常见概率分布期望方差以及分布图汇总
- 格式:pdf
- 大小:1.74 MB
- 文档页数:6
常见分布的期望和方差概率与数理统计重点摘要1、正态分布的计算: VF(x) P(X x)(X) o2、 随机变量函数的概率密度: X 是服从某种分布的随机变量,求 Y f(X)的概率密度: f y (y) f x (x)[h(y)] h'(y)。
(参见 P66〜72)x y3、 分布函数F(x,y) f (u, v)dudv 具有以下基本性质:⑴、是变量x , y 的非降函数;⑵、0 F(x,y) 1,对于任意固定的x , y 有:F( ,y) F(x, )0 ; ⑶、F(x,y)关于x右连续,关于y 右连续;⑷、对于任意的(x i , yj,(X 2, y 2), X i X 2, y i y ,有下述不等式成立:为一维正态分布4、一个重要的分布函数1:F(x,y)2f(x,y)F(x,y)x y62 , 2(x24)( y 9)5、二维随机变量的边缘分布:边缘概率密度:f x (X ) f Y (y)f (x, y)dy f (x, y)dxx y 、 (— arctan-)(— arctan‘)的概率 密度为2 3xF x (x) F(x,)[边缘分布函数:yF Y (y) F( ,y) y[f(u,y)dy]du二维正态分布的边缘分布 f(x,v)dx]dv6随机变量的独立性:若F(x,y) F X (x)F Y (y)则称随机变量X , Y 相互独立。
简称X 与Y 独立7、两个独立随机变量之和的概率密度:f Z (z) f X (x)f Y (z x)dx f Y (y)f X (z y)dy 其中 Z = X + Y 8、两个独立正态随机变量的线性组合仍服从正态分布,即2 2 2 2Z aX bY: N(a 1 b 2,a 1 b 2 。
9、期望的性质:…( 3)、E(X Y) E(X) E(Y) ; (4)、若 X , 丫 相互独立,则E(XY) E(X)E(Y) O10、方差: D(X) E(X 2) (E(X))2 O若 X , 丫不相关,则 D(X Y) D(X) D(Y),否则 D(X Y) D(X) D(Y) 2Cov(X,Y), D(X Y) D(X) D(Y) 2Cov(X,Y)称:X 与丫不相关。
常见分布的期望和方差概率与数理统计重点摘要X — 41、 正态分布的计算: F(x) = p(x 兰x)=e ( ------ )。
c2、 随机变量函数的概率密度:X 是服从某种分布的随机变量, 求丫 = f(X)的概率密度:f Y (y)= f x (x)[h(y)]|h'(y)|。
(参见P66〜_ x y3、分布函数F(x,y)=f f f(u,v)dudv 具有以下基本性质:0<F(x,y)<1,对于任意固定的 x , y 有:F^,y) = F(x^)=0 ;对于任意的(x i , y i ), (x 2, y 2), X i<:x 2,y i<y 2,有下述不等式成立:r 24、一个重要的分布函数: F(x,y)=l&+arcta n 与Q+arcta n')的概率密度为:f (x, y)=丄 F (x, y) = 2 22兀亠 2 2 2 3 c x c y 兀(x + 4)(y +9)5、二维随机变量的边缘分布:f x (x) = J*f(x, y)dy边缘概率密度:tf Y (y) = Lcf(x,y)dxx -beF X (x^F(x^^ f J f f (u,y)dy]du边缘分布函数: '4; 二维正态分布的边缘分布为一维正态分布。
⑴、 是变量x , y 的非降函数;⑵、 ⑶、 F(x,y)关于x 右连续,关于y 右连续;⑷、yF Y(y)=F(P,y) = UJf(x,v)dx]dv随机变量的独立性:若 F(x, y) =F x (x)F Y (y)则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
两个独立正态随机变量的线性组合仍服从正态分布,即 Z=aX+b Y L N(a 已卄巴^务;+b 2cr 2)o13、k 阶原点矩:vk=E(X k),k 阶中心矩:4k =E[(X-E(X))k] o16、独立同分布序列的中心极限定理:6、 7、 两个独立随机变量之和的概率密度:f z (z) = J f x (x)f Y (z-x)dx= J f Y (y)f x (z-y)dy 其中Z = X + YJ-oC9、 期望的性质: (3)、EX Y )EX( )EY();(4)、若 X ,Y 相互独立,则 E(XY) = E(X)E(Y) o10、方差: D(X ) =E(X 2)-(E(X))2o若 X , Y 不相关,贝y D(X + Y) = D(X) + D(Y),否贝U D(X + Y) = D(X)+D(Y) + 2Cov(X,Y),D(X -Y) = D(X) +D(Y) -2Cov(X,Y)11、协方差:Cov(X,Y) =E[(X -E(X))(Y-E(Y))],若 X , Y 独立,则 Cov(X,Y) = 0,此时称:X 与 Y 不相关。
概率论与数理统计:六大基本分布及其期望和方差绪论:概率论中有六大常用的基本分布,大致可分成两类:离散型(0-1分布、二项分布、泊松分布),连续型(均匀分布、指数分布、正态分布)。
补充:在进入正文之前先讲一下期望和均值的一些区别:期望和均值都具有平均的概念,但期望是指的随机变量总体的平均值,而均值则是指的从总体中抽样的样本的平均值,即前者是理想的均值,而后者则是实际观测出来的数据的均值。
例如:对于一个六面的骰子,其期望E = (1+2+3+4+5+6)/ 6 = 3.5。
然后掷5次骰子,每次掷的点数分别为1,3,5,5,1,则平均值为(1+3+5+5+1)/ 5 = 3。
可以发现两者并不相等。
方差(variance):方差是各个数据与平均数之差的平方的平均数,方差度量了随机变量与期望(也可说均值)之间的偏离程度。
标准差为方差的开根号。
协方差(Covariance):用于衡量两个变量之间的误差,而方差是协方差的特殊情况,即当两个变量相同的情况。
其公式如下:,表示含义为:E(∑(“X与其均值之差” * “Y与其均值之差”))当协方差为正时:表示两变量正相关(即同时变大变下)。
当协方差为负时:表示两变量负相关(即你变大,我变小,反之亦然)。
当协方差为0时:两变量相互独立。
相关系数:其公式如下,表示的含义为用X和Y的协方差除以X 和Y的标准差。
所以相关系数也可以看成协方差,一种剔除两个变量量纲影响,标准化后的特殊协方差。
正文:1、0-1分布已知随机变量X,其中P{X=1} = p,P{X=0} = 1-p,其中 0 < p< 1,则成X服从参数为p的0-1分布。
其中期望为E(X) = p 方差D(X) = p(1-p);2、二项分布n次独立的伯努利实验(伯努利实验是指每次实验有两种结果,每种结果概率恒定,比如抛硬币)。
其中期望E(X) = np 方差D(X) = np(1-p);3、泊松分布表示单位时间内某稀有事件发生k次的概率,其公式为其中方差和期望均为,详细了解请☞戳4、均匀分布若连续型随机变量X具有概率密度,则称X在(a,b)上服从均匀分布其中期望E(X) = (a+b)/ 2 ,方差D(X) = (b-a)^2 / 12。
创卫人人有责
本文是关于初二叙事作文的创卫人人有责,感谢您的阅读!
创建文明城市不是高大上,创建文明城市就是要从点滴小事做起,聚“点滴小事”成“文明大事”。
3月15日下午,我们小区以“创建国家卫生县城、人人有责人人受益”为主题的创卫公益活动隆重举行。
创建国家卫生城市,我们一家都去当了志愿者。
3月15日上午8:30---12:00、下午13:30---18:00,我们一家与40名志愿者叔叔阿姨,在社工部主任的带领下,协助交警维护交通秩序、摆放整齐非机动车、劝阻行人抽烟、捡垃圾烟头、清除野广告、发放宣传创卫知识手册,用实际行动支持创卫工作。
创建文明城市关键是要从点滴小事做起。
事事文明了,人人文明了,文明城市创建才能成功。
为迎接创建卫生城市工作,进一步营造人人支持创建、个个参与创建的浓厚氛围,3月16日,我们市里消防支队组织志愿者开展道路卫生“大扫除”活动。
上午,志愿者们走出营区,清理道路两边草坪上的垃圾并对路边草坪进行浇水,清理草坪垃圾,志愿者们积极认真,哪怕是一片纸屑,一个烟头,一块塑料,都绝不放过,不知不觉一个小时过去了,道路旁边的草坪也变得清洁、干净,过路行人赞不绝口。
表现出了崭新的风貌,战士们深刻体会到“精神文明建设”不是一句口号,而是与自己的工作息息相关。
创建卫生城市不是过了这几天检查,而是为了卫生文明深入人心,从每时每刻做起,从我们身边做起,从小事做起………
本文来自于互联网,仅供参考和阅读。
常见的概率分布离散分布0-1分布(伯努利分布)它的分布律为:\[P\{X=k\}=p^k(1-p)^{1-k}, k=0,1, (0<p<1)\]0-1分布记作:\(X \sim b(1,p)\)期望:\(E(X)=p\)⽅差:\(D(X)=p(1-p)\)常⽤的场景:新⽣婴⼉性别的登记,招⽣考试的录取,产品的是否合格,硬币的正反⾯。
⼆项分布⼆项分布为\(n\)重伯努利实验的概率分布。
分布律为:\[P\{X=k\}=\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k},k=0,1,2,...,n,(0<p<1)\]\[\sum\limits_{k=0}^{n}P\{X=k\}=\sum\limits_{k=0}^{n}\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k}=(p+1-p)^n=1\]⼆项分布记作:\( X \sim b(n,p)\)期望:\(E(X)=np\)⽅差:\(D(X)=np(1-p)\)常⽤的场景:⽐如⼀个⼈射击\(n\)次,其中\(k\)次命中的概率,抽查50台设备,其中10台出故障的概率等等。
从下⾯的图中,我们可以看到命中次数先增加,到了3达到最⼤,之后⼜逐渐减少,⼀般来说,对于固定的\(n,p\),都具有这⼀性质。
(1)当\((n+1)p\)不为整数时,⼆项概率\(P\{X=k\}\)在\(k=[(n+1)p]\)时达到最⼤值;(2)当\((n+1)p\)为整数时,⼆项概率\(P\{X=k\}\)在\(k=(n+1)p,k=(n+1)p-1\)时达到最⼤值。
%每轮射击10次,命中概率0.3,射击10000轮,x中返回的是每轮中命中的次数x=binornd(10,0.3,10000,1);%bin的数⽬为10hist(x,10);N=100;p=0.4;k=0:N;%事件发⽣k次的概率pdf=binopdf(k,N,p);%事件发⽣不⼤于k次的概率cdf=binocdf(k,N,p);plotyy(k,pdf,k,cdf);grid on;多项分布多项式分布是⼆项式分布的扩展,在多项式分布所代表的实验中,⼀次实验会有多个互斥结果,⽽⼆项式分布所代表的实验中,⼀次实验只有两个互斥结果。