动量、动量守恒定律
- 格式:pdf
- 大小:193.14 KB
- 文档页数:8
动量和动量守恒定律动量是物体运动的重要物理量,它描述了物体在运动中的惯性和力的效果。
动量守恒定律是描述一个孤立系统中动量守恒的原理。
本文将详细介绍动量和动量守恒定律的概念、公式以及实际应用。
一、动量的概念和公式动量是一个矢量量,它的大小等于物体的质量乘以其速度。
动量的公式可以表示为:p = m * v其中,p代表动量,m代表物体的质量,v代表物体的速度。
根据动量的定义和公式,我们可以得出以下结论:1. 动量与物体的质量成正比,即物体的质量越大,其动量也越大。
2. 动量与物体的速度成正比,即物体的速度越大,其动量也越大。
3. 动量是矢量量,具有方向性。
方向与速度的方向一致。
二、动量守恒定律的原理动量守恒定律是描述一个孤立系统中动量守恒的基本原理。
在一个孤立系统中,如果没有外力作用,系统内物体的动量总和保持不变。
具体而言,如果一个物体在没有外力作用下,其动量守恒定律可以表示为:m1 * v1 + m2 * v2 = m1 * v'1 + m2 * v'2其中,m1和m2分别代表参与碰撞的两个物体的质量,v1和v2分别代表碰撞前两个物体的速度,而v'1和v'2则代表碰撞后两个物体的速度。
三、动量守恒定律的应用动量守恒定律是物理学中的重要定律,广泛应用于各个领域。
以下是一些常见的应用:1. 碰撞问题:动量守恒定律可用于解析碰撞问题。
在碰撞中,通过应用动量守恒定律,可以计算出物体碰撞前后的速度。
2. 火箭推进原理:根据动量守恒定律,当火箭喷射出高速废气时,枪炮发射子弹时,火箭或子弹的向后喷射废气或火药的速度减小,而火箭或子弹的速度相应增加。
3. 交通安全:根据动量守恒定律,人行道上的行人在与汽车碰撞时,如果行人速度较快,可能会对汽车产生较大的碰撞力,导致严重伤害。
因此,交通中的速度限制和行人过街设施的设置都是基于动量守恒定律的。
4. 运动员技巧:运动员在一些体育项目中,通过善用动量守恒定律来改变自身的状态。
动量定理与动量守恒定律动量是物体运动的重要物理量,揭示了物体运动的性质以及相互作用过程中的变化规律。
动量定理和动量守恒定律是描述物体运动中动量变化和守恒的重要原理。
一、动量定理动量定理又称牛顿第二定律,它指出:当外力作用于物体时,物体的动量变化率等于外力的合力。
在公式表示上,动量定理可以表达为:F = ma其中,F为物体所受到的合外力,m为物体的质量,a为物体的加速度。
根据动量定理,可以得出以下结论:1. 外力对物体的作用时间越长,物体的动量变化越大。
2. 给定外力作用时间不变的情况下,物体的质量越大,其动量的变化越小。
3. 给定物体质量不变的情况下,外力的大小越大,物体的动量变化越大。
二、动量守恒定律动量守恒定律是描述封闭系统中动量守恒的原理。
在封闭系统中,物体之间发生相互作用,它们的动量之和保持不变。
根据动量守恒定律,可以得出以下结论:1. 在没有外力作用的封闭系统中,物体的总动量保持不变。
2. 当物体发生碰撞或相互作用时,只要没有外力干扰,物体的动量总和保持不变。
3. 动量的守恒还适用于多个物体之间的相互作用,无论是弹性碰撞还是非弹性碰撞。
应用动量守恒定律,可以对各种现象进行解释,例如:1. 汽车碰撞:当两辆车发生碰撞时,它们的合动量在碰撞前后保持不变,因此可以用动量守恒定律来分析和解释碰撞过程。
2. 运动员跳远:运动员在起跳瞬间通过腿部发力,推动自己前进。
由于系统是封闭的,跳远过程中动量守恒,从而产生更大的跳远距离。
3. 火箭喷气推进:火箭通过排出高速喷射的气体,产生反冲力推动自身前进。
根据动量守恒,喷气气体的动量变化与火箭的动量变化相互抵消,从而实现火箭的推进。
综上所述,动量定理和动量守恒定律是物理学中对物体运动和相互作用过程进行描述的重要原则。
了解和应用这些定律,可以更好地理解和解释物体的运动行为,对各种物理现象进行分析和解决问题。
动力学三大守恒定律【知识专栏】动力学三大守恒定律1. 引言及概述动力学三大守恒定律是物理学中非常重要的概念,它们为我们理解和描述物体运动提供了基础规律。
这三大守恒定律分别是动量守恒定律、角动量守恒定律和能量守恒定律。
本文将以从简到繁、由浅入深的方式来逐步探讨这三大守恒定律的背后原理和应用,以帮助读者更全面地理解这一主题。
2. 动量守恒定律2.1 动量的基本概念为了更好地理解动量守恒定律,首先需要了解动量的基本概念。
动量是物体运动的数量度,表示物体在运动过程中所具有的惯性。
动量的大小与物体的质量和速度相关,可以用数学公式 p = m * v 表示,其中 p 为动量,m 为物体的质量,v 为物体的速度。
2.2 动量守恒定律的表述根据动量守恒定律,一个封闭系统中物体的总动量在没有外力作用的情况下保持不变。
也就是说,如果一个物体的动量发生改变,那么系统中其他物体的动量总和将相应地发生改变,以保持系统的总动量守恒。
2.3 动量守恒定律的应用动量守恒定律在多个领域中都有应用,例如力学、流体力学和电磁学等。
在碰撞问题中,我们可以利用动量守恒定律来分析碰撞前后物体的速度和质量变化。
在交通事故中,通过应用动量守恒定律,我们可以了解事故发生时车辆的速度和冲击力对乘客的影响,并提出相应的安全建议。
3. 角动量守恒定律3.1 角动量的基本概念角动量是物体绕某一轴旋转时所具有的运动状态,它是描述物体旋转惯性的量度。
角动量的大小与物体的惯性和旋转速度相关,可以用数学公式L = I * ω 表示,其中 L 为角动量,I 为物体的转动惯量,ω 为物体的角速度。
3.2 角动量守恒定律的表述根据角动量守恒定律,一个封闭系统中物体的总角动量在没有外力矩作用的情况下保持不变。
即使系统中发生了旋转速度的改变,但系统的总角动量仍然保持恒定。
3.3 角动量守恒定律的应用角动量守恒定律在天体物理学、自然界中的旋转现象等领域中具有广泛的应用。
它被用来解释行星和卫星的自转、陀螺的稳定性以及漩涡旋转等自然现象。
选修3-5动量知识点总结一、对冲量的理解1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。
2、I 合 的求法:A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.tB 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。
1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。
2、矢量性:ΔP 的方向由v ∆决定,与1p 、2p 无必然的联系,计算时先规定正方向。
三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。
B 、近似条件:系统内力远大于外力,则系统动量近似守恒。
C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。
四、碰撞类型及其遵循的规律:结论:等质量 弹性正碰 时,两者速度交换。
依据:动量守恒、动能守恒五、判断碰撞结果是否可能的方法:碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。
动能和动量的关系:mp E K 22= K mE p 2=六、反冲运动:1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。
2、规律:系统动量守恒3、人船模型:条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。
七、临界条件:“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v 。
八、动力学规律的选择依据:1、题目涉及时间t ,优先选择动量定理;2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒;3、题目涉及位移s ,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律;4、题目涉及运动的细节、加速度a ,则选择牛顿运动定律+运动学规律;九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。
典型练习一、基本概念的理解:动量、冲量、动量的改变量1、若一个物体的动量发生了改变,则物体的( ) A 、速度大小一定变了 B 、速度方向一定变了 C 、速度一定发生了改变 D 、加速度一定不为02、质量为m 的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。
龙文教育动量知识点总结一、对冲量的理解1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。
2、I 合 的求法:A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.tB 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。
1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。
2、矢量性:ΔP 的方向由v ∆决定,与1p 、2p 无必然的联系,计算时先规定正方向。
三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。
B 、近似条件:系统内力远大于外力,则系统动量近似守恒。
C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。
四、碰撞类型及其遵循的规律:结论:等质量 弹性正碰 时,两者速度交换。
依据:动量守恒、动能守恒五、判断碰撞结果是否可能的方法:碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。
动能和动量的关系:mp E K 22= K mE p 2=六、反冲运动:1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。
2、规律:系统动量守恒3、人船模型:条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。
七、临界条件:“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v 。
八、动力学规律的选择依据:1、题目涉及时间t ,优先选择动量定理;2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒;3、题目涉及位移s ,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律;4、题目涉及运动的细节、加速度a ,则选择牛顿运动定律+运动学规律;九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。
典型练习一、基本概念的理解:动量、冲量、动量的改变量1、若一个物体的动量发生了改变,则物体的()A、速度大小一定变了B、速度方向一定变了C、速度一定发生了改变D、加速度一定不为02、质量为m的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。