类型三 特殊三角形存在性问题
1. 如图,抛物线y=x 2+bx+c(c<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点 为D,且OB=OC=3.点E为线段BD上的一个动点,EF⊥x轴于F.
(1)求抛物线的解析式;
(2)是否存在点E,使△ECF为直角三角形?若存在,求点E的坐标;若不存在,请说明理由.
当x b 时, y最大值为 4ac b2
2a
4a
3、求解析式的三种方法
1、一般式:已知抛物线上的三点,通常设解析式为
_y_=__a_x_2_+_b_x_+__c_(a__≠_0)
2,顶点式:已知抛物线顶点坐标(h, k),通常
设抛物线解析式为__y__=_a_(_x_-_h_)_2+__k_(_a≠0)
变式一:
2. 如图,抛物线y=x²+(m+2)x+4的顶点C在x轴正半轴上,直线y=x+2与抛物线交于A,B两点 (点A在点B的左侧). (1)求抛物线的函数表达式; (2)点P是抛物线上一点,若S△PAB=2S△ABC,求点P的坐标; (3)将直线AB上下平移,平移后的直线y=x+t与抛物线交于A′、B′两点(A′在B′的左侧),当 以点A′、B′、(2)中第二象限的点P为顶点的三角形是直角三角形时,求t的值.
A: y (x 4)2 6 C: y (x 2)2 2
B: y (x 4)2 2 D: y (x 1)2 3
5.二次函数与一元二次方程和不等式的关系
当b2 4ac 0时,方程ax2 bx c 0a 0有两个不相等的实数根;
x1,2 b
b2 4ac .
2a
当b2 4ac 0时,方程ax2 bx c 0a 0有两个相等的实数根: