第2讲 动量守恒定律 碰撞 爆炸 反冲运动(可编辑word)
- 格式:docx
- 大小:152.45 KB
- 文档页数:9
第2节动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
3.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
二、碰撞、反冲和爆炸1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。
(3)分类:2.(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
3.爆炸问题(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
1.思考辨析(正确的画“√”,错误的画“×”)(1)系统所受合外力的冲量为零,则系统动量一定守恒。
(√)(2)动量守恒是指系统在初、末状态时的动量相等。
(×)(3)物体相互作用时动量守恒,但机械能不一定守恒。
(√)(4)在爆炸现象中,动量严格守恒。
(×)(5)在碰撞问题中,机械能也一定守恒。
(×)(6)反冲现象中动量守恒、动能增加。
(√)2.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。
动量守恒定律、碰撞、反冲现象知识点归纳总结一.知识总结归纳1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m 1v 1+m 2v 2=2211v m v m '+'中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
(2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。
碰撞与反冲【自主预习】1.如果碰撞过程中机械能守恒,这样的碰撞叫做2.如果碰撞过程中机械能不守恒,这样的碰撞叫做3.一个运动的球与一个静止的球碰撞,如果碰撞之前球的运动速度与两球心的连线在,碰撞之后两球的速度会沿着这条直线。
这种碰撞称为正碰,也叫碰撞。
4.一个运动的球与一个静止的球碰撞,如果之前球的运动速度与两球心的连线不在同一条直线上,碰撞之后两球的速度都会原来两球心的连线。
这种碰撞称为碰撞。
5.微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做6.弹性碰撞和非弹性碰撞从能量是否变化的角度,碰撞可分为两类:(1)弹性碰撞:碰撞过程中机械能守恒。
(2)非弹性碰撞:碰撞过程中机械能不守恒。
说明:碰撞后,若两物体以相同的速度运动,此时损失的机械能最大。
7.弹性碰撞的规律质量为m的物体,以速度v i与原来静止的物体m2发生完全弹性碰撞,设碰撞后它们的速度分别为v ‘ 1和v ‘ 2,碰撞前后的速度方向均在同一直线上。
由动量守恒定律得 mv i = mv ' 1 + mV 211 1 由机械能守恒定律得2mv 2= 2mv ‘ 1+2图 16 -4 - 1/ 2m 2v 2叫v小球的速度可能是(D . V 1 = V 2= 0, V 3=V o3所示。
现给盒子一初速度 v O ,此后,盒子运动求盒内物体的质量。
b < H 久 0 叫1A . V 1 = V 2 = V 3=p|V o 1B . V 1 = 0, V 2=V 3=^^V 0【例2】一个物体静置于光滑水平面上,外面扣一质量为 M 的盒子,如图 16-4-联立两方程解得, m- mV 1— m + m V 1,2m 2 = ----- V 1(2)推论①若m = m2,贝y v ' 1= 0, V 2= V 1,即质量相等的两物体发生弹性碰撞将交换 速度。
惠更斯早年的实验研究的就是这种情况。
②若mm ,贝y v ’ 1 = V 1, V 2= 2V 1,即质量极大的物体与质量极小的静止物体 发生弹性碰撞,前者速度不变,后者以前者速度的2倍被撞出去。
第2讲动量守恒定律及应用目标要求 1.理解系统动量守恒的条件.2.会应用动量守恒定律解决基本问题.3.会用动量守恒观点分析爆炸、反冲运动和人船模型.4.理解碰撞的种类及其遵循的规律.考点一动量守恒定律的理解和基本应用1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.2.表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′.系统相互作用前的总动量等于相互作用后的总动量.(2)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.1.只要系统所受合外力做功为0,系统动量就守恒.(×)2.系统的动量不变是指系统的动量大小和方向都不变.(√)3.若物体相互作用时动量守恒,则机械能一定守恒.(×)4.动量守恒定律的表达式m1v1+m2v2=m1v1′+m2v2′,一定是矢量式,应用时要规定正方向,且其中的速度必须相对同一个参考系.(√)1.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.2.动量守恒定律的五个特性:矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(一般是相对于地面)同时性动量是一个瞬时量,表达式中的p1、p2、…应是系统中各物体在相互作用前同一时刻的动量,p1′、p2′、…应是系统中各物体在相互作用后同一时刻的动量系统性研究的对象是相互作用的两个或多个物体组成的系统普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统考向1系统动量守恒的判断例1(2021·全国乙卷·14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒答案 B解析因为滑块与车厢水平底板间有摩擦,且撤去推力后滑块在车厢底板上有相对滑动,即摩擦力做功,而水平地面是光滑的;对小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知撤去推力后该系统动量守恒,机械能不守恒,故选B.考向2动量守恒定律的基本应用例2如图所示,质量为0.5 kg的小球在离车底面高度20 m处以一定的初速度向左平抛,落在以7.5 m/s的速度沿光滑的水平面向右匀速行驶的敞篷小车中,小车的底面上涂有一层油泥,车与油泥的总质量为4 kg,若小球在落在车的底面之前瞬时速度是25 m/s,则当小球和小车相对静止时,小车的速度是(g=10 m/s2)()A.5 m/s B.4 m/sC.8.5 m/s D.9.5 m/s答案 A解析由平抛运动规律可知,小球下落的时间t=2hg=2×2010s=2 s,在竖直方向的分速度v y=gt=20 m/s,水平方向的分速度v x=252-202m/s=15 m/s,取小车初速度的方向为正方向,由于小球和小车的相互作用满足水平方向上动量守恒,则m车v0-m球v x=(m车+m球)v,解得v=5 m/s,故A正确.考向3动量守恒定律的临界问题例3甲、乙两小孩各乘一辆小车在光滑的水平冰面上匀速相向行驶,速度大小均为v0=6 m/s,甲车上有质量为m=1 kg的小球若干个,甲和他的小车及小车上小球的总质量为M1=50 kg,乙和他的小车的总质量为M2=30 kg.为避免相撞,甲不断地将小球以相对地面为v′=16.5 m/s的水平速度抛向乙,且被乙接住,假如某一次甲将小球抛出且被乙接住后,刚好可保证两车不相撞.则甲总共抛出的小球个数是()A.12 B.13 C.14 D.15答案 D解析规定甲的速度方向为正方向,两车刚好不相撞,则两车速度相等,由动量守恒定律得M1v0-M2v0=(M1+M2)v,解得v=1.5 m/s,对甲、小车及从甲车上抛出的小球,由动量守恒定律得M1v0=(M1-n·m)v+n·m v′,解得n=15,D正确.考点二爆炸、反冲运动和人船模型1.爆炸现象的三个规律动量守恒爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加在爆炸过程中,有其他形式的能量(如化学能)转化为机械能,所以系统的机械能增加位置不变爆炸的时间极短,因而作用过程中物体产生的位移很小,可以认为爆炸后各部分仍然从爆炸前的位置以新的动量开始运动2.反冲运动的三点说明作用 原理 反冲运动是系统内两物体之间的作用力和反作用力产生的效果 动量 守恒 反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能 增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加1.发射炮弹,炮身后退;园林喷灌装置一边喷水一边旋转均属于反冲现象.( √ ) 2.爆炸过程中机械能增加,反冲过程中机械能减少.( × )考向1 爆炸问题例4 (2023·河北省模拟)质量为m 的烟花弹升到最高点距离地面高度为h 处爆炸成质量相等的两部分,两炸片同时落地后相距L ,不计空气阻力,重力加速度为g ,则烟花弹爆炸使炸片增加的机械能为( ) A .mgh B.mgL 216h C.mgL 232h D.mgL 28h答案 B解析 设烟花弹爆炸后瞬间两炸片的速度大小分别为v 1、v 2,由动量守恒定律有0=m 2v 1-m2v 2,可得v 1=v 2=v ,根据题述,两炸片均做平抛运动,有2v t =L ,h =12gt 2,ΔE =12×12m v 2+12×12m v 2,解得ΔE =mgL 216h ,故选B.考向2 反冲运动例5 (2023·河南省模拟)发射导弹过程可以简化为:将静止的质量为M (含燃料)的导弹点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体,忽略喷气过程中重力和空气阻力的影响,则喷气结束时导弹获得的速度大小是( )A.mMv 0 B.M m v 0 C.M M -m v 0 D.m M -m v 0答案 D解析 由动量守恒定律得m v 0=(M -m )v ,导弹获得的速度v =mM -m v 0,故选D.考向3 人船模型1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0 (2)两物体的位移大小满足:m x 人t -M x 船t =0,x 人+x 船=L ,得x 人=M M +m L ,x 船=mM +m L3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右;(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 人x 船=v 人v 船=M m. 例6 (多选)如图所示,绳长为l ,小球质量为m ,小车质量为M ,将小球向右拉至水平后放手,则(水平面光滑)( )A .系统的总动量守恒B.水平方向任意时刻小球与小车的动量等大反向或都为零C.小球不能向左摆到原高度D.小车向右移动的最大距离为2mlM+m答案BD解析系统只是在水平方向所受的合力为零,竖直方向的合力不为零,故水平方向的动量守恒,而总动量不守恒,A错误,B正确;根据水平方向的动量守恒及机械能守恒得,小球仍能向左摆到原高度,C错误;小球相对于小车的最大位移为2l,根据“人船模型”,系统水平方向动量守恒,设小球水平方向的平均速度为v m,小车水平方向的平均速度为v M,m v m-M v M=0,两边同时乘以运动时间t,m v m t-M v M t=0,即mx m=Mx M,又x m+x M=2l,解得小车向右移动的最大距离为2mlM+m,D正确.考点三碰撞问题1.碰撞碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类动量是否守恒机械能是否守恒弹性碰撞守恒守恒非弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大1.碰撞前后系统的动量和机械能均守恒.(×)2.在光滑水平面上的两球相向运动,碰撞后均变为静止,则两球碰撞前的动量大小一定相同.(√)3.两球发生非弹性碰撞时,既不满足动量守恒定律,也不满足机械能守恒定律.(×)1.弹性碰撞的重要结论以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生弹性碰撞为例,则有 m 1v 1=m 1v 1′+m 2v 2′ 12m 1v 12=12m 1v 1′2+12m 2v 2′2 联立解得:v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1讨论:①若m 1=m 2,则v 1′=0,v 2′=v 1(速度交换);②若m 1>m 2,则v 1′>0,v 2′>0(碰后两小球沿同一方向运动);当m 1≫m 2时,v 1′≈v 1,v 2′≈2v 1;③若m 1<m 2,则v 1′<0,v 2′>0(碰后两小球沿相反方向运动);当m 1≪m 2时,v 1′≈-v 1,v 2′≈0.2.静止物体被撞后的速度范围物体A 与静止的物体B 发生碰撞,当发生完全非弹性碰撞时损失的机械能最多,物体B 的速度最小,v B =m A m A +m B v 0,当发生弹性碰撞时,物体B 速度最大,v B =2m Am A +m B v 0.则碰后物体B的速度范围为:m A m A +m B v 0≤v B ≤2m Am A +m B v 0.考向1 碰撞的可能性例7 A 、B 两球在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s ,当A 追上B 并发生碰撞后,A 、B 两球速度的可能值是( ) A .v A ′=5 m/s ,v B ′=2.5 m/s B .v A ′=2 m/s ,v B ′=4 m/s C .v A ′=-4 m/s ,v B ′=7 m/s D .v A ′=7 m/s ,v B ′=1.5 m/s 答案 B解析 虽然题给四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v A ′大于B 的速度v B ′,不符合实际,即A 、D 项错误;C 项中,两球碰后的总动能E k 后=12m A v A ′2+12m B v B ′2=57 J ,大于碰前的总动能E k 前=12m A v A 2+12m B v B 2=22 J ,违背了能量守恒定律,所以C 项错误;而B 项既符合实际情况,也不违背能量守恒定律,所以B 项正确.碰撞问题遵守的三条原则(1)动量守恒:p1+p2=p1′+p2′.(2)动能不增加:E k1+E k2≥E k1′+E k2′.(3)速度要符合实际情况①碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.②碰前两物体相向运动,碰后两物体的运动方向至少有一个改变.考向2弹性碰撞例8(2022·湖南卷·4)1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案 B解析设中子的质量为m,则氢核的质量也为m,氮核的质量为14m,设中子和氢核碰撞后中子速度为v3,取v0的方向为正方向,由动量守恒定律和能量守恒定律可得m v0=m v1+m v3,12=12m v12+12m v32,联立解得v1=v0.设中子和氮核碰撞后中子速度为v4,取v0的方向为2m v0正方向,由动量守恒定律和能量守恒定律可得m v0=14m v2+m v4,12=12×14m v22+12m v42,2m v0联立解得v 2=215v 0,可得v 1=v 0>v 2,碰撞后氢核的动量为p H =m v 1=m v 0,氮核的动量为p N=14m v 2=28m v 015,可得p N >p H ,碰撞后氢核的动能为E kH =12m v 12=12m v 02,氮核的动能为E kN=12×14m v 22=28m v 02225,可得E kH >E kN ,故B 正确,A 、C 、D 错误.考向3 非弹性碰撞例9 (2023·安徽定远县第三中学模拟)如图所示,物块A 的质量为m ,物块B 、C 的质量均为M .开始时物块A 、B 分别以大小为2v 0、v 0的速度沿光滑水平轨道向右侧的竖直固定挡板运动,为保证A 、B 均向右运动的过程中不发生碰撞,将物块C 无初速度地迅速粘在A 上.B 与挡板碰撞后以原速率反弹,A 与B 碰撞后粘在一起.(1)为使B 能与挡板碰撞两次,求Mm应满足的条件;(2)若三个物块的质量均为m ,求在整个作用过程中系统产生的内能Q . 答案 (1)1≤M m <2 (2)73m v 02解析 (1)设A 、C 粘在一起的共同速度大小为v 1,根据动量守恒定律有2m v 0=(m +M )v 1,为保证A 、B 均向右运动的过程中不发生碰撞,应满足v 1≤v 0.设A 、B 碰撞后瞬间的共同速度大小为v 2,以向右为正方向,根据动量守恒定律有(m +M )v 1-M v 0=(m +2M )v 2,为使B 能与挡板再次碰撞,应满足v 2>0,解得1≤Mm <2.(2)若M =m ,则由(1)可得v 1=v 0,v 2=13v 0根据能量守恒定律有Q =12m (2v 0)2+12m v 02-12×3m v 22,解得Q =73m v 02.课时精练1.北京冬奥会2 000米短道速滑接力赛上,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出,完成“交接棒”.忽略地面的摩擦力,在这个过程中( )A.两运动员的总动量守恒B.甲、乙运动员的动量变化量相同C.两运动员的总机械能守恒D.甲的动能增加量一定等于乙的动能减少量答案 A解析两运动员组成的系统所受合外力矢量和为0,系统动量守恒,A正确;系统动量守恒,两运动员的动量变化量等大反向,变化量不相同,B错误;在光滑冰面上“交接棒”时,后方运动员用力推前方运动员,导致机械能增加,C错误;在乙推甲的过程中,消耗体内的化学能转化为系统的动能,根据能量守恒定律可知,甲的动能增加量不等于乙的动能减小量,D错误.2.如图所示,小木块m与长木板M之间光滑,M置于光滑水平面上,一轻质弹簧左端固定在M的左端,右端与m连接,开始时m和M都静止,弹簧处于自然状态.现同时对m、M施加等大反向的水平恒力F1、F2,两物体开始运动后,对m、M、弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)()A.整个运动过程中,系统机械能守恒,动量守恒B.整个运动过程中,当木块速度为零时,系统机械能一定最大C.M、m分别向左、右运行过程中,均一直做加速度逐渐增大的加速直线运动D.M、m分别向左、右运行过程中,当弹簧弹力与F1、F2的大小相等时,系统动能最大答案 D解析由于F1与F2等大反向,系统所受的合外力为零,则系统的动量守恒.由于水平恒力F1、F2对系统做功代数和不为零,则系统的机械能不守恒,故A错误;从开始到弹簧伸长到最长的过程,F1与F2分别对m、M做正功,弹簧伸长最长时,m、M的速度为零,之后弹簧收缩,F1与F2分别对m、M做负功,系统的机械能减小,因此,当弹簧有最大伸长量时,m、M的速度为零,系统机械能最大;当弹簧收缩到最短时,m、M的速度为零,系统机械能最小,故B错误;在水平方向上,M、m受到水平恒力和弹簧的弹力作用,水平恒力先大于弹力,后小于弹力,随着弹力增大,两个物体的合力先逐渐减小,后反向增大,则加速度先减小后反向增大,则M 、m 先做加速度逐渐减小的加速运动,后做加速度逐渐增大的减速运动,当弹簧弹力的大小与拉力F 1、F 2的大小相等时,m 、M 的速度最大,系统动能最大,故C 错误,D 正确.3.如图所示,气球下面有一根长绳,一个质量为m 1=50 kg 的人抓在气球下方,气球和长绳的总质量为m 2=20 kg ,长绳的下端刚好和水平面接触,当静止时人离地面的高度为h =5 m.如果这个人开始沿绳向下滑,当滑到绳下端时,他离地面的高度约为(可以把人看成质点)( )A .5 mB .3.6 mC .2.6 mD .8 m答案 B解析 当人滑到下端时,设人相对地面下滑的位移大小为h 1,气球相对地面上升的位移大小为h 2,由动量守恒定律,得m 1h 1t =m 2h 2t,且h 1+h 2=h ,解得h 2≈3.6 m ,所以他离地面的高度约为3.6 m ,故选项B 正确.4.(2023·江苏省金陵中学月考)如图所示,一个长为L 的轻细杆两端分别固定着a 、b 两个光滑金属球,a 球质量为2m ,b 球质量为m ,两球的半径相等且均可视为质点,整个装置放在光滑的水平面上,将此装置从杆与水平面夹角为53°的图示位置由静止释放,则( )A .在b 球落地前瞬间,b 球的速度方向斜向左下方B .在b 球落地前瞬间,a 球的速度方向水平向左C .在b 球落地前的整个过程中,轻杆对a 球做正功D .在b 球落地前瞬间,b 球的速度方向竖直向下答案 D解析a、b组成的系统在水平方向上所受合力为零,水平方向上动量守恒,系统水平方向的初动量为零,在b球落地前瞬间系统水平方向动量仍为零,此时b球的速度方向竖直向下,a 球的速度为零,故A、B错误,D正确;a球初动能为零,b球落地前瞬间a球的动能也为零,且重力与地面的支持力对a球不做功,根据动能定理可知在b球落地前的整个过程中,轻杆对a球做功为零,故C错误.5.冰壶运动深受观众喜爱,在某次投掷中,冰壶甲运动一段时间后与静止的冰壶乙发生正碰,如图所示.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是选项图中的哪幅图()答案 B解析两冰壶碰撞过程中动量守恒,两冰壶发生正碰,由动量守恒定律可知,碰撞前后系统动量不变,两冰壶的动量方向即速度方向,不会偏离甲原来的方向,可知,A图情况是不可能的,故A错误;如果两冰壶发生弹性碰撞,碰撞过程动量守恒、机械能守恒,两冰壶质量相等,碰撞后两冰壶交换速度,甲静止,乙的速度等于甲的速度,碰后乙做减速运动,最后停止,最终两冰壶的位置可能如选项B所示,故B正确;两冰壶碰撞后,乙在前,甲在后,选项C所示是不可能的,故C错误;碰撞过程机械能不可能增大,两冰壶质量相等,碰撞后甲的速度不可能大于乙的速度,碰撞后甲的位移不可能大于乙的位移,故D错误.6.如图所示,在光滑的水平面上有三个完全相同的小球,它们排成一条直线,小球2、3静止,并靠在一起,球1以速度v0撞向它们,设碰撞过程中不损失机械能,则碰后三个小球的速度分别为()A .v 1=v 2=v 3=33v 0B .v 1=0,v 2=v 3=22v 0 C .v 1=0,v 2=v 3=12v 0 D .v 1=v 2=0,v 3=v 0答案 D解析 由题设条件,三球在碰撞过程中总动量和总动能守恒.设三球质量均为m ,则碰撞前系统总动量为m v 0,总动能为12m v 02.选项A 、B 中的数据都违反了动量守恒定律,故不可能.对选项C ,碰后总动量为m v 0,但总动能为14m v 02,这显然违反了机械能守恒定律,故不可能.对选项D ,既满足动量守恒定律,也满足机械能守恒定律,故选D.7.(2023·北京市第五中学检测)A 、B 物块沿光滑水平面在同一直线上运动并发生正碰,如图为两物块碰撞前后的位移-时间图像,其中a 、b 分别为A 、B 两物块碰前的位移-时间图像,c 为碰撞后两物块共同运动的位移-时间图像,若A 物块质量m =2 kg ,则由图判断,下列结论错误的是( )A .碰撞前后A 的动量变化量的大小为4 kg·m/sB .B 物块的质量为0.75 kgC .碰撞过程A 对B 所施冲量大小为4 N·sD .碰撞过程A 、B 两物块组成的系统损失的动能为10 J答案 B解析 以A 的初速度方向为正方向,由图像可知碰撞前A 的速度为v A =10-42m/s =3 m/s ,碰撞后A 、B 的共同速度为v AB =4-22m/s =1 m/s ,则碰撞前A 的动量为m v A =2×3 kg·m/s =6 kg·m/s ,碰撞后A 的动量为m v AB =2 kg·m/s ,碰撞前后A 的动量变化量的大小为4 kg·m/s ,A 正确,不符合题意;碰撞前B 的速度为v B =-42m/s =-2 m/s ,由动量守恒定律得m v A +m B v B =(m +m B )v AB ,解得m B =43kg ,B 错误,符合题意;由动量定理得I =m B v AB -m B v B =43×1 kg·m/s -43×(-2) kg·m/s =4 N·s ,即碰撞过程A 对B 所施冲量大小为4 N·s ,C 正确,不符合题意;碰撞过程A 、B 两物块组成的系统损失的动能为ΔE k =12m v A 2+12m B v B 2-12(m +m B )v AB 2=12×2×32 J +12×43×(-2)2 J -12×(2+43)×12 J =10 J ,D 正确,不符合题意. 8.(2021·浙江1月选考·12)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪.爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2∶1、初速度均沿水平方向的两个碎块.遥控器引爆瞬间开始计时,在5 s 末和6 s 末先后记录到从空气中传来的碎块撞击地面的响声.已知声音在空气中的传播速度为340 m/s ,重力加速度大小g 取10 m/s 2,忽略空气阻力.下列说法正确的是( )A .两碎块的位移大小之比为1∶2B .爆炸物的爆炸点离地面高度为80 mC .爆炸后质量大的碎块的初速度为68 m/sD .爆炸后两碎块落地点之间的水平距离为340 m答案 B解析 设碎块落地的时间为t ,质量大的碎块水平初速度为v ,则由动量守恒定律知质量小的碎块水平初速度为2v ,爆炸后的碎块做平抛运动,下落的高度相同,则在空中运动的时间相同,由水平方向x =v 0t 知落地水平位移之比为1∶2,碎块位移s =x 2+y 2,可见两碎块的位移大小之比不是1∶2,故A 项错误;据题意知,v t =(5 s -t )×340 m/s ,又2v t =(6 s -t )×340m/s ,联立解得t =4 s ,v =85 m/s ,故爆炸点离地面高度为h =12gt 2=80 m ,所以B 项正确,C 项错误;两碎块落地点的水平距离为Δx =3v t =1 020 m ,故D 项错误.9.在发射地球卫星时需要运载火箭多次点火,以提高最终的发射速度.某次地球近地卫星发射的过程中,火箭喷气发动机每次喷出质量为m =800 g 的气体,气体离开发动机时的对地速度v =1 000 m/s ,假设火箭(含燃料在内)的总质量为M =600 kg ,发动机每秒喷气20次,忽略地球引力的影响,则( )A .第三次气体喷出后火箭的速度大小约为4 m/sB .地球卫星要能成功发射,速度大小至少达到11.2 km/sC .要使火箭能成功发射至少要喷气500次D .要使火箭能成功发射至少要持续喷气17 s答案 A解析 设喷出三次气体后火箭的速度为v 3,以火箭和喷出的三次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M -3m )v 3-3m v =0,解得:v 3≈4 m/s ,故A 正确;地球卫星要能成功发射,喷气n 次后至少要达到第一宇宙速度,即:v n =7.9 km/s ,故B 错误;以火箭和喷出的n 次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M -nm )v n-nm v =0,代入数据解得:n ≈666,故C 错误;至少持续喷气时间为:t =n 20=33.3 s ,故D 错误.10.(多选)(2023·安徽马鞍山市模拟)如图所示,A 、B 两个小球(可视为质点),间隙极小,两球球心连线竖直,从离地面高度H 处以相同的初速度v 0=2gH 同时竖直向下抛出,B 球先与地面碰撞,再与A 球碰撞后B 球静止于地面,所有碰撞均为弹性碰撞,重力加速度为g ,则( )A .A 、B 两球的质量之比为1∶3B .A 、B 两球的质量之比为1∶2C .碰后A 球上升的最大高度为8HD .碰后A 球上升的最大高度为16H答案 AC解析 因为A 、B 球从离地面高度H 处以相同的初速度v 0=2gH 同时竖直向下抛出,所以落地瞬间的速度相等,由运动学公式v 2-v 02=2gH ,解得v A =v B =v =2gH ,B 球与地面弹性碰撞后以原速率返回,与A 再发生弹性碰撞,以向上为正方向,根据动量守恒和能量守恒有m B v -m A v =m A v A ′,12m B v 2+12m A v 2=12m A v A ′2,联立解得m A ∶m B =1∶3,v A ′=2v =4gH ,A 正确,B 错误;碰后A 球上升的最大高度为h max ,则有v A ′2=2gh max ,解得h max =v A ′22g=8H ,C 正确,D 错误.11.如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞.求A 与C 发生碰撞后瞬间A 的速度大小.答案 2 m/s解析 因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ①碰撞后A 与B 在摩擦力作用下再次达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB ②A 与B 达到共同速度后恰好不再与C 碰撞,应满足v AB =v C ③联立①②③式,代入数据得v A =2 m/s.12.如图所示,ABC 为一固定在竖直平面内的光滑轨道,AB 段是半径R =0.8 m 的14圆弧,B 在圆心O 的正下方,BC 段水平,AB 段与BC 段平滑连接.球2、球3均放在BC 轨道上,质量m 1=0.4 kg 的球1从A 点由静止释放,球1进入水平轨道后与球2发生弹性正碰,球2再与球3发生弹性正碰,g =10 m/s 2.(1)求球1到达B 点时对轨道的压力大小;(2)若球2的质量m 2=0.1 kg ,求球1与球2碰撞后球2的速度大小;(3)若球3的质量m 3=0.1 kg ,为使球3获得最大的动能,球2的质量应为多少. 答案 (1)12 N (2)6.4 m/s (3)0.2 kg解析 (1)对球1从A 到B 应用动能定理:m 1gR =12m 1v 02 在B 点对球1应用牛顿第二定律:N -m 1g =m 1v 02R联立解得:v 0=4 m/s 、N =12 N由牛顿第三定律知球1在B 点对轨道的压力大小N ′=N =12 N.(2)球1、球2碰撞时,根据动量守恒定律有:m 1v 0=m 1v 1+m 2v 2由机械能守恒定律得: 12m 1v 02=12m 1v 12+12m 2v 22 解得:v 2=2m 1m 1+m 2v 0=6.4 m/s. (3)同理,球2、球3碰撞后:v 3=2m 2m 2+m 3v 2 则v 3=2m 2m 2+m 3·2m 1m 1+m 2v 0 代入数据得v 3= 1.6m 2+0.04m 2+0.5v 0, 由数学知识可知,当m 2=0.04m 2时,m 2+0.04m 2+0.5最小,v 3最大 所以m 2=0.2 kg.13.(多选)(2020·全国卷Ⅱ·21)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg 的静止物块以大小为5.0 m/s 的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s 的速度与挡板弹性碰撞.总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s ,反弹的物块不能再追上运动员.不计冰面的摩擦力,该运动员的质量可能为( )A .48 kgB .53 kgC .58 kgD .63 kg答案 BC解析 设运动员的质量为M ,第一次推物块后,运动员速度大小为v 1,第二次推物块后,运动员速度大小为v 2……第八次推物块后,运动员速度大小为v 8,第一次推物块后,由动量守恒定律知:M v 1=m v 0;第二次推物块后由动量守恒定律知:M (v 2-v 1)=m [v 0-(-v 0)]=2m v 0,……,第n 次推物块后,由动量守恒定律知:M (v n -v n -1)=2m v 0,各式相加可得v n =(2n -1)m v 0M ,则v 7=260 kg·m/s M ,v 8=300 kg·m/s M.由题意知,v 7<5 m/s ,则M >52 kg ,又知v 8>5 m/s ,则M <60 kg ,故选B 、C.。
第二节动量守恒定律碰撞爆炸反冲【基础梳理】提示:不受外力所受外力的矢量和为零m1v′1+m2v′2-Δp2所受合外力为零合力为零远大于守恒不增加守恒增加守恒可能增加【自我诊断】1.判一判(1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒.()(2)动量守恒只适用于宏观低速.()(3)当系统动量不守恒时无法应用动量守恒定律解题.()(4)物体相互作用时动量守恒,但机械能不一定守恒.()(5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相等.()(6)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中系统动量守恒.()提示:(1)√(2)×(3)×(4)√(5)√(6)√2.做一做(1)(2020·山东寿光模拟) 如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端,当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大提示:选C.两人及小车组成的系统所受合外力为零,系统动量守恒,根据动量守恒定律得m A v A+m B v B+m车v车=0,若小车不动,则m A v A+m B v B=0,由于不知道A、B质量的关系,所以两人速率不一定相等,故A错误;若小车向左运动,则A、B的动量和必须向右,而A向右运动,B向左运动,所以A的动量一定比B的大,故B错误,C正确;若小车向右运动,则A、B的动量和必须向左,而A向右运动,B向左运动,所以A的动量一定比B 的小,故D错误.(2)(2020·山东恒台一中高三诊考) 如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1 m/s、v2=2 m/s 的速度做相向运动,碰撞后两球粘在一起以0.5 m/s 的速度向左运动,则甲、乙两球的质量之比为()A.1∶1B.1∶2C.1∶3D.2∶1提示:选A.设甲、乙两球的质量分别为m1、m2,乙球的速度方向为正方向,根据动量守恒:m2v2-m1v1=(m1+m2)v,即2m2-m1=(m1+m2)×0.5,解得m1∶m2=1∶1,A正确.对动量守恒定律的理解和应用【知识提炼】1.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒.(2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒.2.动量守恒定律常用的四种表达形式(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.(2)Δp=p′-p=0:即系统总动量的增加量为零.(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.【典题例析】如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v0=2 m/s的速度相向运动,甲、乙和空间站在同一直线上且可视为质点.甲和他的装备总质量为M1=90 kg,乙和他的装备总质量为M2=135 kg,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg的物体A推向甲,甲迅速接住A后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,速度为v1,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v(相对于空间站)将物体A推出?(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.[解析](1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙运动的方向为正方向,则有M2v0-M1v0=(M1+M2)v1以乙和A组成的系统为研究对象,由动量守恒得M2v0=(M2-m)v1+m v代入数据联立解得v1=0.4 m/s,v=5.2 m/s.(2)以甲为研究对象,以甲接住A后运动的方向为正方向,由动量定理得Ft=M1v1-(-M1v0),代入数据解得F=432 N.[答案](1)5.2 m/s(2)432 N【迁移题组】迁移1动量守恒的条件判断1. (多选) (2020·甘肃天水高三期末)如图所示,木块B与水平面间的摩擦不计,子弹A 沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短.将子弹射入木块到刚相对于木块静止的过程称为Ⅰ,此后木块压缩弹簧的过程称为Ⅱ,则()A.过程Ⅰ中,子弹、弹簧和木块所组成的系统机械能不守恒,动量也不守恒B.过程Ⅰ中,子弹和木块所组成的系统机械能不守恒,动量守恒C.过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量也守恒D.过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量不守恒解析:选BD.子弹射入木块到刚相对于木块静止的过程,子弹和木块(或子弹、弹簧和木块)组成的系统所受合外力为零,系统动量守恒,但要克服摩擦力做功,产生热量,系统机械能不守恒,A错误,B正确;过程Ⅱ中,子弹、弹簧和木块所组成的系统受到墙壁的作用力,外力之和不为零,则系统动量不守恒,但系统只有弹簧弹力做功,机械能守恒,C错误,D正确.迁移2某一方向上的动量守恒问题2.(2020·福建龙岩高三期末)如图所示,在光滑的水平冰面上放置一个光滑的曲面体,曲面体的右侧与冰面相切,一个坐在冰车上的小孩手扶一球静止在冰面上.已知小孩和冰车的总质量为m1=40 kg,球的质量为m2=10 kg,曲面体的质量为m3=10 kg.某时刻小孩将球以v0=4 m/s的水平速度向曲面体推出,推出后,球沿曲面体上升(球不会越过曲面体).求:(1)推出球后,小孩和冰车的速度大小v 1;(2)球在曲面体上升的最大高度h .解析:(1)以球、小孩和冰车组成的系统为研究对象,取水平向左为正方向,由动量守恒定律得:m 2v 0-m 1v 1=0,解得:小孩和冰车的速度大小v 1=1 m/s.(2)以球和曲面体组成的系统为研究对象,取水平向左为正方向,由水平方向动量守恒得:m 2v 0=(m 2+m 3)v 2,解得:球在最大高度处与曲面体的共同速度v 2=2 m/s ;球在曲面体上升的过程,由机械能守恒定律得:12m 2v 20=12(m 2+m 3)v 22+m 2gh 解得:球在曲面体上升的最大高度h =0.4 m.答案:(1)1 m/s (2)0.4 m迁移3 爆炸、反冲现象中的动量守恒3.如图所示,光滑水平面上有三个滑块A 、B 、C ,质量关系是m A =m C =m 、m B =m 2.开始时滑块B 、C 紧贴在一起,中间夹有少量炸药,处于静止状态,滑块A 以速度v 0正对B 向右运动,在A 与B 碰撞之前,引爆B 、C 间的炸药,炸药爆炸后B 与A 迎面碰撞,最终A 与B 粘在一起,以速率v 0向左运动.求:(1)炸药爆炸过程中炸药对C 的冲量;(2)炸药的化学能有多少转化为机械能.解析:(1)全过程,A 、B 、C 组成的系统动量守恒m A v 0=-(m A +m B )v 0+m C v C炸药对C 的冲量:I =m C v C -0,解得:I =52m v 0,方向向右. (2)炸药爆炸过程,B 和C 组成的系统动量守恒m C v C -m B v B =0据能量关系:ΔE =12m B v 2B +12m C m 2C ,解得: ΔE =758m v 20. 答案:见解析1碰撞现象中规律的分析【知识提炼】1.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2. (3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v 后>v 前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v ′前≥v ′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,有 m 1v 1=m 1v ′1+m 2v ′212m 1v 21=12m 1v ′21+12m 2v ′22 解得v ′1=(m 1-m 2)v 1m 1+m 2,v ′2=2m 1v 1m 1+m 2. 结论:①当两球质量相等时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v ′1>0,v ′2>0,碰撞后两球都沿速度v 1的方向运动. ③当质量小的球碰质量大的球时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来. ④撞前相对速度与撞后相对速度大小相等.(2)完全非弹性碰撞①撞后共速.②有动能损失,且损失最多.【典题例析】如图所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.[解析] A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得m v 0=m v A 1+M v C 1①12m v 20=12m v 2A 1+12M v 2C 1② 联立①②式得v A 1=m -M m +Mv 0③ v C 1=2m m +Mv 0④ 如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A 2≤v C 1⑥联立④⑤⑥式得m 2+4mM -M 2≥0解得m ≥(5-2)M另一解m ≤-(5+2)M 舍去.所以,m 和M 应满足的条件为 (5-2)M ≤m <M .[答案] (5-2)M ≤m <M【迁移题组】迁移1 碰撞的可能性分析1.(2020·天津高三质检)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg ·m/s ,p 2=7 kg ·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg ·m/s ,则两球质量m 1与m 2间的关系可能是 ( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2解析:选C.甲、乙两球在碰撞过程中动量守恒,所以有p 1+p 2=p 1′+p 2′,即p 1′=2 kg ·m/s.由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加,所以有p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2,所以有m 1≤2151m 2.因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<57m 2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1≤p 2′m 2,所以m 1≥15m 2,C 正确. 迁移2 弹性碰撞规律求解2. 如图所示,在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动.在小球A 的前方O 点处有一质量为m 2的小球B 处于静止状态,Q 点处为一竖直的墙壁.小球A 与小球B 发生弹性正碰后小球A 与小球B 均向右运动.小球B 与墙壁碰撞后以原速率返回并与小球A 在P 点相遇,PQ =2PO ,则两小球质量之比m 1∶m 2为 ( )A .7∶5B .1∶3C .2∶1D .5∶3解析:选D.设A 、B 两个小球碰撞后的速度分别为v 1、v 2,由动量守恒定律有m 1v 0=m 1v 1+m 2v 2,发生弹性碰撞,不损失动能,故根据能量守恒定律有12m 1v 20=12m 1v 21+12m 2v 22,两个小球碰撞后到再次相遇,其速率不变,由运动学规律有v 1∶v 2=PO ∶(PO +2PQ )=1∶5,联立三式可得m 1∶m 2=5∶3,D 正确.迁移3 非弹性碰撞的分析3.(多选)(2020·宁夏银川模拟)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a 、b 分别为A 、B 两球碰前的位移随时间变化的图象,c 为碰撞后两球共同运动的位移随时间变化的图象,若A 球质量是m =2 kg ,则由图判断下列结论正确的是 ( )A .碰撞前、后A 球的动量变化量为4 kg ·m/sB .碰撞时A 球对B 球所施的冲量为-4 N ·sC .A 、B 两球碰撞前的总动量为3 kg ·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J解析:选ABD.根据题图可知,碰前A 球的速度v A =-3 m/s ,碰前B 球的速度v B =2 m/s ,碰后A 、B 两球共同的速度v =-1 m/s ,故碰撞前、后A 球的动量变化量为Δp A =m v -m v A =4 kg ·m/s ,A 正确;A 球的动量变化量为4 kg ·m/s ,碰撞过程中动量守恒,B 球的动量变化量为-4 kg ·m/s ,根据动量定理,碰撞过程中A 球对B 球所施的冲量为-4 N ·s ,B 正确;由于碰撞过程中动量守恒,有m v A +m B v B =(m +m B )v ,解得m B =43kg ,故碰撞过程中A 、B 两球组成的系统损失的动能为ΔE k =12m v 2A +12m B v 2B -12(m +m B )v 2=10 J ,D 正确;A 、B 两球碰撞前的总动量为p =m v A +m B v B =(m +m B )v =-103kg ·m/s ,C 错误.碰撞问题的解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v ′1=m 1-m 2m 1+m 2v 1;v ′2=2m 1m 1+m 2v 1. (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.当m 1≫m 2,且v 2=0时,碰后质量大的速率不变,质量小的速率为2v 1.当m 1≪m 2,且v 2=0时,碰后质量小的球原速率反弹.动量守恒的常见模型【知识提炼】1.“人船”模型(1)两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船”模型问题.(2)“人船”模型的特点①两物体满足动量守恒定律:m 1v 1-m 2v 2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. ③应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的.2.“子弹打木块”模型(1)木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒.(2)两者发生的相对位移为子弹射入的深度x 相.(3)根据能量守恒定律,系统损失的动能等于系统增加的内能.(4)系统产生的内能Q =F f ·x 相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(5)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L (L 为木块的长度).3.“弹簧类”模型对两个(或两个以上)物体与弹簧组成的系统,在能量方面,由于发生弹性形变的弹簧会具有弹性势能,系统的总动能将发生变化.若系统除重力和系统内弹力以外的力不做功,系统机械能守恒.若还有其他外力做功,这些力做功之和等于系统机械能改变量.做功之和为正,系统总机械能增加,反之减少.在相互作用过程中,弹簧两端的物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.系统内每个物体除受弹簧弹力外所受其他外力的合力为零,当弹簧为自然长度时,系统内弹簧某一端的物体具有最大速度.【典题例析】如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)[解析]设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,以v0方向为正方向,先选乙船、人和货物为研究系统,由动量守恒定律得12m v0=11m v1-m v min①再选甲船、人和货物为研究系统,由动量守恒定律得10m×2v0-m v min=11m v2②为避免两船相撞应满足v 1=v 2③联立①②③式得v min =4v 0.[答案] 4v 0【迁移题组】迁移1 “人船”模型1.(2020·河南淮阳中学模拟)有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量.他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L .已知他自身的质量为m ,则船的质量为 ( )A.m (L +d )dB.m (L -d )dC.mL dD.m (L +d )L解析:选B.画出如图所示的草图,设人走动时船的速度大小为v ,人的速度大小为v ′,船的质量为M ,人从船尾走到船头所用时间为t .则v =d t ,v ′=L -d t;人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得M v -m v ′=0,解得船的质量M =m (L -d )d,B 正确.迁移2 “子弹打木块”模型2.(2020·河南天一大联考) 如图所示,质量为M 的长木块放在水平面上,子弹沿水平方向射入木块并留在其中,测出木块在水平面上滑行的距离为s .已知木块与水平面间的动摩擦因数为μ,子弹的质量为m ,重力加速度为g ,空气阻力可忽略不计,则由此可得子弹射入木块前的速度大小为 ( )A.m +M m 2μgsB.M -m m2μgs C.m m +M μgs D.m M -mμgs 解析:选A.子弹击中木块过程,系统内力远大于外力,系统动量守恒,以向右为正方向,由动量守恒定律得:m v 1=(M +m )v ,解得:v =m v 1M +m ;子弹击中木块后做匀减速直线运动,对子弹与木块组成的系统,由动能定理得:-μ(M +m )gs =0-12(M +m )v 2,解得:v 1=M +m m·2μgs ;故A 正确,B 、C 、D 错误. 迁移3 “弹簧类”模型3.如图所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.木块A 以速度v 0=10 m/s 由滑板B 左端开始沿滑板B 上表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2.求:(1)弹簧被压缩到最短时木板A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.解析:(1)弹簧被压缩到最短时,木块A与滑板B具有相同的速度,设为v,从木块A 开始沿滑板B上表面向右运动至弹簧被压缩到最短的过程中,整体动量守恒,则m v0=(M+m)v解得v=mM+mv0代入数据得木块A的速度v=2 m/s.(2)在木块A压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大,由能量关系知,最大弹性势能为E pm=12m v2-12(m+M)v2-μmgL代入数据解得E pm=39 J.答案:(1)2 m/s(2)39 J动量守恒中的临界极值问题【对点训练】1. 如图所示,一质量M=2 kg的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B.从弧形轨道上距离水平轨道高h=0.3 m 处由静止释放一质量m A=1 kg的小球A,小球A沿轨道下滑后与小球B发生弹性正碰,碰后小球A被弹回,且恰好追不上平台.已知所有接触面均光滑,重力加速度为g.求小球B 的质量.(取重力加速度g=10 m/s2)解析:设小球A下滑到水平轨道上时的速度大小为v1,平台水平速度大小为v,由动量守恒定律有0=m A v1-M v由能量守恒定律有m A gh=12m A v 21+12M v2解得v1=2 m/s,v=1 m/s小球A、B碰后运动方向相反,设小球A、B的速度大小分别为v1′和v2.由于碰后小球A 被弹回,且恰好追不上平台,则此时小球A的速度大小等于平台的速度大小,有v1′=1 m/s由动量守恒定律得m A v1=-m A v1′+m B v2由能量守恒定律有12m A v 21=12m A v′21+12m B v22解得m B=3 kg.答案:3 kg2. (2020·河南郑州模拟)如图所示,光滑水平地面上有一小车,车上有固定的光滑斜面和连有轻弹簧的挡板,弹簧处于原长状态,自由端恰在C点,小车(包括光滑斜面和连有弹簧的挡板)总质量为M=2 kg.物块从斜面上A点由静止滑下,经过B点时无能量损失.已知物块的质量m=1 kg,A点到B点的竖直高度为h=1.8 m,BC的长度为L=3 m,BD段光滑.g 取10 m/s2.求在运动过程中:(1)弹簧弹性势能的最大值;(2)物块第二次到达C 点的速度.解析:(1)物块由A 点到B 点的过程中,由动能定理得mgh =12m v 2B-0,代入数据解得v B =6 m/s.物块由B 点运动到将弹簧压缩到最短的过程中,系统动量守恒,取v B 的方向为正方向,m v B =(M +m )v ,弹簧压缩到最短时弹簧的弹性势能最大,由能量守恒可得E pmax =12m v 2B-12(M +m )v 2,由以上两式可得E pmax =12 J. (2)物块由B 点运动到第二次到达C 点的过程中,系统动量守恒,取v B 方向为正方向,则有m v B =m v C +M v ′,物块由B 点运动到第二次到达C 点的整个过程中,根据机械能守恒,有12m v 2B =12m v 2C +12M v ′2,联立以上两式并结合题意可解得v C =-2 m/s ,即物块第二次到达C 点的速度大小为2 m/s ,方向水平向左.答案:见解析(建议用时:40分钟)一、单项选择题1.如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒解析:选C.两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故A、B错误,C正确;甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,D错误.2.(2020·福建泉州高三质检)“爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向东,则另一块的速度为 ( )A .3v 0-vB .2v 0-3vC .3v 0-2vD .2v 0+v解析:选C.取水平向东为正方向,爆炸过程系统动量守恒,3m v 0=2m v +m v x ,可得v x =3v 0-2v ,C 正确.3.(2017·高考全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) ( )A .30 kg ·m/sB .5.7×102 kg ·m/sC .6.0×102 kg ·m/sD .6.3×102 kg ·m/s解析:选A.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -m v 0=0,解得p =m v 0=0.050 kg ×600 m/s =30 kg ·m/s ,A 正确.4. 如图所示,在光滑的水平面上有三个完全相同的小球,它们排成一条直线,小球2、3静止,并靠在一起,球1以速度v 0射向它们,设碰撞中不损失机械能,则碰后三个小球的速度值是 ( )A .v 1=v 2=v 3=13v 0B .v 1=0,v 2=v 3=12v 0 C .v 1=0,v 2=v 3=12v 0 D .v 1=v 2=0,v 3=v 0解析:选D.由题设条件,三球在碰撞过程中总动量和总动能守恒.若各球质量为m ,而碰撞前系统总动量为m v 0,总动能为12m v 20.A 、B 中的数据都违反了动量守恒定律,故不可能.假如C 正确,则碰后总动量为m v 0,但总动能为14m v 20,这显然违反了机械能守恒定律,故也不可能.故D 正确,则既满足动量守恒定律,也满足机械能守恒定律.5.(2019·高考江苏卷)质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为 ( )A.m Mv B.M m v C.m m +M v D.M m +Mv 解析:选B.对小孩和滑板组成的系统,由动量守恒定律有0=M v -m v ′,解得滑板的速度大小v ′=M v m,B 正确. 6. 如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是 ( )A.mh M +mB.Mh M +mC.mh (M +m )tan αD.Mh (M +m )tan α解析:选C.m 与M 组成的系统在水平方向上动量守恒,设m 在水平方向上对地位移为x 1,M 在水平方向上对地位移为x 2,因此有0=mx 1-Mx 2①,且x 1+x 2=h tan α②,由①②式可得x 2=mh (M +m )tan α,故选C.7. 如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是()A.2LMM+m B.2Lm M+mC.MLM+m D.mL M+m解析:选B.分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L.小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v1、v2,有m v1=M v2,故ms1=Ms2,s1+s2=2L,其中s1代表小球的水平位移大小,s2代表小车的水平位移大小,因此s2=2LmM+m,B正确.8. 如图所示,质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A球的速度是6 m/s,B球的速度是-2 m/s,A、B两球发生对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是()。
第2讲动量守恒定律碰撞爆炸反冲运动A组基础过关1.(2019甘肃兰州月考)一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示。
则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒答案C动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒。
子弹射入木块瞬间有部分机械能转化为内能,故系统机械能不守恒。
只有选项C正确。
2.(多选)如图所示,在水平光滑地面上有A、B两个木块,A、B之间用一轻弹簧连接。
A靠在墙壁上,用力F向左推B使两木块之间弹簧压缩并处于静止状态。
若突然撤去力F,则下列说法中正确的是()A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒答案BC撤去F后,木块A离开墙壁前,竖直方向两木块及弹簧组成的系统所受的重力与支持力平衡,合力为零;而水平方向墙对A有向右的弹力,所以系统所受的合外力不为零,系统的动量不守恒,但系统的机械能守恒,故A错误,B正确。
A离开墙壁后,系统水平方向不受外力,竖直方向外力平衡,所以系统所受的合外力为零,系统的动量守恒,因弹簧弹力属于系统内力,则系统机械能也守恒,故C正确,D错误。
3.如图所示,一质量M=3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0 kg的小木块A。
给A和B以大小均为4.0 m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离木板B。
在小木块A做加速运动的时间内,木板速度大小可能是()A.1.8 m/sB.2.4 m/sC.2.8 m/sD.3.0 m/s答案B A先向左减速到零,再向右做加速运动,在此期间,木板做减速运动,最终它们保持相对静止,设A减速到零时,木板的速度为v1,最终它们的共同速度为v2,取水平向右为正方向,则Mv-mv=Mv1,Mv1=(M+m)v2,可得v1=m/s,v2=2 m/s,所以在小木块A做加速运动的时间内,木板速度大小应大于2.0 m/s而小于m/s,只有选项B正确。
4.(2017福建泉州质检)“爆竹声中一岁除,春风送暖入屠苏。
”爆竹声响是辞旧迎新的标志,是喜庆心情的流露。
有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向东;则另一块的速度为()A.3v0-vB.2v0-3vC.3v0-2vD.2v0+v答案C取水平向东为正方向,爆炸过程中系统动量守恒,3mv0=2mv+mv x,可得v x=3v0-2v,C 项正确。
5.(2019广东深圳期末)将静置在地面上、质量为M(含燃料)的火箭模型点火,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体。
忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是()A.v0B.v0C.-v0 D.-v0答案D取竖直向下为正方向,由动量守恒定律可得0=mv0-(M-m)v',解得v'=-,选项D正确。
6.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量之比为3∶1。
不计质量损失,取重力加速度g=10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是()答案B弹丸爆炸瞬间的内力远大于外力,故爆炸瞬间动量守恒。
因两弹片均水平飞出,飞行时间t==1 s。
取水平向右为正方向,由水平速度v=知,选项A中,v甲=2.5 m/s,v乙=-0.5 m/s;选项B中,v甲=2.5 m/s,v乙=0.5 m/s;选项C中,v甲=1 m/s,v乙=2 m/s;选项D中,v甲=-1 m/s,v乙=2 m/s。
因爆炸瞬间动量守恒,故mv=m甲v甲+m乙v乙,其中m甲=m,m乙=m,v=2 m/s,代入数值计算知选项B正确。
7.两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h,物块从静止滑下,然后又滑上劈B。
求物块在B上能够达到的最大高度。
答案h解析物块沿劈A下滑和沿劈B上滑的过程,物块与A组成的系统、物块与B组成的系统在水平方向所受外力为零,故在水平方向动量均守恒。
设物块到达劈A的底端时,物块和劈A的速度大小分别为v和v1,由机械能守恒和动量守恒有mgh=mv2+M1M1v1=mv设物块在劈B上达到的最大高度为h',此时物块和B的共同速度大小为v2,由机械能守恒和动量守恒有mgh'+(M2+m)=mv2mv=(M2+m)v2联立以上各式解得h'=h8.(2019山东莱芜期末)如图所示,MN是水平轨道,NP是倾角θ=45°的无限长斜轨道,长为L=0.8 m的细线一端固定在O点,另一端系着质量为m B=2 kg小球B,当细线伸直时B球刚好与MN轨道接触但没有挤压。
开始时细线伸直,B球静止在MN轨道上,在MN轨道上另一个质量为m A=3 kg小球A以速度v0向右运动。
(不计一切摩擦力及空气阻力,重力加速度g=10 m/s2)(1)若A、B球发生弹性碰撞后B能在竖直面内做圆周运动,求v0的取值范围。
(2)在满足(1)的条件下,轨道NP上有多长的距离不会被A球击中?答案见解析解析(1)A、B两球发生弹性碰撞,由动量守恒定律得m A v0=m A v A+m B v B由机械能守恒定律得m A=m A+m B解得v A=,v B=碰后B球在竖直面内做圆周运动,有两种情况:第一种情况,B球在竖直面内做完整的圆周运动,则它到最高点的速度v B'≥由机械能守恒定律得m B=m B g·2L+m B v B'2解得v0≥m/s第二种情况,B球运动的最大高度不超过L由机械能守恒定律得m B≤m B gL解得v0≤m/sv0的取值范围为0<v0≤m/s或v0≥m/s(2)由(1)问可知:碰后A球的速度0<v A≤m/s或v A≥m/sA球离开水平轨道后做平抛运动,有x=v A t,y=gt2,又由几何关系知tan 45°=解得A球落到斜轨道上与N点的距离d==解得0<d≤m或d≥m故轨道NP上不会被A球击中的距离Δd=-m=mB组能力提升9.(2019江西赣州信丰月考)如图所示,B、C、D、E、F 5个小球并排放置在光滑的水平面上,B、C、D、E 4个球质量相等,而F球质量小于B球质量,A球的质量等于F球质量。
A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.3个小球静止,3个小球运动B.4个小球静止,2个小球运动C.5个小球静止,1个小球运动D.6个小球都运动答案A因A、B质量不等,m A<m B,则A、B相碰后A向左运动,B向右运动。
B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止。
E、F质量不等,m E>m F,则E、F都向右运动。
故A正确,B、C、D错误。
10.(多选)(2018广东六校联考)如图甲所示,光滑平台上的物体A以初速度v0滑到上表面粗糙的水平小车B上,车与水平面间的动摩擦因数不计,图乙为物体A与小车B的v-t图像,由此可知()A.小车上表面长度B.物体A与小车B的质量之比C.物体A与小车B上表面的动摩擦因数D.小车B获得的动能答案BC由图像可知,A、B最终以共同速度v1匀速运动,不能确定小车上表面长度,故A,故可以确定物体A与小车B的质量错误;由动量守恒定律得m A v0=(m A+m B)v1,解得=-之比,故B正确;由图像可以知道A相对小车B的位移Δx=v0t1,根据能量守恒得μm A gΔx=m A-(m A+m B),根据B中求得质量关系,可以解出动摩擦因数,故C正确;由于小车B的质量不可知,故不能确定小车B获得的动能,故D错误。
11.(多选)(2018湖南六校联考)如图所示,小车的上面固定一个光滑弯曲圆管道,整个小车(含管道)的质量为2m,原来静止在光滑的水平面上。
今有一个可以看做质点的小球,质量为m,半径略小于管道半径,以水平速度v从左端滑上小车,小球恰好能到达管道的最高点,然后从管道左端滑离小车。
关于这个过程,下列说法正确的是()A.小球滑离小车时,小车回到原来位置B.小球滑离小车时相对小车的速度大小为vC.车上管道中心线最高点的竖直距离为D.小球从滑进管道到滑到最高点的过程中,小车的动量变化大小是答案BC小球恰好到达管道的最高点,说明在最高点时小球和管道之间相对速度为0,小球从滑进管道到滑到最高点的过程中,由动量守恒有mv=(m+2m)v',得v'=,小车动量变化大小Δp=2m·=mv,D项错误。
小球从滑进管道到滑到最高点的过程中,由机械能守恒有车mgH=mv2-(m+2m)v'2,得H=,C项正确。
小球从滑上小车到滑离小车的过程,由动量守恒和机械能守恒有:mv=mv1+2mv2,mv2=m+·2m,解得v1=-,v2=v,则小球滑离小车时相对小车的速度大小为v+v=v,B项正确。
由以上分析可知在整个过程中小车一直向右运动,A项错误。
12.(多选)(2019河南开封质检)在光滑的水平桌面上有等大的质量分别为M=0.6 kg、m=0.2 kg 的两个小球,中间夹着一个被压缩的、具有E p=10.8 J弹性势能的轻弹簧(弹簧与两球不相连),开始时系统处于静止状态。
现突然释放弹簧,质量为m的小球脱离弹簧后滑向与水平面相切、半径为R=0.425 m的竖直放置的光滑半圆形轨道,如图所示。
g取10 m/s2,则下列说法正确的是()A.质量为m的小球从轨道底端A运动到顶端B的过程中所受合外力的冲量大小为3.4 N·sB.质量为M的小球离开轻弹簧时获得的速度为9 m/sC.若半圆轨道半径可调,则质量为m的小球从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对质量为m的小球的冲量大小为1.8 N·s答案AD释放弹簧过程中,由动量守恒定律得Mv1=mv2,由机械能守恒定律得E p=M+m,解得v1=3 m/s,v2=9 m/s,故B项错误;对质量为m的小球,从A运动到B的过程,由机械能守恒定律得m=mv2'2+mg·2R,解得v2'==8 m/s,由动量定理得I合=mv2'-(-mv2)=3.4 N·s,故A项正确;若半圆轨道半径R可调,则质量为m的小球到达B点时的速度大小为v B=,从B点飞出后,由平抛运动规律可知,在水平方向有x=v B t,在竖直方向有2R=gt2,解得x=2-,当R=1.012 5 m时,x最大,故质量为m的小球从B点飞出后落在水平桌面上的水平距离随轨道半径的增大先增大后减小,故C项错误;弹簧弹开过程,弹力对质量为m的小球的冲量I=mv2=1.8 N·s,故D项正确。