华师版八年级数学检测题
- 格式:doc
- 大小:126.50 KB
- 文档页数:2
华师版初二下数学卷子及答案一、单选题1.分式223x x +-有意义的条件是()A .2x ≠-B .32x ≠C .3x ≠D .322x -<<2.已知23ab a b =+,65bc b c =+,34ac a c =+,则111a b c ++的值等于()A .116B .113C .115D .6113.已知点1(1,)A y -、2(1,)B y 、3(2,)C y 在反比例函数2y x=-的图象上,则1y 、2y 、3y 的大小关系是()A .132y y y >>B .123y y y >>C .123y y y <<D .213y y y <<4.如图,将矩形ABCD 沿对角线AC 折叠,点D 落在点E 处,AE 与边BC 的交点为M .已知:AB=1,BC=2,则BM 的长等于()A .23B .34C .45D .565.已知在平行四边形ABCD 中,AD AB >,60°ABC ∠=,AB=2.以B 为圆心,以BA 长为半径画弧交BC 于E ,过点E 作EF //AB 交AD 与F .则线段BF 的长等于()AB .C .3D .6.如图,函数3y kx m =-的图象经过点()4,0-,则关于x 的不等式(1)3k x m +>的解集是()A .4x >-B .4x <-C .5x >-D .5x <-7.如图所示,正方形OABC 的对角线OB 在x 轴上,点A 落在反比例函数ky x=第一象限内的图象上如果正方形OABC 的面积为8,则k 的值为()A .2B .4C .8D .168.已知关于x 的方程82044x mx x --=--有增根,则m 的值是()A .4B .4-C .2D .2-9.函数y kx k =+与ky x=(0k ≠)在同一平面直角坐标系的图象可能是()A .B .C .D .10.如图,平行四边形ABCD 中,2AB BC =.AE 平分BAD ∠,交CD 于点E ,点F 为AB 边的中点,AE 与DF 交于点M ,BD 与EP 交于点N ,连接MN .则下列结论:①四边形ADEF是菱形;②与BFN ∆全等的三角形有5个;③7FMN BCEN S S ∆=四边形;④当FM FN =时,60BAD ∠=︒.其中正确的是()A .①③B .①④C .②③D .②④二、填空题11.平行四边形ABCD 的周长为32,且AB=7,则BC=___________.12.用细铁丝折成一个面积为4平方米的矩形.设折成的矩形其中一条长为x 米,矩形的周长为y 米,则y 关于x 的函数关系式是____________.13.如图,点A 是一次函数21y x =+图象上的动点,作AC ⊥x 轴与C ,交一次函数4y x =-+的图象于B .设点A 的横坐标为m ,当m =____________时,AB=1.14.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若120AOD ∠=︒,12BD =,则DC 的长为________.15.要使关于x 的分式方程2144x x ax x++=--解为正数,且使关于x 的一次函y =(a+5)x+3不经过第四象限,则a 的取值范围是________.16.如图,在矩形ABCD 中,AB =6,BC =8,点E 在边BC 上(E 不与B ,C 重合),连接AE ,把 ABE 沿直线AE 折叠,点B 落在点B '处,当CEB ' 为直角三角形时,则CEB ' 的周长为________.三、解答题17.化简求值:22513()224x x x x x x --÷-+--,再从-2,-1,0,1,2中选取一个合适的数代入求值.18.某商店销售A 、B 两种型号的电脑,销售一台B 型电脑的利润比销售一台A 型电脑的利润多50元.已知销售数量相同的A 、B 两种型号电脑获利分别1000元和1500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑n 台,这100台电脑的销售总利润为w 元.①直接写出:w 与n 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售利润最大?最大利润是多少?19.如图,四边形OABC 是平行四边形,反比例函数(0)k y x x=>的图象经过点A ,已知B(-3,2),C(-5,0).(1)求k 的值;(2)求直线AC 的解析式;(3)点P(,m n )在直线AC 和反比例函数图象的下方、x 轴上方的区域内,且m 、n 是整数,直接写出符合条件的点P 的个数.20.在 ABC 中,D 、E 分别为边AB 、AC 的中点,连接DE ,并延长DE 到F ,使EF=DE ,连接AF 、CF 、CD .(1)求证:DE //BC ,12DE BC =;(2)用“矩形、菱形、正方形”填空:①当BC ⊥AC 时,四边形ADCF 是;②当BC=AC 时,四边形ADCF 是;③当BC=AC ,且BC ⊥AC 时,四边形ADCF 是.21.如图,在平行四边形ABCD 中,M ,N 是对角线BD 上的点,且BM DN =,DE 平分ADB∠交AB 于点E ,BF 平分DBC ∠交CD 于点F .(1)求证:四边形EMFN 是平行四边形;(2)当四边形EMFN 是菱形时,求证:四边形BEDF 是菱形.22.如图,在平面直角坐标系中,直线1y mx n =+与双曲线2ky x=交于点()3,2M --和点N .正方形ABCD 的边长为2,且顶点A 和顶点D 在x 轴上,顶点B 在直线1y mx n =+上,顶点C 在双曲线2ky x=上,过点N 向x 轴作垂线,垂足E 是AD 的中点.(1)求直线与双曲线的解析式;(2)求点N 的坐标;(3)在11a x a -≤≤+范围内,总有不等式12y y >,请直接写出此时a 的取值范围.23.如图,在▱ABCD 中,延长AB 到点E ,使BE =AB ,DE 交BC 于点O ,连接EC .(1)求证:四边形BECD 是平行四边形;(2)若∠A =40°,当∠BOD 等于多少度时四边形BECD 是矩形,并说明理由.24.如图,一次函数1y mx =+的图象与反比例函数ky x=的图象相交于A 、B 两点,点C 在x 轴负半轴上,点()1,2D --,连接OA 、OD 、DC 、AC ,四边形OACD 为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数的值小于2时,x 的取值范围;(3)设点P 是直线AB 上一动点,且12OAP OACDS S =△菱形,求点P 的坐标.25.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加比赛.两校派出选手的比赛成绩如图所示.根据图中信息,整理分析数据:平均数/分中位数/分众数/分A校858585B校85a b请你结合图表中所给信息,解答下列问题:(1)a=;b=;(2)填空:(填“A校”或“B校”)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是;(3)计算两校比赛成绩的方差,并判断哪个学校派出的代表队选手成绩较为稳定.参考答案1.B【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】解:若分式223xx+-有意义,则230x -≠,解得32x ≠,故选:B .【点睛】本题考查了分式有意义的条件,解题关键是明确分式有意义的条件是分母不为0.2.A 【分析】根据23ab a b =+,65bc b c =+,34ac a c =+,即可得到32a b ab +=,56b c bc +=,43a c ac +=,再根据1111111111122a b a c b c a b c a b c a b c ab ac bc +++⎛⎫⎛⎫++=++++=++ ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】解:∵23ab a b =+,65bc b c =+,34ac a c =+,∴32a b ab +=,56b c bc +=,43a c ac +=,∴111111111111354112222636a b a c b c a b c a b c a b c ab ac bc +++⎛⎫⎛⎫⎛⎫++=+++++=++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选A .【点睛】本题主要考查了分式的求值,解题的关键在于能够准确观察出1111111111122a b a c b c a b c a b c a b c ab ac bc +++⎛⎫⎛⎫++=++++=++ ⎪ ⎪⎝⎭⎝⎭.3.A 【解析】【分析】把点A 、B 、C 的坐标分别代入函数解析式,求得y 1、y 2、y 3的值,然后比较它们的大小.【详解】解:∵反比例函数2y x=-图象上三个点的坐标分别是A (﹣1,y 1)、B (1,y 2)、C (2,y 3),∴y 1=﹣21-=2,y 2=﹣2,y 3=﹣1.∵﹣2<﹣1<2,∴y 2<y 3<y 1故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征.解题关键是明确函数图象上点坐标都满足该函数解析式,代入准确求出函数值.4.B【解析】【分析】根据折叠与平行可得AM=CM,设BM=x,再利用勾股定理列出方程求得BM的长.【详解】解:由折叠的性质可知,∠DAC=∠MAC,∵四边形ABCD是矩形∴AD∥CB.∴∠DAC=∠ACB,∴∠ACB=∠MAC,∴AM=CM.设BM=x,则AM=CM=2﹣x.∴12+x2=(2﹣x)2,解得,x=3 4,∴BM=3 4,故选:B.【点睛】此题考查了翻折变换,矩形的性质,等腰三角形的判定,勾股定理的综合运用,解题关键是根据折叠得出等腰三角形,利用勾股定理列方程.5.B【解析】【分析】证明四边形ABEF是菱形,解直角三角形求出OB即可解决问题.【详解】解:根据作图的过程可知:BF平分∠ABC,∴∠ABF=∠CBF,∵四边形ABCD是平行四边形,∴BC ∥AD ,∴∠AFB=∠CBF ,∴∠AFB=∠ABF ,∴AB=AF ,∵AB=BE ,∴BE=FA ,∵BE ∥FA ,∴四边形ABEF 是平行四边形,∵AB=BE ,∴平行四边形ABEF 是菱形;连接AE 交BF 于点O ,如图,∵四边形ABEF 是菱形,∴BF ⊥AE ,BO=FO=12BF ,∵60ABE ∠=︒∴30ABO ∠=︒又AB=2,90AOB ∠=︒∴1AO =∴BO∴BF=2OB=故选:B .【点睛】本题考查了作图-复杂作图,平行四边形的性质,菱形的判定与性质,解决本题的关键是掌握平行四边形的性质,菱形的判定与性质.6.C 【解析】【分析】观察函数图象先得到关于x 的不等式kx−3m >0的解集是x >−4,故可求解.【详解】解:由图象可得:当x >−4时,kx−3m >0,所以关于x 的不等式kx−3m >0的解集是x >−4,所以关于x 的不等式k (x +1)>3m 的解集为x +1>−4,即:x >−5,故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.7.B【解析】【分析】连接AC 交轴于点D ,结合正方形OABC 的性质和面积求出三角形AOD 的面积,然后根据反比例函数的比例系数的几何意义求k ,即可.【详解】解:如图,连接AC 交x 轴于点D ,∵四边形OABC 是正方形,∴AC ⊥OB ,即AC ⊥x 轴,∵正方形OABC 的面积为8,∴正方形124AOD OABCS S == ,∵点A 落在反比例函数k y x =第一象限内的图象上,∴22AOD k S == ,∴4k =,∵反比例函数图象在第一象限,∴0k >,∴4k =,故选:B .【点睛】本题考查了正方形的性质和反比例系数k 的几何意义,解题的关键是连接AC 交轴于点D 构造直角三角形.8.C【解析】【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到x−4=0,据此求出x 的值,代入整式方程求出m 的值即可.【详解】解:去分母,得:8−x−2m =0,由分式方程有增根,得到x−4=0,即x =4,把x =4代入整式方程,可得:m =2.故选:C .【点睛】此题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.9.B【解析】【分析】分k >0和k <0两种情况讨论,然后根据一次函数和反比例函数所经过的象限逐一判断即可.【详解】当k >0时,一次函数经过第一、二、三象限,反比例函数经过第一、三象限,无符合的图象;当k <0时,一次函数经过第二、三、四象限,反比例函数经过第二、四象限,符合此种条件的图象只有B 选项,故选:B .【点睛】此题考查的是反比例函数和一次函数的综合题型,掌握反比例函数和一次函数的图象所经过的象限与各项系数的关系是解决此题的关键.10.B【解析】【分析】①根据四边形ABCD 是平行四边形,可得:AD=BC ,AB=CD ,AB ∥CD ,再由AE 平分∠BAD ,可得出∠AED=∠DAE ,进而推出AF=DE ,即可运用菱形的判定方法证得结论;②根据题目条件可证明△BFN ≌DEN ,其它三角形均不能证明;③根据题目条件可得出12FMN DMN BFNS S S == ,S 菱形BCEF=4S △BFN ,S 四边形BCEN=3S △BFN ,即可判断结论③错误;④由FM=FN 可得出DF=AF=AD ,即△ADF 是等边三角形,可判定结论④正确.【详解】解:①四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AB ∥CD ,∵点F 为AB 边的中点,∴AF=12AB ,∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∵AB ∥CD ,∴∠AED=∠BAE ,∴∠AED=∠DAE ,∴AD=DE ,∴BC=DE ,∵AB=2BC.∴BC=12AB ,∴AF=DE,∵AF∥DE,∴四边形ADEF是平行四边形,∵AD=DE,∴四边形ADEF是菱形,故①正确;∵AB∥CD,∴∠FBN=∠EDN,DE=AF=BF,∠BNF=∠DNE,∴△BFN≌DEN(AAS),能够确定与△BFN全等的三角形只有1个,故②错误;③∵△BFN≌DEN,∴FN=EN,BN=DN,∵四边形ADEF是菱形,∴DM=FM,∴12FMN DMN BFNS S S==,同理可证:四边形BCEF是菱形,∴S菱形BCEF=4S△BFN,∴S四边形BCEN=3S△BFN,·S△BFN=2S△FMN,∴S四边形BCEN=4S△FMN,故③错误;④当FM=FN时,∵FN=EN,EF=AF,∴AF=2FM,∵DF=2FM,∴DF=AF=AD,∴△ADF是等边三角形,∴∠BAD=60°,故④正确;故选:B.【点睛】本题是四边形综合题,考查了平行四边形性质,菱形的判定,全等三角形判定和性质,三角形面积和四边形面积,等边三角形判定等,熟练掌握平行四边形的性质和菱形的判定,证明三角形全等是解题的关键.11.9【解析】【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∵AB=7∴BC=9.故答案为:9.【点睛】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.12.y=2(x+4 x)【解析】【分析】先由矩形面积公式求出矩形的另一条边长,再利用矩形的周长公式,列出周长y关于x的函数解析式,即可求解.【详解】解:∵矩形的面积为4平方米,且其中一条长为x米,∴另一条边长为4 x米∴矩形的周长y=2(x+4 x)故答案为:y=2(x+4 x)【点睛】此题考查了求函数解析式,解题的关键是根据题意构建函数模型求解即可.13.43或23【解析】【分析】分别用m 表示出点A 和点B 的纵坐标,用点A 的纵坐标减去点B 的纵坐标或用点B 的纵坐标减去点A 的纵坐标得到以m 为未知数的方程,求解即可.【详解】解:∵点A 是一次函数21y x =+图象上的动点,且点A 的横坐标为m ,∴(,21)A m m +∵AC ⊥x 轴与C ,∴(,0)C m ∴(,4)B m m -+∵1AB =∴|21(4)|1m m +--+=解得,43m =或23故答案为43或23【点睛】本题考查了一次函数图象上点的坐标特征,根据A 点横坐标和点的坐标特征求得A 、B 点纵坐标是解题的关键.14.6【解析】【分析】由题意易得OD=OC ,∠DOC=60°,进而可得△DOC 是等边三角形,然后问题可求解.【详解】解:∵四边形ABCD 是矩形,BD =12,∴162OD OC BD ===,∵∠AOD =120°,∴∠DOC=60°,∴△DOC 是等边三角形,∴6CD OC OD ===;故答案为:6.【点睛】本题主要考查矩形的性质及等边三角形的性质与判定,熟练掌握矩形的性质及等边三角形的性质与判定是解题的关键.15.﹣5<a <2且a≠﹣4【解析】【分析】根据分式方程的解法得到x =423a -,由解为正数,可以求得符合要求的a 的取值,再根据关于x 的一次函y =(a+5)x+3不经过第四象限得到a+5>0,从而可以解答本题.【详解】解:2144x x a x x++=--,42x x x a +-=--∴x =423a -,∵关于x 的分式方程2144x x a x x ++=--解为正数,∴423a ->0,且423a -≠4,∴a <2且a≠﹣4,又∵关于x 的一次函数y =(a+5)x+3不经过第四象限,∴a+5>0,∴a >﹣5,∴a 的取值范围是﹣5<a <2且a≠﹣4,故答案为:﹣5<a <2且a≠﹣4.【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,利用一次函数的性质解答,注意分式方程的解要使得原分式有意义.16.12或【解析】【分析】由矩形的性质和折叠的性质可得6AB AB '==,BE B E '=,90ABC AB E '∠=∠=︒,分90CEB '∠=︒,90EB C '∠=︒两种情况讨论,由勾股定理可求B C '的长,即可求CEB ∆'的周长.【详解】解: 四边形ABCD 是矩形,6AB CD ∴==,8AD BC ==,90DAB ABC ∠=∠=︒折叠6AB AB '∴==,BE B E '=,90ABC AB E '∠=∠=︒若90CEB '∠=︒,且90DAB ABC ∠=∠=︒,∴四边形ABEB '是矩形,且6AB AB '==∴四边形ABEB '是正方形,6BE B E '∴==,2EC BC BE ∴=-=B C '∴=CEB ∴∆'的周长8EC B C B E ''=++=+若90EB C '∠=︒,且90AB E '∠=︒180AB E EB C ''∴∠+∠=︒∴点A ,点B ',点C 三点共线,在Rt ABC 中,10AC ==,1064B C AC AB ''∴=-=-=CEB ∴∆'的周长8412EC B C B E =++=+=''故答案为:12或8+【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用分类讨论思想解决问题是本题的关键.17.2-x;当x=1时,原式=1;当x=-1时,原式=3.【解析】【分析】原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:22513(224x x x x x x --÷-+--52(3)(2)(2)(2)x x x x x x x +--=-÷+-+5(2)(2)(2)5x x x x x -+=-+ =2x -,∵要使分式有意义,∴x≠0,±2,∴x=±1,当x=1时,原式=2-1=1;当x=-1时,原式=2-(-1)=2+1=3.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(1)每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①5015000w n =-+;②商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大为13300元.【解析】【分析】(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;然后根据销售m 台A 型和m 台B 型电脑的分别获利列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出n 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元.分别销售m 台则有5010001500.b a ma mb -=⎧⎪=⎨⎪=⎩解得10015010a b m =⎧⎪=⎨⎪=⎩即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(2)①根据题意可得:()1001501005015000w n n n =+-=-+,故答案为:5015000w n =-+②根据题意得1002n n -≤.解得1333n ≥.5015000w n =-+Q ,500-<,w ∴随n 的增大而减小.n Q 为正整数,∴当34n =最小时,w 取最大值,此时10066n -=(台).50341500013300w =-⨯+=答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大为13300元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.19.(1)4k =;(2)AC 解析式为21077y x =+;(3)符合条件的点P 共有5个.【解析】【分析】(1)由四边形OABC 是平行四边形,可得OC=BA ,AB ∥OC ,根据()()305A x --=--,可求点A (2,2),由点A 在反比例函数图像上,可得22k =求解即可;(2)设AC 解析式为y kx b =+,代入坐标得2=2-50k b k b +⎧⎨+=⎩解方程组即可;(3)求出反比例函数的边界点,与一次函数的边界点,找出点P 可取(-1,1),(0,1),(1,1),(2,1),(3,1)即可.解:(1)∵四边形OABC 是平行四边形,∴OC=BA ,AB ∥OC ,∴()()305A x --=--,解得2A x =,∴点A (2,2),点A 在反比例函数图像上,∴22k=,解得4k =;(2)设AC 解析式为y kx b =+,代入坐标得,2=2-50k b k b +⎧⎨+=⎩,解得27107k b ⎧=⎪⎪⎨⎪=⎪⎩,AC 解析式为21077y x =+;(3)当=3x 时,43y =>1,当=4x 时,414y ==;当1x =-时,2108-777y =+=>1,∴点P 可取(-1,1),(0,1),(1,1),(2,1),(3,1),符合条件的点P 共有5个.【点睛】本题考查平行四边形的性质,利用平行四边形性质构建点坐标关系,待定系数法求一次函数解析式,区域内整点问题,正确理解题意、掌握以上知识是解题关键.20.(1)证明见解析;(2)①菱形,②矩形,③正方形.【解析】【分析】(1)证明四边形ADCF 是平行四边形,得出AD ∥CF ,利用一组对边平行且相等证明四边形DBCF 是平行四边形,即可得出结论.(2)①当BC ⊥AC 时,AD=CD ,填菱形即可;②当BC=AC 时,∠CDA=90°,填矩形即可;③当BC=AC ,且BC ⊥AC 时,填正方形即可.(1)证明:∵D、E分别为边AB、AC的中点,∴AD=DB,AE=EC,∵EF=DE12DF =,∴四边形ADCF是平行四边形,∴AD∥CF,AD=CF,∴BD=CF,BD∥CF,∴四边形DBCF是平行四边形,∴FD=CB,FD∥CB,∴DE//BC,12DE BC=;(2)①∵BC⊥AC,∴∠ACB=90°,∵D为边AB的中点,∴AD=CD,∴四边形ADCF是菱形;②∵BC=AC,D为边AB的中点,∴CD⊥AB,∴∠ADC=90°,∴四边形ADCF是矩形;③当BC=AC,且BC⊥AC时,综上,四边形ADCF是正方形;故答案为:菱形,矩形,正方形.【点睛】本题考查了证明三角形中位线定理和特殊平行四边形的判定,解题关键是熟练运用平行四边形的判定定理和性质定理进行推理证明,熟记特殊平行四边形的判定.21.(1)见解析;(2)见解析【解析】【分析】(1)连接EF交MN于O,证△ADE≌△CBF(ASA),得DE=BF,再证DE∥BF,则四边形BEDF是平行四边形,得OE=OF,OB=OD,然后证OM=ON,即可得出结论;(2)由菱形的性质得EF ⊥MN ,由(1)得四边形BEDF 是平行四边形,即可得出结论.【详解】证明:(1)连接EF 交MN 于O ,∵四边形ABCD 是平行四边形,∴∠A=∠C ,AD=BC ,AD ∥BC ,∴∠ADB=∠DBC ,∵DE 平分∠ADB ,BF 平分∠DBC ,∴∠ADE=∠EDB=∠CBF=∠FBD ,在△ADE 和△CBF 中,A C AD BCADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CBF (ASA ),∴DE=BF ,∵∠EDB=∠FBD ,∴DE ∥BF ,∴四边形BEDF 是平行四边形,∴OE=OF ,OB=OD ,∵BM=DN ,∴OB-BM=OD-DN ,即OM=ON ,∴四边形EMFN 是平行四边形;(2)∵四边形EMFN 是菱形,∴EF ⊥MN ,由(1)得:四边形BEDF 是平行四边形,∴平行四边形BEDF 是菱形.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的平对于性质等知识;熟练掌握菱形的判定与性质,证明△ADE ≌△CBF 是解题的关键,属于中考常考题型.22.(1)11y x =+,26y x=;(2)()2,3N ;(3)21a -<<-或3a >【解析】【分析】(1)根据点M (-3,-2)在反比例函数2ky x=的图象上,可求出反比例函数关系式,根据正方形的边长为2可得点C 的纵坐标为2,进而确定点C 的横坐标,确定OA 的长,确定点B 的坐标,利用待定系数法求出直线的关系式即可;(2根据E 为AD 的中点,可求出点N 的横坐标,再代入直线表达式,即可求解;(3)由两个函数的图象可知:当30x -<<或2x >时,不等式12y y >成立,再根据11a x a -≤≤+,,即可求出a 的取值范围.【详解】解:(1)把点()3,2M --代入2k y x=,得23k -=-,解得6k =,∴26y x=∵正方形ABCD 的边长为2,顶点C 在双曲线2ky x=上,∴可设点(),0A x ,则(),2B x ,(2,0)D x +,(2,2)C x +,把点(2,2)C x +代入26y x =,得622x =+解得1x =,∴点()1,2B .把()3,2M --和()1,2B 代入1y mx n =+,得322m n m n -+=-⎧⎨+=⎩,解得11m n =⎧⎨=⎩,即11y x =+;(2)由(2)知:OA=1,E 为AD 的中点,1AE ∴=,∴OE=2,当2x =时,1213y =+=,()2,3N ∴;(3)根据图象得:当30x -<<或2x >时,不等式12y y >成立,∵11a x a -≤≤+,∴当110a x a -≤≤+<时,有1310a a ->-⎧⎨+<⎩,即21a -<<-当011a x a <-≤≤+时,有12a ->,即3a >.∴a 的取值范围是21a -<<-或3a >.【点睛】本题考查反比例函数与一次函数的交点,求出交点坐标是解决问题的前提,掌握一次函数与反比例函数的交点坐标与不等式的解集之间的关系是正确解答的关键..23.(1)见解析;(2)∠BOD =80°,见解析【解析】【分析】(1)由平行四边形的性质得//AB DC ,AB CD =,再由BE AB =,得BE CD =,//BE CD ,即可得出结论;(2)由平行四边形的性质得出40BCD A ∠=∠=︒,再由三角形的外角性质求出ODC BCD ∠=∠,得出OC OD =,证出DE BC =,即可得出结论.【详解】(1)证明: 四边形ABCD 为平行四边形,//AB DC ∴,AB CD =,BE AB = ,BE CD ∴=,//BE CD ,∴四边形BECD 是平行四边形;(2)解:若40A ∠=︒,当80BOD ∠=︒时,四边形BECD 是矩形,理由如下:四边形ABCD 是平行四边形,40BCD A ∴∠=∠=︒,BOD BCD ODC ∠=∠+∠ ,804040ODC BCD ∴∠=︒-︒=︒=∠,OC OD ∴=,BO CO = ,OD OE =,DE BC ∴=,四边形BECD 是平行四边形,∴四边形BECD 是矩形.【点睛】本题主要考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.24.(1)1y x =-+,ky x=;(2)0x >或1x <-;(3)(5,6)-或(3,2)-【解析】【分析】(1)由菱形的性质可知A 、D 关于x 轴对称,可求得A 点坐标,把A 点坐标分别代入两函数解析式可求得k 和m 值;(2)由(1)可知A 点坐标为(1,2),结合图象可知在A 点的下方时,反比例函数的值小于2,可求得x 的取值范围;(3)根据菱形的性质可求得C 点坐标,可求得菱形面积,设P 点坐标为(,1)a a +,根据条件可得到关于a 的方程,可求得P 点坐标.【详解】解:(1)如图,连接AD ,交x 轴于点E ,(1,2)D -- ,1OE ∴=,2DE =,四边形AODC 是菱形,2AE DE ∴==,1EC OE ==,(1,2)A ∴-,将(1,2)A -代入直线1y mx =+,得:12m -+=,解得:1m =-,将(1,2)A -代入反比例函数k y x=,得:21k=-,解得:2k =-;∴一次函数的解析式为1y x =-+;反比例函数的解析式为2y x=-;(2) 当1x =-时,反比例函数的值为2,∴当反比例函数图象在A 点下方时,对应的函数值小于2,x \的取值范围为:0x >或1x <-;(3)22OC OE == ,24AD DE ==,142OACD S OC AD ∴=⋅=菱形,12OAP OACDS S ∆=菱形,2OAP S ∆∴=,设P 点坐标为(,1)m m -+,AB 与y 轴相交于点F ,则(0,1)F ,1OF ∴=,111122OAF S ∆=⨯⨯= ,当P 在A 的左侧时,1111()2222OAP OFP OAF S S S m OF m ∆∆∆=-=-⋅-=--,11222m ∴--=,5m \=-,1516m -+=+=,(5,6)P ∴-,当P 在A 的右侧时,11112222OAP OFP OAF S S S m OF m ∆∆∆=+=⋅+=+,∴11222m +=,3m ∴=,12m -+=-,(3,2)P ∴-,综上所述,点P 的坐标为(5,6)-或(3,2)-.【点睛】本题为反比例函数的综合应用,主要考查了待定系数法求函数解析式、菱形的性质、三角形的面积及数形结合思想、分类讨论思想等,题目难度不大,但是属于中考常考题,熟练掌握反比例函数图像和性质及待定系数法等相关知识,并能够灵活运用方程思想、数形结合思想和分类讨论思想是解题关键.25.(1)80,100;(2)A 校,B 校;(3)SA 2=70,SB 2=160,A 校派出的代表队选手成绩较为稳定【解析】【分析】(1)根据条形图将B 校数据重新排列,再根据中位数和众数的概念求解即可;(2)从表中数据,利用平均数和中位数和众数的意义可得出答案,(3)计算出A 、B 两校成绩的方差,根据方差的意义可得答案.【详解】解:(1)将B 校5名选手的成绩重新排列为:70、75、80、100、100,所以其中位数a =80、众数b =100,故答案为:80,100;(2)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是A 校;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是B 校;故答案为:A 校,B 校;(3)2222221=[(7585)(8085)(8585)(8585)(10085)]5A S -+-+-+-+-=70,2222221=[(7085)(7585)(8085)(10085)(10085)]5B S -+-+-+-+-=160,∴22A B S S <.∴A 校派出的代表队选手成绩较为稳定.【点睛】本题考查了平均数,众数,中位数,方差,熟练掌握各统计量的定义和计算要求是解题的关键.。
华师版八年级(下)数学期末综合质量检测试卷一、选择题(每小题3分,共30分.在每小题给出的四个选项中,有且只有一项是正确的)1.下列算式结果为﹣8的是()A.4﹣2B.﹣18C.(−18)﹣1D.(﹣8)02.国家统计局于2021年5月11日发布了第七次全国人口普查主要数据情况的公告,全国人口共计141178万人,与2010年的133972万人相比,增加7206万人其中数据7206万用科学记数法可表示为()A.7.206×103B.72.06×106C.7.206×105D.7.206×107 3.已知关于x的方程8−K4−2K4=0有增根,则m的值是()A.4B.﹣4C.2D.﹣24.已知一组数据:1,5,4,6,x,8的众数为4,则该组数据的中位数是()A.4B.4.5C.5D.5.55.一分钟跳绳是考量学生身体灵敏性及协调性的测试项目,也是中考体育的项目之一某班第一组六名同学的练习成绩(单位:个/分)为:180,184,188,190,192,194.第二组六名同学的练习,成绩(单位:个/分)为:186,184,194,180,188,190.第二组的成绩比第一组的成绩()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大6.如图,函数y=kx﹣3m的图象经过点(﹣4,0),则关于x的不等式k(x+1)>3m的解集是()A.x>﹣4B.x<﹣4C.x>﹣5D.x<﹣57.对于下列判断:①对角线互相垂直的四边形是矩形;②对角线相等的四边形是矩形;③四边相等的平行四边形是正方形;④对角线互相垂直的矩形是正方形.正确的说法有()A.1个B.2个C.3个D.4个8.如图所示,正方形OABC的对角线OB在x轴上,点A落在反比例函数=第一象限内的图象上如果正方形OABC的面积为8,则k的值为()A.2B.4C.8D.169.如图,平行四边形ABCD中,AB=2BC.AE平分∠BAD,交CD于点E,点F为AB边的中点,AE与DF交于点M,BD与EP交于点N,连接MN.则下列结论:①四边形ADEF是菱形;②与△BFN全等的三角形有5个;③S四边形BCEN=7S△FMN;④当FM=FN时,∠BAD=60°.其中正确的是()A.①③B.①④C.②③D.②④10.王老师把两张长为9,宽为3的矩形纸条按如图所示的形状交叉叠放在一起,根据所学的知识,我们可以判定重合部分构成的四边形ABCD是菱形.则随着纸条的转动,菱形ABCD的面积的最大值与最小值的和为()A.22B.24C.26D.28二、填空题(每小题3分,共15分)11.当x的值是时,代数式K5K8和4−28−的值互为相反数.12.已知直线y=(k+2)x+4与y=(2k+1)x﹣5k+6互相平行,则直线y=(2k+1)x﹣5h+6不经过第象限.13.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠AOD=120°,BD=12,则DC的长为.14.如图,菱形ABCD的顶点A恰好是矩形BCEF对角线的交点,当菱形ABCD的周长为16时,矩形BCEF的面积等于.15.如图所示,在平面直角坐标系中有两个边长均为4的正方形OABC和正方形OCEF,OA边与OF边与x轴重合,连接BF,点A关于BF的对称点为点A′,连接A′F,与EC边相交于点P,则点P的坐标是.三、解答题(本大题共8个小题,满分75分)16.(1)计算:(﹣2)3÷(14)﹣1+(12)﹣2﹣|﹣2|+(2021﹣π)0;(2)解分式方程:K4K1+2=1.17.先化简:(3r1−+1)÷2−42+2r1,并从﹣3≤x<0中选取合适的整数代入求值.18.某种植户种植的360亩新疆长绒棉获得大丰收,原计划每天采摘相同的亩数来完成采摘任务,但由于租用了新的采摘设备,实际每天的采摘亩数是原计划每天采摘亩数的1.5倍,结果可以提前4天完成采摘任务.(1)实际每天采摘多少亩长绒棉?(2)在采摘进行了3天时,接到通知4天后有不良天气发生.为了避开不良天气的影响,需要从第4天开始加快采摘进度,要求不超过3天完成,那么在加快采摘进度的几天里,实际平均每天采摘的亩数至少还要增加多少亩?19.如图,在平行四边形ABCD中,M,N是对角线BD.上的点,且BM=DN,DE平分∠ADB交AB于点E,BF平分∠DBC交CD于点F.(1)求证:四边形EMFN是平行四边形;(2)当四边形EMFN是菱形时,求证:四边形BEDF是菱形.20.2021年是中国共产党成立100周年.校团委以此为契机,组织了“讲好党史故事,传承红色基因“系列活动下面是八年级甲、乙两个班各项目的成绩(单位:分)(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将党史知识问答比赛、讲述先烈故事比赛永远跟党走主题板报创作按5:3:2的比例确定最后成绩,请通过计算说明甲.乙两班谁将获胜.项目班次党史知识问答比赛讲述先烈故事比赛永远跟党走主题板报创作甲909693乙94919121.正方形ABCD的边长为4,点E从点B出发,以每秒3个单位长度的速度沿BC向点C 运动.AE交BD于点F,DG⊥AE于点G,∠DGE的平分线GH分别交BD,CD于点P,H,连接FH,FC.设点E的运动时间为t.(1)在点E的运动过程中,∠DHG与∠DFC有什么数量关系?请证明你的结论;(2)当AE把正方形ABCD的面积分成1:2两部分时,请直接写出t的值.22.两名自行车运动员在一段平直封闭的训练场地内进行训练,甲运动员匀速由A地向B 地骑行,乙运动员匀速从B地向A地骑行.甲运动员先出发一分钟,然后乙运动员才出发.设甲运动员骑行的时间为x(分),两名运动员之间的距离为y(米),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)A地与B地之间相距米,乙运动员骑行的速度为米/分钟;(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)当甲运动员出发多少分钟后,两名运动员之间的距离为720米?23.如图,在平面直角坐标系中,直线y1=mx+n与双曲线y2=交于点M(﹣3,﹣2)和点N.正方形ABCD的边长为2,且顶点A和顶点D在x轴上,顶点B在直线y1=mx+n 上,顶点C在双曲线y2=上,过点N向x轴作垂线,垂足E是AD的中点.(1)求直线与双曲线的解析式;(2)求点N的坐标;(3)在a﹣1≤x≤a+1范围内,总有不等式y1>y2,请直接写出此时a的取值范围.。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √3C. 0D. π2. 已知a,b是实数,且a+b=0,那么下列等式中正确的是()A. a²+b²=0B. a²+b²>0C. a²+b²<0D. a²+b²≥03. 下列函数中,是奇函数的是()A. f(x)=x²B. f(x)=|x|C. f(x)=x+1D. f(x)=x²+14. 在直角坐标系中,点P(-2,3)关于原点对称的点为()A. (2,-3)B. (-2,3)C. (3,2)D. (-3,2)5. 已知一元二次方程x²-5x+6=0的两个根分别为a和b,那么a+b的值为()A. 5B. 6C. 2D. 36. 下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 07. 已知等差数列{an}的首项为2,公差为3,那么第10项an的值为()A. 25B. 28C. 31D. 348. 在△ABC中,角A,B,C的对边分别为a,b,c,若a=3,b=4,c=5,那么△ABC的面积S为()A. 6B. 8C. 10D. 129. 下列各式中,能被3整除的是()A. 2x³-3x²+4x-6B. x³-3x²+4x-6C. x³-3x²+4x+6D. x³-3x²+4x-810. 下列各式中,能被2整除的是()A. 2x³-3x²+4x-6B. x³-3x²+4x-6C. x³-3x²+4x+6D. x³-3x²+4x-8二、填空题(每题3分,共30分)11. 若a²+b²=25,a-b=4,则ab的值为______。
一、选择题(每题4分,共40分)1. 下列数中,不是有理数的是()A. 0.5B. -2.5C. √2D. 32. 下列各式中,正确的是()A. √4 = 2B. √9 = 3C. √16 = 4D. √25 = 53. 已知a、b是实数,且a + b = 0,那么a和b的关系是()A. a > bB. a < bC. a = bD. 无法确定4. 若a、b、c成等差数列,且a + b + c = 12,那么b的值是()A. 4B. 6C. 8D. 105. 下列各式中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x - y)^2 = x^2 - 2xy + y^2C. (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3D. (x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^36. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解是()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = -2,x2 = -3D. x1 = -3,x2 = -27. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 2x^2 + 18. 已知正方形的对角线长为8cm,那么该正方形的边长是()A. 4cmB. 6cmC. 8cmD. 10cm9. 下列各式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)^2C. a^2 - b^2 = (a - b)^2D. a^2 + b^2 = (a - b)^210. 下列各式中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x - y)^2 = x^2 - 2xy + y^2C. (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3D. (x - y)^3 = x^3 -3x^2y + 3xy^2 - y^3二、填空题(每题4分,共40分)11. 若a = 3,b = -2,那么a - b的值是______。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √9B. √-4C. πD. 0.1010010001…2. 下列图形中,属于轴对称图形的是()。
A. 长方形B. 平行四边形C. 等腰三角形D. 梯形3. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-3),则下列说法正确的是()。
A. a>0,b>0,c>0B. a>0,b<0,c<0C. a<0,b>0,c>0D. a<0,b<0,c<04. 在直角坐标系中,点A(-2,3)关于y轴的对称点是()。
A. (-2,-3)B. (2,-3)C. (2,3)D. (-2,3)5. 若一个正方形的对角线长为10cm,则该正方形的面积是()cm²。
A. 50B. 100C. 50√2D. 100√26. 下列等式中,正确的是()。
A. a²+b²=(a+b)²B. (a+b)²=a²+b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-b²7. 若∠ABC是等腰三角形ABC的顶角,且∠BAC=45°,则∠ABC的度数是()。
A. 45°B. 90°C. 135°D. 180°8. 已知一元二次方程x²-5x+6=0的两个根分别是x₁和x₂,则x₁+x₂的值是()。
A. 5B. -5C. 6D. -69. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()。
A. 75°B. 90°C. 105°D. 120°10. 下列函数中,是反比例函数的是()。
A. y=x²B. y=2x+3C. y=3/xD. y=x-1二、填空题(每题5分,共20分)11. 若x²-5x+6=0,则x²+5x+6=______。
2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。
1. 下列各数中,是整数的是()A. -3.14B. √4C. 0.5D. 2/32. 下列各数中,是负数的是()A. -5B. 0C. 5D. -3/43. 已知a > 0,且a² = 4,则a的值为()A. -2B. 2C. -4D. 44. 下列各数中,是偶数的是()A. 3B. 6C. 8D. 95. 下列各数中,是质数的是()A. 11B. 12C. 13D. 146. 若x² + 2x + 1 = 0,则x的值为()A. -1B. 1C. -2D. 27. 下列各式中,正确的是()A. a + b = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²8. 下列各式中,正确的是()A. a³b² = a³bB. a³b²= ab³C. a³b² = a²b³D. a³b² = a²b²9. 下列各式中,正确的是()A. (a + b)³ = a³ + b³B. (a + b)³ = a³ + 3a²b + 3ab² + b³C. (a - b)³ = a³ - b³D. (a - b)³ = a³ - 3a²b + 3ab² - b³10. 下列各式中,正确的是()A. a²b² = (ab)²B. (a²b)² = a²b²C. (ab)² = a²b²D. a²b² =(a²b)²11. 如果一个数的相反数是-3,那么这个数是________。
一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 若 a > b,则下列不等式中正确的是()A. a - 2 > b - 2B. a + 2 > b + 2C. 2a > 2bD. a / 2 > b / 23. 已知函数 f(x) = 2x - 3,若 f(x) = 1,则 x = ()A. 2B. 3C. 4D. 54. 在直角坐标系中,点 A(2, 3) 关于 y 轴的对称点坐标是()A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)5. 若一个长方形的长是 6cm,宽是 4cm,那么它的对角线长度是()A. 5cmB. 8cmC. 10cmD. 12cm6. 若 x^2 - 5x + 6 = 0,则 x 的值是()A. 2 或 3B. 1 或 4C. 2 或 4D. 1 或 37. 在等腰三角形 ABC 中,AB = AC,若∠BAC = 50°,则∠ABC 的度数是()A. 40°B. 50°C. 60°D. 70°8. 若 a、b、c 是等差数列,且 a + b + c = 15,则 b 的值是()A. 5B. 6C. 7D. 89. 下列选项中,属于等比数列的是()A. 1, 2, 4, 8, 16B. 1, 3, 5, 7, 9C. 2, 4, 8, 16, 32D. 1, 3, 6, 9, 1210. 下列函数中,在定义域内是增函数的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^3二、填空题(每题5分,共25分)11. 若 a > b,则 a - b 的值()12. 函数 y = 3x - 2 的图像经过点()13. 直角三角形的两个锐角分别为30° 和60°,则这个三角形的边长比为()14. 等差数列的前三项分别为 1, 4, 7,则这个数列的公差是()15. 等比数列的前三项分别为 1, 3, 9,则这个数列的公比是()三、解答题(每题15分,共45分)16. 解方程:3x^2 - 5x - 2 = 017. 已知函数 f(x) = 2x + 1,求 f(-3) 的值。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √-1B. √2C. 0.1010010001...D. π2. 如果a > b,那么下列不等式中正确的是()A. a - 2 > b - 2B. a + 2 < b + 2C. a / 2 < b / 2D. 2a > 2b3. 下列函数中,自变量x的取值范围是()A. y = x^2 - 4B. y = √(x - 3)C. y = 1 / (x + 2)D. y = x^34. 下列图形中,属于平行四边形的是()A. 矩形B. 菱形C. 等腰梯形D. 梯形5. 在直角三角形ABC中,∠C是直角,若∠A = 30°,那么∠B的度数是()A. 30°B. 45°C. 60°D. 90°6. 已知一元二次方程x^2 - 5x + 6 = 0,那么它的两个根分别是()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = 1,x2 = 4D. x1 = 4,x2 = 17. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + 2abB. (a - b)^2 = a^2 - 2ab + b^2 - 2abC. (a + b)^2 = a^2 + 2ab + b^2 - 2abD. (a - b)^2 = a^2 - 2ab + b^2 + 2ab8. 在平面直角坐标系中,点P(2, 3)关于y轴的对称点坐标是()A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)9. 下列函数中,是奇函数的是()A. y = x^2B. y = 1 / xC. y = x^3D. y = |x|10. 下列数列中,下一项是12的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...二、填空题(每题5分,共25分)11. 如果a > b > 0,那么a^2与b^2的大小关系是________。
最新华师大版八年级数学下册单元测试题及答案全套第一单元测验题一、填空题(每空2分,共10分)1. 分别计算下列各商① 5.4÷4 ② 7.98 ÷ 6 ③ 12.6 ÷ 2.1 ④ 24÷0.8 ⑤ 5÷1.25答案:① 1.35 ② 1.33 ③ 6 ④ 30 ⑤ 42. 在下表中,按照最新的科技成果对计算器排序。
[ ]先进 [ ]最后进A. 通信功能键程问题B. 声音大小台数问题C. 提供的功能维护问题答案:A. 先进B. 维护问题C. 台数问题3. 在长方体 ABCDEFGH 中,AB=2,AD=3,AF=4,江明先把A点连接到线段CE 的中点 O ,再把线段AF 连接到线段DG 的中点 N ,线段 ON 的中点为 M ,求 CN 的长度。
54. 解方程...答案:5. 等边三角形的面积公式是 ______。
答案:s²√3/4二、选择题(每空3分,共15分)() 1. 能在五边形中有四个顶点共线的五边形是()A. 四边形B. 平行四边形C. 梯形D. 三角形答案:C() 2. 与已知平行线互相垂直的直线叫()A. 水平线B. 垂直线C. 交线D. 主线B() 3. 赏心悦目的图形不包括()A. 等腰梯形B. 等边三角形C. 矩形D. 正方形答案:C() 4. 十字框等腰梯形的边长比是()A. 2比 3B. 1比 3C. 1比 2D. 2比1答案:C() 5. 判断对错,标√或×()周长相等的四边形,面积相等。
()答案:×三、应用题(每题12分,共24分)1. 计算运算结果。
()1. 24 × 0.2 + 0.24 =()答案:4.8()2. (320 ×2 + 0.32)÷8 = ()答案:80.082. 解简单方程。
()2. 设 5x + 3 = 3x - 15 ,求 x 的值()答案:-9()3. 解方程:3y + 2 = 7 ,求 y 的值()答案:1四、解答题1. 简答解释如下几个概念。
八年级数学检测题
(本试卷总分100分,考试时间80分钟)
一、选择题(本题每小题3分,满分24分) 1.4的平方根是( ) A. 8 B. 2
C. ±2
D. ±2
2.下列运算正确的是( )
A.1243x x x =∙
B.1243)(x x =
C.326x x x =÷
D.743x x x =+ 3.(-3x +1)〃(-2x)²等于( )
A .-6x 3-2x 2
B .6x 3-2x 2
C .6x 3+2x 2
D .-12x 3+4x 2 4.下列说法:①有理数和数轴上点一一对应;②不带根号的数一定是有理数;
③负数没有立方根;④是17的平方根,其中正确的有( ) A .1个 B .2个 C .3个 D .4个 5.两个等腰三角形全等的条件是( )
A 、有两条边对应相等。
B 、有两个角对应相等。
C 、有一腰和一底角对应相等。
D 、有一腰和一角对应相等。
6.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( ) A.∠A B.∠B C.∠C D.∠B 或∠C
7.记P 是9的立方根,Q 是38的算术平方根,则P 、Q 之间的大小关系是( )
A. Q P >
B. Q P <
C. Q P =
D. 不能确定的 8.若n 满足(n-2004)2+(2005-n )2=1,则(2005-n )(n-2004)等于( ) A 、-1
B 、0
C 、1
2
D 、1
二、填空题(本题每小题3分,满分18分) 9.
绝对值小于_________.
10.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________.
11.计算:20072-2006×2008=_________
12.若多项式92++mx x 恰好是另一个多项式的平方,则=m ______. 13.一等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这个等腰三角形的底边长是 ____________.
14.如图2,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有______个.
图1
F
E
D
A
C
B
图2
三、解答题
15.(本题6分)先化简:(2x ―1)²―(3x+1)(3x ―1)+5x(x ―1),再选取一个你喜欢的数代替x 求值.
16.(本题每小题4分,满分8分)把下列多项式分解因式:
①22882ay axy ax +- ②(1)(3)1x x --+
A B
C
D
1
2
17.(本题6分)已知2()4x y -=,2()64x y +=;求下列代数式的值:(6分)
(1)22x y +; (2)xy ; 18 .(本题7分)如图所示,两根旗杆间AC 与BD 相距12m ,某人从B 点沿BA 走向A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,求这个人运动了多长时间?
19. (本题8分)当等腰三角形被一条直线分割成两个较小的三角形也是等腰
三角形时,原等腰三角形的顶角度数是多少?这条直线怎样画?(讨论所有可
能的解,并逐一画图表示)
20. (本题7分)已知,如图,△ABC 中,AB = AC ,AD ⊥ BC 于D ,BE ⊥
AC 于E ,AD 和BE 交于H ,且BE = AE ,求证:AH = 2BD.
A
H E B D C
20. (本题8分)先观察下列等式,再回答问题: 111111112=+-=+ 111112216
=+-=+ 1111133112
=+-=+ (1)根据上面三个等式提供的信息,并进行验证; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式。
(不用证明)
21.(本题8分)如图所示,△ABC 中∠BAC 的平分线为AD ,M 为BC 的中点, ME ∥AD 交AB 所在直线于E ,交AC 于F .
求证:BE =CF =12(AB+AC).(提示:作辅助线,延长FM 到G 使MG=FM ,连结BG )。