非线性无阻尼单摆运动的研究ppt概述
- 格式:ppt
- 大小:322.00 KB
- 文档页数:16
摘要单摆是日常生活中常见的一种物理现象,用一根细绳的一端拴着一个重物,把另一端固定,当重物来回摆动时,就形成了一个单摆模型。
本文讨论理想单摆和非线性单摆的分析方法,着重讨论非线性单摆的角度和角速度的关系及用摄动法求解一类特殊非线性单摆(duffing振子)。
并介绍几种常用的数学求解单摆方程的方法。
关键字:无阻尼;周期强迫;任意角度;阻尼振子;非线性;摄动法;平均法AbstractSingle pendulum is a common physic phenomenon in our life. Tie an object with a line, fasten the other side. When the object rock around, we can get a single pendulum.The main content of this paper is to discuss the method of analysis the ideal single pendulum and the nonlinear single pendulum. We put our eye on the relationship between the angle speed and the angle acceleration. Then we will use perturbation method to solve one special angle pendulum equation. At last we will introduce some common ways to solve the problem.Keywords:no damp, period forced, any angle, damp flap, nonlinear,perturbation method, average method.II目录一、无阻尼振荡的分析 (1)二、周期强迫振动的分析 (4)三、摆角为任意角度的分析 (5)四、阻尼振子的分析 (8)五、有摩擦强迫振动的分析 (10)六、非线性振子的分析 (12)七、摄动法求解duffing振子方程(perturbation method) (15)1、正规摄动法(regular perturbation method) (16)2、Poicarè法: (17)八、用平均法求解单摆方程 (19)参考文献 (21)附件 (22)III一、无阻尼振荡的分析1一、无阻尼振荡的分析如图所示,忽略细绳重量,也不计小球受到的空气阻力,则上诉单摆可看成理想单摆,对其进行受力分由牛顿第二定律得:θsin mg ma -=(1)因为2222dtd l dt s d a θ== )(θl s= (2)把(2)代入(1)式可得 0sin 22=+θθmg dtd ml (3)将(3)两端同除以ml 可得 0sin 22=+θθlgdtd (4)令lg=0ω,其中0ω为自然频率.则(4)可变为 0sin 2022=+θωθdtd (5) 当θ很小时,θθ=sin 故有,02022=+θωθdt d (6)解此方程得:ti ti eC e C t 0021)(ωωθ-+= (7)若θ为实数,则有θθ=*,即t i t i ti t i e C e C e C e C 000021*2*1ωωωω--+=+ (8)所以, *21C C =, *12C C = (9)令ϕi e A C 21=,ϕi e AC -=22.一、无阻尼振荡的分析2则有())cos(2)(0)()(00ϕωθϕωϕω+=+=+-+t A e e A t t i t i (10) )cos()(0ϕωθ+=t A t (11)从能量守恒方面考虑:0022=+θωθdt d 可变形为 020=+⋅⎪⎭⎫⎝⎛θωθθθdtd d dt d d (12) 令dtd θθ=',则有 0''20=+θωθθθd d (13) 两边同时乘以θd ,得到 0''20=+θθωθθd d (14)在对两边求积分, ⎰⎰⎰=+θθθωθθd d d 0''20 (15)积分结果为 E =+220221'21θωθ (16)令2'21θ=T (动能),22021θω=V (势能).则有E V T =+,机械能守恒.E =+220221'21θωθ为椭圆方程:00.20.40.60.811.2 1.4 1.6 1.82tt h e t a /d t h e t a图1 a一、无阻尼振荡的分析3-1.5-1-0.500.51 1.5xy图 1 b 图1 a 的图像为摆动角度θ及角度θ的导数随时间变化的曲线,其中实线表示角度θ随时间的变化,点线表示θ的导数(即角速度)随时间的变化。
第一章 非线性振动初步第一节 无阻尼单摆的自由振荡1 小角度无阻尼单摆 椭圆点单摆,一个由摆线l 联着的重量为mg 的摆锤所组成的力学系统,是力学教科书中通常都要进行讨论的一个简单的动力学模型。
其实我们将会看到,它具有非常复杂的动力学行为,是一个复杂系统。
我们研究一个理想的单摆,即忽略摆线l 质量,认为整个系统的质量都集中在摆锤上,是一个具有集中参数的数学摆,如图1-1所示。
因为如果把摆线与摆锤的质量一起计算,单摆就是一个具有分布参数的摆,与此相应的数学模型是偏微分方程,处理起来很复杂。
理想单摆的数学表达是常微分方程,研究起来就要容易得多了。
图1-1 数学摆首先忽略一切阻尼,例如忽略摆锤在运动中受到的空气阻力、摆线与悬挂点之间的摩擦力等等。
由牛顿第二运动定律,摆锤质量为m 的单摆的运动方程为:(1-1-1)式中θ为摆角,g 为重力加速度。
将等式右边项移到到左边,并以ml 相除后有:设 ,它是以单位时间的弧度为单位的角频率,则式(1-1-1)可写为:(1-1-2)由于正弦函数是非线性的,因此这是一个二阶非线性微分方程。
用级数展开正弦函数:(1-1-3)如果x 很小,则可以忽略三次以上的高次项,即。
这就是说当单摆的摆角很小时,式(1-1-2)变为线性微分方程:ml d dtmg 22θθ=−sin 0sin 22=+θθl g dt d l g /0=ω0ω0sin 2022=+θωθdt d L +−+−=!7!5!3sin 753x x x x x x x ≈sin(1-1-4)方程(1-1-4)的解可以通过如下的代换解获得:式中λ为常数。
代入方程(1-1-4)并消去因子后得特征方程:(1-1-5)方程(1-1-5)的特征根为:由此得到方程(1-1-4)的通解为:(1-1-6)式中,为复常数。
由于描述单摆振动的应为实函数,所以常数,必须满足条件:于是得条件:,。
将满足这样条件的系数,写成指数形式:, 其中P 为它们的模,为幅角,则(1-1-6)式写成如下形式:(1-1-7)(1-1-7)式是一个振幅为P ,角频率为的简谐振动表示式,表明单摆在摆角很小时的摆动为简谐振荡,其振动波形可以用正弦曲线来表示。