方程为1x ty =+,代入22143x y +=得22(34)690t y ty ++-=.设11()A x y ,,22()M x y ,,则有:122634t y y t -+=+,122934y y t -=+212333t y y +-==. 令234(4)t λλ+=≥,则1231y y λ--===因为4λ≥,1104λ<≤,所以当114λ=,即4λ=,0t =时, 12y y -有最大值3,此时AM 过点F .AMN △的面积12121322AMN S FN y y y y =-=-△有最大值92. 解法二:(Ⅰ)同解法一.(Ⅱ)(ⅰ)由题意得(10)F ,,(40)N ,, 设()A m n ,,则()(0)B m n n -≠,,22143m n +=.……① AF 与BN 的方程分别为:(1)(1)0n x m y ---=,……②(4)(4)0n x m y -+-=.……③由②,③得:当52x ≠时,5825x m x -=-,325yn x =-.……④ 由④代入①,得221(0)43x y y +=≠. 当52x =时,由②,③得:3(1)023(4)0.2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩,解得00n y =⎧⎨=⎩,,与0n ≠矛盾.所以点M 的轨迹方程为221(0)43x y y +=≠,即点M 恒在椭圆C 上. (ⅱ)同解法一.福建理11.双曲线22221x y a b-=(00)a b >>,的两个焦点为F 1,F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( ) A .(1,3)B .(]13,C .(3,+∞)D .[)3+∞,福建理21.(本小题满分12分)如图,椭圆22221(0)x y a b a b+=>>的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A ,B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.21想,考查运算能力和综合解题能力.满分12分. 解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以OF =, 即123b,解得b 2214a b =+=,因此,椭圆方程为22143x y +=.(Ⅱ)设1122()()A x y B x y ,,,.(ⅰ)当直线 AB 与x 轴重合时,22222224(1)OA OB a AB a a +==>,,因此,恒有222OA OB AB +<. (ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:1x my =+,代入22221x y a b+=,整理得22222222()20a b m y b my b a b +++-=,所以222212122222222b m b a b y y y y a b m a b m-+=-=++,. 因为恒有222OA OB AB +<,所以∠AOB 恒为钝角. 即11221212()()0OA OB x y x y x x y y ==+<,,恒成立.2121212121212(1)(1)(1)()1x x y y my my y y m y y m y y +=+++=++++222222222222(1)()21m b a b b m a b m a b m +-=-+++22222222220m a b b a b a a b m -+-+=<+.又a 2+b 2m 2>0,所以22222220m a b b a b a -+-+<对m ∈R 恒成立, 即2222222a b m a a b b >-+对m ∈R 恒成立.当m ∈R 时,222a b m 最小值为0,所以22220a a b b -+<.2222a a b b <-,2224(1)a a b b <-=,因为a >0,b >0,所以a <b 2,即210a a -->,解得12a >或12a <(舍去),即12a +>,综合(i )(ii ),a 的取值范围为12⎛⎫++ ⎪ ⎪⎝⎭∞.解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时,x =1代入22222221(1)1A y b a y a b a-+==,. 因为恒有|OA |2+|OB |2<|AB |2,222(1)4A A y y+<,21Ay >,即21a a->1,解得a >a <(舍去),即a >. (ii )当直线l 不垂直于x 轴时,设11()A x y ,,22()B x y ,.设直线AB 的方程为y =k (x -1)代入22221x y a b+=,得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2-a 2 b 2=0,故22222212122222222a k a k a b x x x x b a k b a k -+==++,因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 222222222222222222222222222()(1)a k a b a k a a b b k a b k k k b a k b a k b a k--+-=+-+=+++. 由题意得(a 2-a 2 b 2+b 2)k 2-a 2 b 2<0对k ∈R 恒成立.①当a 2-a 2 b 2+b 2>0时,不合题意;②当a 2-a 2 b 2+b 2=0时,a =12+; ③当a 2-a 2 b 2+b 2<0时,a 2-a 2(a 2-1)+ (a 2-1)<0,a 4-3a 2 +1>0,解得a 2>a 2>,a >,因此a .综合(i )(ii ),a 的取值范围为⎫+⎪⎪⎝⎭∞.辽宁文6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,辽宁文11.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1 B .2 C .3 D .4辽宁文 21.(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?21.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0(0为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214y x +=. ······································································· 4分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,. ····························································· 6分 OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++,于是222121222223324114444k k k x x y y k k k k -++=---+=++++. 所以12k =±时,12120x x y y +=,故OA OB ⊥. ················································ 8分 当12k =±时,12417x x +=,121217x x =-.(AB x ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=, 所以465AB =. ····················································································· 12分 辽宁理6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,辽宁理10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) A.2B .3CD .92辽宁理 20.(本小题满分12分)在直角坐标系xOy 中,点P到两点(0,,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点. (Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |.20.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214y x +=. ······································································· 3分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,. ····························································· 5分 若OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++,于是22121222233210444k k x x y y k k k +=---+=+++, 化简得2410k -+=,所以12k =±. ································································· 8分 (Ⅲ)2222221122()OA OB x y x y -=+-+22221212()4(11)x x x x =-+--+12123()()x x x x =--+ 1226()4k x x k -=+.因为A 在第一象限,故10x >.由12234x x k =-+知20x <,从而120x x ->.又0k >, 故220OA OB ->,即在题设条件下,恒有OA OB >. ································································ 12分安徽文14.已知双曲线2212x y n n--=1n = .14.4安徽文 22.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,其相应于焦点(20)F ,的准线方程为4x =. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点1(20)F -,倾斜角为θ的直线交椭圆C 于A B ,两点.求证:22cos AB =-θ;(Ⅲ)过点1(20)F -,作两条互相垂直的直线分别交椭圆C 于点A B ,和D E ,,求AB DE +的最小值.22.本题主要考查直线的方程、椭圆的方程和性质、直线与椭圆的位置关系等知识.考查数形结合的数学思想以及运算能力和综合解题能力.本小题满分14分. 解:(Ⅰ)由题意得:222224c ac a b c =⎧⎪⎪=⎨⎪⎪=+⎩,,.∴ 2284a b ⎧=⎪⎨=⎪⎩,.∴椭圆C 的方程为22184x y +=. (Ⅱ)方法一:由(I )知,1(20)F -,是椭圆C的左焦点,离心率2e =, 设l 为椭圆的左准线,则l :4x =-.作1AA l ⊥于1A ,1BB l ⊥于1B ,l 与x 轴交于点H (如图). 点A 在椭圆上,11||||2AP AA ∴=11|||cos )2F H AF θ=+1||cos AF θ=.1||AF ∴=同理1||BF =.第(22)题图11||||||AB AF BF∴=+=+=方法二:当π2θ≠时,记tankθ=,则(2)AB y k x=+:,将其代入方程2228x y+=.得2222(12)88(1)0k x k x k+++-=.设1122()()A x yB x y,,,,则12x x,是此二次方程的两个根.2122812kx xk∴+=-+,21228(1)12kx xk-=+.||AB===22)12kk+==+.①22tankθ=,代入①式得2||2cosABθ=-.②当π2θ=时,||AB=2||2cosABθ∴=-.(Ⅲ)设直线AB的倾斜角为θ,由于DE AB⊥,由(Ⅱ)可得,||||AB DE==22222||||12cos2sin2sin cos2sin24AB DEθθθθθ+=+==--++.当π4θ=或3π4θ=时,||||AB DE +取得最小值3.安徽理22. (本小题满分13分)设椭圆22221(0)x y C a b a b+=>>:过点M,且左焦点为1(F . (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(41)P ,的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足AP QB AQ PB =.证明:点Q 总在某定直线上.22.本题主要考查直线、椭圆的方程及几何性质、线段的定比分点公式等基础知识、基本方法和分析问题、解决问题的能力.本小题满分13分. 解:(Ⅰ)由题意:2222222211c a b c a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,,.解得2242a b ==,. 所求椭圆方程为22142x y +=. (Ⅱ)方法一:设点Q A B ,,的坐标分别为1122()()()x y x y x y ,,,,,,由题设知AP PB AQ QB ,,,均不为零,记AP AQ PBQBλ==.则0λ>且1λ≠.又A P B Q ,,,四点共线,从而AP PB AQ QB λλ=-=,. 于是12124111x x y y λλλλ--==--,.121211x x y y x y λλλλ++==-+,.从而22212241x x x λλ-=-, ………………① 2221221y y y λλ-=-.…………………② 又点A B ,在椭圆C 上,即221124x y +=,………………③222224x y +=,………………④①2+⨯②并结合③,④得424x y +=.即点()Q x y ,总在定直线220x y +-=上. 方法二:设点()Q x y ,,11()A x y ,,22()B x y ,,由题设, PA PB AQ QB ,,,均不为零 且PA PB AQQB=,又P A Q B ,,,四点共线,可设PA AQ PB BQ λλ=-=,(01λ≠±,).于是 114111x yx y λλλλ--==--,, ① 224111x y x y λλλλ++==++,. ②由于11()A x y ,22()B x y ,在椭圆C 上,将①、②分别代入C 的方程2224x y +=,整理得222(24)4(22)140x y x y λλ+--+-+=. ③ 222(24)4(22)140x y x y λλ+-++-+=. ④④-③,得8(22)0x y λ+-=.0λ≠,220x y ∴+-=.即点()Q x y ,总在定直线220x y +-=上.湖北文10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+;②1122a c a c -=-;③1212c a a c >;④11c c <22c a . 其中正确式子的序号是( )A .①③B .②③C .①④D .②④湖北文20.(本小题满分13分)已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点(3P 在双曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF △的面积为l 的方程.20.本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几何的基础知识,考查待定系数法、不等式的解法以及综合运用数学知识进行推理运算的能力. (满分13分)(Ⅰ)解法1:依题意,由224a b +=,得双曲线方程为222221(04)4x y a a a-=<<-.将点(3代入上式,得229714a a-=-. 解得218a =(舍去)或22a =,故所求双曲线方程为22122x y -=. 解法2:依题意得,双曲线的半焦距2c =.122a PF PF =-== 22a ∴=,2222b c a =-=.∴双曲线C 的方程为22122x y -=. (Ⅱ)解法1:依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理, 得22(1)460k x kx ---=. ①直线l 与双曲线C 相交于不同的两点E F ,,222110(4)46(1)0k k k k k ≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,(1)(11)(13)k ∴∈--,,. ②设1122()()E x y F x y ,,,,则由①式得12241k x x k +=-,12261x x k =--,于是EF ==22212122223()411k x x x x k k-=+-=+-. 而原点O 到直线l 的距离d =2222211223122111OEFk S d EF kk kk -∴==+=--+△. 若OEFS =△,即422201k k k=⇔--=-,解得k = 满足②.故满足条件的直线l 有两条,其方程分别为2y =+和2y =+ 解法2:依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理, 得22(1)460k x kx ---=. ①。
2007年高考数学试题汇编圆锥曲线重庆文(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A )23(B )62(C )72(D )24(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 如题(21)图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明|FP|-|FP|cos2a 为定值,并求此定值。
重庆理(16)过双曲线422=-y x 的右焦点F 作倾斜角为0105的直线,交双曲线于P 、Q 两点,则|FP||FQ|的值为__________.(22) (本小题满分12分)如图,中心在原点O 的椭圆的右焦点为F (3,0),右准线l 的方程为x = 12。
(1)求椭圆的方程;(2)在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明||1||1||1321FP FP FP ++为定值,并求此定值。
浙江文(10)已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且PF 1⊥P F 2,|P F 1|⋅|P F 2 |=4ab ,则双曲线的离心率是23XOFY2P 1P3Pl(21)(本题15分)如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S .(I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程. 浙江理(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =g ,则双曲线的离心率是()B.C.2D.3天津文(7)设双曲线22221(00)x y a b a b-=>>,24y x =的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= (22)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222xy t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.天津理22.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O到直线AF 的距离为1OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程. 四川文(5)如果双曲线2242x y -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362(C)62(D)32(10)已知抛物线y=x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32 D.42解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220xx +-=,由弦长公式可求出AB ==线的位置关系.自本题起运算量增大.(21)(本小题满分12分)求F 1、F 2分别是椭圆2214x y +=的左、右焦点. (Ⅰ)若r 是第一象限内该数轴上的一点,221254PF PF +=-u u u r u u u u r ,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围. 四川理20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.18、已知双曲线22145x y -=,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为_____ 21、已知半椭圆()222210x y x a b +=≥与半椭圆()222210y x x b c +=≤组成的曲线称为“果圆”,其中222,0,0a b c a b c =+>>>,012,,F F F 是对应的焦点。
(2008-2020)高考数学分类汇编全国1卷(理)-圆锥曲线一、选择填空题1(2008).已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .2(2008).在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .3(2008)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D4(2009)(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。
若3FA FB =,则AF =5(2010)(9)已知1F 、2F 为双曲线22:1C χγ-=的左、右焦点,点在P 在C 上,12F PF ∠=60°,则P 到χ轴的距离为(A (B (C (D6(2010)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =,则C 的离心率为 。
7(2011)(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴。
过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。
8(2012)(4)设12,F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上的一点,21F PF ∆是底角为30的等腰三角形,则 E 的离心率为(A) 12 (B) 23 (C) 34 (D) 459(2012)(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于,A B 两点, ||AB =,则C 的实轴长为(A (B )(C )4 (D )810(2013)10.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点。
2007年高考数学试题汇编圆锥曲线重庆文(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A )23(B )62(C )72(D )24(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
题(21)图 (Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明|FP|-|FP|cos2a 为定值,并求此定值。
(21)(本小题12分)(Ⅰ)解:设抛物线的标准方程为px y 22=,则82=p ,从而.4=p 因此焦点)0,2(pF 的坐标为(2,0).又准线方程的一般式为2p x -=。
从而所求准线l 的方程为2-=x 。
答(21)图(Ⅱ)解法一:如图(21)图作AC ⊥l ,BD ⊥l ,垂足为C 、D ,则由抛物线的定义知 |F A |=|FC |,|FB |=|BD |.记A 、B 的横坐标分别为x x x z ,则 |F A |=|AC |=4cos ||22cos ||2+=++=+a FA p p a FA p x x 解得aFA cos 14||-=, 类似地有a FB FB cos ||4||-=,解得aFB cos 14||+=。
记直线m 与AB 的交点为E ,则aaa a FB FA FB FA FA AE FA FE 2sin cos 4cos 14cos 1421|)||(|212||||||||||||=⎪⎭⎫ ⎝⎛+--=-=+-=-=所以a a FE FP 2sin 4cos ||||==。
故8sin sin 2·4)2cos 1(sin 42cos ||||222==-=-aa a aa FP FP 。
解法二:设),(A A y x A ,),(B B y x B ,直线AB 的斜率为a k tan =,则直线方程为)2(-=x k y 。
2007年高考数学试题汇编圆锥曲线重庆文(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A )23(B )62(C )72(D )24(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
题(21)图 (Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明|FP|-|FP|cos2a 为定值,并求此定值。
(21)(本小题12分)(Ⅰ)解:设抛物线的标准方程为px y 22=,则82=p ,从而.4=p 因此焦点)0,2(pF 的坐标为(2,0).又准线方程的一般式为2p x -=。
从而所求准线l 的方程为2-=x 。
答(21)图(Ⅱ)解法一:如图(21)图作AC ⊥l ,BD ⊥l ,垂足为C 、D ,则由抛物线的定义知 |F A |=|FC |,|FB |=|BD |.记A 、B 的横坐标分别为x x x z ,则 |F A |=|AC |=4cos ||22cos ||2+=++=+a FA p p a FA p x x 解得aFA cos 14||-=, 类似地有a FB FB cos ||4||-=,解得aFB cos 14||+=。
记直线m 与AB 的交点为E ,则aaa a FB FA FB FA FA AE FA FE 2sin cos 4cos 14cos 1421|)||(|212||||||||||||=⎪⎭⎫ ⎝⎛+--=-=+-=-=所以a a FE FP 2sin 4cos ||||==。
故8sin sin 2·4)2cos 1(sin 42cos ||||222==-=-aa a aa FP FP 。
解法二:设),(A A y x A ,),(B B y x B ,直线AB 的斜率为a k tan =,则直线方程为)2(-=x k y 。
将此式代入x y 82=,得04)2(42222=++=k x k x k ,故22)2(k k k x x B A +=+。
记直线m 与AB 的交点为),(E E y x E ,则 22)2(22kk x x x B A E +=+=, kx k y E E 4)2(=-=,故直线m 的方程为⎪⎪⎭⎫⎝⎛+--=-224214k k x k k y . 令y =0,得P 的横坐标44222++-kk x P 故akk x FP P 222sin 4)1(42||=+=-=。
从而8sin sin 2·4)2cos 1(sin 42cos ||||222==-=-aa a aa FP FP 为定值。
重庆理(16)过双曲线422=-y x 的右焦点F 作倾斜角为0105的直线,交双曲线于PQ 两点,则|FP||FQ|的值为__________.(22) (本小题满分12分)如图,中心在原点O 的椭圆的右焦点为F (3,0),右准线l 的方程为:x = 12。
(1)求椭圆的方程;(2)在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明||1||1||1321FP FP FP ++为定值,并求此定值。
浙江文(10)已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且P F 1⊥P F 2,|P F 1|⋅|P F 2 |=4ab ,则双曲线的离心率是(B)(C)2 (D)3(21)(本题15分)如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S .(I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程.(21)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(I)解:设点A 的坐标为(1(,)x b ,点B 的坐标为2(,)x b ,由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=当且仅当2b =.S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB12|2x x -== ②又因为O 到AB的距离21||Sd AB === 所以221b k =+ ③ ③代入②并整理,得424410k k -+=解得,2213,22k b ==,代入①式检验,△>0 故直线AB 的方程是y x =+y x =-或y x =+y x =.浙江理(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是( )C.2D.3天津文(7)设双曲线22221(00)x y a b a b-=>>,且它的一条准线与抛物线24y x=的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= (22)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.(22)本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中 0y >,由于点A 在椭圆上,有22221c y a b +=,222221a b y a b-+=,解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,,直线2AF 的方程为2()2b y x c ac =+,整理得 2220b x acy b c -+=.由题设,原点O 到直线1AF 的距离为113OF ,即23c =将222c a b =-代入原式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,,过点O 作1OB AF ⊥,垂足为H ,易知112F BC F F A △∽△211BO F A OF F A=由椭圆定义得122AF AF a +=,又113BO OF =,所以 2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即a =. (Ⅱ)解法一:圆222x y t +=上的任意点00()M x y ,处的切线方程为200x x y y t +=.当(0)t b ∈,时,圆222x y t +=上的任意点都在椭圆内,故此圆在点A 处的切线必交椭圆于两个不同的点1Q 和2Q ,因此点111()Q x y ,,222()Q x y ,的坐标是方程组20022222x x y y t x y b ⎧+=⎪⎨+=⎪⎩ ① ②的解.当00y ≠时,由①式得200t x xy y -=代入②式,得22220022t x x x b y ⎛⎫-+= ⎪⎝⎭,即22224220000(2)4220x y x t x x t b y +-+-=,于是2012220042t x x x x y +=+,422122200222t b y x x x y -=+ 2201121201t x x t x x y y y y --=422012012201()t x t x x x x x y ⎡⎤=-++⎣⎦ 242242200002222200000422122t x t b y t x t x y x y x y ⎛⎫-=-+ ⎪++⎝⎭422220022t b x x y -=+. 若12OQ OQ ⊥,则42242242220000121222222200000022232()0222t b y t b x t b x y x x y y x y x y x y ---++=+==+++. 所以,42220032()0t b x y -+=.由22200x y t +=,得422320t b t -=.在区间(0)b ,内此方程的解为t =. 当00y =时,必有00x ≠,同理求得在区间(0)b ,内的解为t =. 另一方面,当3t b =时,可推出12120x x y y +=,从而12OQ OQ ⊥. 综上所述,(0)3t b b =∈,使得所述命题成立.天津理 22.(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即222221a b y a b-+=. 解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,.直线1AF 的方程为2()2b y x c ac=+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF,即23c =将222c a b =-代入上式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,.过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故211BO F A OF F A=.由椭圆定义得122AF AF a +=,又113BO OF =, 所以2212132F AF A F A a F A==-,解得22aF A =,而22b F A a =,得22b a a =,即a =. (Ⅱ)解法一:设点D 的坐标为00()x y ,.当00y ≠时,由12OD Q Q ⊥知,直线12Q Q 的斜率为0x y -,所以直线12Q Q 的方程为0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,200x m y y =+.点111222()()Q x y Q x y ,,,的坐标满足方程组22222y kx m x y b =+⎧⎨+=⎩,.将①式代入②式,得2222()2x kx m b ++=, 整理得2222(12)4220k x kmx m b +++-=,于是122412kmx x k+=-+,21222212m b x x k -=+. 由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++2222222222242121212m b km m b k k km m k k k ---=++=+++··.由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得22222322012m b b k k --=+, 22232(1)m b k =+.将200000x x k m y y y =-=+,代入上式,整理得2220023x y b +=.当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组022222x x x y b =⎧⎨+=⎩,.所以120x x x ==,12y =,.由12OQ OQ ⊥知12120x x y y +=,即2220202b x x --=, 解得22023x b =. 这时,点D 的坐标仍满足2220023x y b +=. 综上,点D 的轨迹方程为 22223x y b +=.解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD Q Q ⊥,垂足为D ,可知直线12Q Q 的方程为220000x x y y x y +=+.记2200m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组0022222x x y y m x y b +=⎧⎪⎨+=⎪⎩, ①. ②由①式得00y y m x x =-. ③由②式得22222200022y x y y y b +=. ④ 将③式代入④式得222220002()2y x m x x y b +-=. 整理得2222220000(2)4220x y x mx x m b y +-+-=,于是222122200222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥由②式得22222200022x x x y x b +=. ⑦ 将⑥式代入⑦式得22222000()22m y y x y x b -+=, 整理得2222220000(2)220x y y my y m b x +-+-=,于是22212220022m b x y y x y -=+. ⑧由12OQ OQ ⊥知12120x x y y +=.将⑤式和⑧式代入得2222220022220000222022m b y m b x x y x y --+=++, 22220032()0m b x y -+=.将2200m x y =+代入上式,得2220023x y b +=. 所以,点D 的轨迹方程为22223x y b +=.四川文(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A)364 (B)362 (C)62 (D)32 (10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42 解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB ==系.自本题起运算量增大.(21)(本小题满分12分)求F 1、F 2分别是椭圆2214x y +=的左、右焦点. (Ⅰ)若r 是第一象限内该数轴上的一点,221254PF PF +=-,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围.解析:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解决问题及推理计算能力.(Ⅰ)易知2a =,1b =,c =∴1(F,2F .设(,)P x y (0,0)x y >>.则22125(,,)34PF PF x y x y x y ⋅=--=+-=-,又2214x y +=,联立22227414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2211342x x y y =⎧⎧=⎪⎪⇒⎨⎨==⎪⎪⎩⎩,P . (Ⅱ)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设11(,)A x y ,22(,)B x y .联立22222214(2)4(14)1612042x y x kx k x kx y kx ⎧+=⎪⇒++=⇒+++=⎨⎪=+⎩∴1221214x x k =+,1221614kx x k+=-+ 由22(16)4(14)120k k ∆=-⋅+⋅>22163(14)0k k -+>,2430k ->,得234k >.① 又AOB ∠为锐角cos 00AOB OA OB ⇔∠>⇔⋅>, ∴12120OA OB x x y y ⋅=+>又212121212(2)(2)2()4y y kx kx k x x k x x =++=+++ ∴1212x x y y +21212(1)2()4k x x k x x =++++2221216(1)2()41414kk k k k=+⋅+⋅-+++ 22212(1)21641414k k kk k +⋅=-+++ 224(4)014k k -=>+ ∴2144k -<<.②综①②可知2344k <<,∴k的取值范围是3(2,(,2)-. 四川理20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.(20)本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力。