小角度无阻尼单摆周期
- 格式:ppt
- 大小:1.45 MB
- 文档页数:28
摆钟实验探究摆动周期与摆长的关系摆钟是一种古老而经典的实验工具,在物理学教学中广泛应用。
通过摆钟实验,我们可以探究摆动周期与摆长之间的关系。
在这个实验中,我们需要一根细而轻的线或者细棒,挂上一个质量较小的物体,并将其悬挂在一个固定的支架上。
接下来,我们将改变摆长的长度,观察摆钟的摆动周期的变化。
首先,我们来介绍一下什么是摆动周期和摆长。
摆动周期是指一个摆钟完成一次完整的摆动所需要的时间。
摆长则是指从摆钟的吊点到摆钟质心的垂直距离。
在摆钟实验中,摆动周期和摆长之间存在着一定的关系。
在实验过程中,我们可以通过改变摆钟的摆长来观察摆动周期的变化。
摆钟摆动的周期与摆长的关系可以由科学家伽利略最先提出的摆钟公式来描述。
摆钟公式是一个简单的数学关系式,它表示了摆钟的摆动周期T与摆长L之间的关系。
按照伽利略的摆钟公式,摆钟摆动周期的平方与摆长成正比。
也就是说,T^2与L的比值是一个常数。
根据这个公式,我们可以通过观察不同摆长下摆钟的摆动周期来验证这个关系。
在实验过程中,我们可以先选择一个摆长,然后使用一个秒表来精确测量出摆动周期。
然后,我们可以改变摆长,再次测量摆动周期。
重复这一过程直到得到足够的数据。
最后,我们可以使用这些数据来绘制摆动周期和摆长的关系曲线。
通过摆钟实验,我们可以发现摆动周期和摆长之间确实存在着一定的关系。
在实验中我们可以观察到,当摆长增加时,摆动周期会变长,而当摆长减少时,摆动周期会变短。
这一观察结果与伽利略的摆钟公式所描述的关系是一致的。
需要注意的是,摆动周期和摆长的关系仅仅适用于小摆角的情况。
当摆幅较大时,这个关系将不再成立。
此外,摆钟实验中还需要注意保持摆钟摆动的幅度和速度稳定,以确保实验结果的准确性。
总之,摆钟实验是一个简单而经典的物理实验,通过观察摆长不同情况下摆动周期的变化,我们可以揭示摆动周期和摆长之间的关系。
这个实验不仅有助于我们理解物理学中的摆动现象,还能锻炼我们的实验操作和数据处理能力。
高中物理:单摆单摆的回复力和周期【知识点的认识】一、单摆1.定义:如图所示,在细线的一端拴一个小球,另一端固定在悬点上,如果线的伸长和质量都不计,球的直径比摆线短得多,这样的装置叫做单摆。
2.视为简谐运动的条件:摆角小于5°。
3.回复力:小球所受重力沿圆弧切线方向的分力,即:F =G 2=Gsin θ=x ,F 的方向与位移x 的方向相反。
4.周期公式:T =2π5.单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量都没有关系。
二、弹簧振子与单摆弹簧振子(水平)单摆模型示意图条件忽略弹簧质量、无摩擦等阻力细线不可伸长、质量忽略、无空气等阻力、摆角很小平衡位置弹簧处于原长处最低点回复力弹簧的弹力提供摆球重力沿与摆线垂直(即切向)方向的分力周期公式T =2π(不作要求)T =2π能量转化弹性势能与动能的相互转化,机械能守恒重力势能与动能的相互转化,机械能守恒【命题方向】(1)第一类常考题型是对单摆性质的考查:对于单摆的振动,以下说法中正确的是()A.单摆振动时,摆球受到的向心力大小处处相等B.单摆运动的回复力就是摆球受到的合力C.摆球经过平衡位置时所受回复力为零D.摆球经过平衡位置时所受合外力为零分析:单摆振动时,径向的合力提供向心力,回复力等于重力沿圆弧切线方向的分力,通过平衡位置时,回复力为零,合力不为零。
解:A、单摆振动时,速度大小在变化,根据知,向心力大小在变化。
故A错误。
B、单摆运动的回复力是重力沿圆弧切线方向的分力。
故B错误。
C、摆球经过平衡位置时所受的回复力为零。
故C正确。
D、摆球经过平衡位置时,合力提供向心力,合力不为零。
故D错误。
故选:C。
点评:解决本题的关键知道单摆做简谐运动的回复力的来源,知道经过平衡位置时,回复力为零,合力不为零。
(2)第二类常考题型是单摆模型问题:如图所示,单摆摆球的质量为m,做简谐运动的周期为T,摆球从最大位移A处由静止开始释放,摆球运动到最低点B时的速度为v,则()A.摆球从A运动到B的过程中重力做的功为B.摆球从A运动到B的过程中重力的平均功率为C.摆球运动到B时重力的瞬时功率是mgvD.摆球运动到B时重力的瞬时功率是零分析:某个力的功率应用力乘以力方向上的速度,重力做功与路径无关只与高度差有关,也可以运用动能定理求解。
单摆实验讲义单摆是由一摆线l 连着重量为mg 的摆锤所组成的力学系统,是力学基础教科书中都要讨论的一个力学模型。
当年伽利略在观察比萨教堂中的吊灯摆动时发现,摆长一定的摆,其摆动周期不因摆角而变化,因此可用它来计时,后来惠更斯利用了伽利略的这个观察结果,发明了摆钟。
如今进行的单摆实验,是要进一步精确地研究该力学系统所包含的力学线性和非线性运动行为。
练习一是单摆的基础实验,适用于大学低年级开设,练习二是单摆的设计性实验,适用于高年级学生学习和认识非线性物理开设。
练习一 单摆的基础实验一 、实验目的1.学会使用光电门计时器和米尺,测准摆的周期和摆长。
2.验证摆长与周期的关系,掌握使用单摆测量当地重力加速度的方法。
3.初步了解误差的传递和合成。
二 、仪器与用具单摆实验装置,多功能微妙计,卷尺,游标卡尺。
三 、实验原理1.利用单摆测量当地的重力加速度值g用一不可伸长的轻线悬挂一小球,作幅角θ很小的摆动就是一单摆。
如图1所示。
设小球的质量为m ,其质到摆的支点O 的距离为l (摆长)。
作用在小球上的切向力的大小为θsin mg ,它总指向平衡点O '。
当θ角很小,则θθ≈sin ,切向力的大小为θmg ,按牛顿第二定律,质点的运动方程为θsin mg ma -=切,即 θθsin 22mg dtd ml-=,因为θθ≈sin ,所以θθlg dtd -=22, (1)这是一简谐运动方程(参阅普通物理学中的简谐振动),(1)式的解为)cos()(0φωθ+=t P t , (2)lg T==πω20, (3)式中, P 为振幅,φ为幅角,0ω为角频率(固有频率),T 为周期。
可见,单摆在摆角很小,不计阻力时的摆动为简谐振动,简谐振动是一切线性振动系统的共同特性,它们都以自己的固有频率作正弦振动,与此同类的系统有:线性弹簧上的振子,LC 振荡回路中的电流,微波与光学谐振腔中的电磁场,电子围绕原子核的运动等,因此单摆的线性振动,是具有代表性的。
单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。
单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。
关于单摆的周期(1)非线性摆的振动周期一根不可伸长、不计质量的绳长为l,一端固定于O点,另一端系质量为m的小球,就可组成一个摆,如图9-27所示,竖直线OP为摆以O点为轴摆动的平衡位置.为了研究摆动的一般规律,把摆看作是个绕O点转动的刚体,摆对O轴的转动惯量I=ml2.当角位移为θ时,作用于小球的重力对O点的力矩M=-mglsinθ.(其中的负号表示力矩的方向与角位移θ的方向相反.)根据定轴转动的定律Iβ=M,有整理后可得这是一个非线性微分方程,与简谐运动的微分方程不同.因此,一般情况下的摆,角位移对时间的变化规律不是余弦式,所作的摆动,不是简谐运动,而是一种非线性振动.这种摆的周期表达式为可见,一般情况下的摆的周期随摆幅(由θ0表示)的变化而变化,不是等时摆.(2)单摆和它的周期当摆动过程中,摆线对平衡位置的角位移θ的绝对值都很小,以致θ=θ0cos(ωt+a),其中θ0为最大摆角,为角振幅,周期通常所说的单摆是指一般的非线性摆在摆角振幅很小时的情形.这是一种等时摆,周期与振幅的大小无关,是一种理想模型.在实际应用中,在摆角足够小的条件下,就可以使用单摆的周期公式进行计算.(3)怎样认识“摆角足够小”的条件由摆的周期T′的公式以及单摆的周期T的公式的比较中,可知误差θ0为最大摆角.为了有一个定量的概念,在θ0为不同角度时周期的误差如下表所示.从以上数字可以看到:当最大摆角在15°以内时,误差在0.5%以内;当最大摆角在5°以内时,误差在0.05%以内.实验中还会有测量误差,如摆长测量误差,计时误差,等等.由于中学物理实验对精度要求不很高,同时,系统误差的精度与测量误差的精度应该协调.因此可以认为,θ0<15°时,可以满足中学物理实验对误差的要求.做演示实验时,为了增加可见度,单摆的摆角不必过于拘泥小于5°这个角度.。
单摆实验原理单摆实验是物理学中常见的实验之一,通过单摆实验可以研究单摆的周期、振幅和频率等特性,从而深入理解单摆的运动规律。
单摆实验原理主要涉及单摆的运动方程、周期公式和影响因素等内容。
下面将从这些方面对单摆实验原理进行详细介绍。
首先,单摆的运动方程是描述单摆运动规律的基本公式。
单摆的运动可以用简单的三角函数关系来描述,其运动方程为:T = 2π√(l/g)。
其中,T表示单摆的周期,l表示单摆的长度,g表示重力加速度。
从这个公式可以看出,单摆的周期与单摆的长度和重力加速度有关,周期与长度成正比,与重力加速度成反比。
这就是单摆运动的基本规律之一。
其次,单摆的周期公式是描述单摆周期与长度之间关系的具体公式。
单摆的周期公式可以表示为:T = 2π√(l/g)。
这个公式表明了单摆的周期与单摆的长度和重力加速度之间的定量关系。
通过实验测量单摆的周期和长度,可以验证这个公式,从而验证单摆的运动规律。
另外,影响单摆运动的因素还包括摆角、阻尼和外力等。
摆角是指单摆摆动的最大角度,摆角越大,周期越长。
阻尼是指外界对单摆的阻碍作用,会使单摆的振幅逐渐减小,周期逐渐增大。
外力是指施加在单摆上的外部力,会改变单摆的运动规律,使周期发生变化。
综上所述,单摆实验原理涉及单摆的运动方程、周期公式和影响因素等内容。
通过实验测量单摆的周期和长度,可以验证单摆的运动规律,从而加深对单摆运动规律的理解。
同时,还需要注意单摆摆角、阻尼和外力等因素对单摆运动的影响,这些因素也需要在实验中进行综合考虑。
总之,单摆实验原理是物理学中重要的实验内容,通过深入理解单摆的运动规律,可以更好地理解物理学中的振动现象,对于提高学生的物理学实验能力和科学素养具有重要意义。
单摆振动周期公式应用与拓展首先,我们来探讨一下单摆振动周期公式的基本原理。
单摆是一个能够满足简谐振动条件的物体,例如一根绳子上挂着的一个质点。
当质点被拉到一侧后,它会开始作周期性的来回摆动。
振动周期就是质点从一个极点到另一个极点所需要的时间。
根据实验结果和物理推导,可以得到单摆振动周期公式为:T=2π√(L/g)其中,T表示振动周期,L表示单摆的长度,g表示重力加速度。
从公式中可以看出,振动周期与单摆的长度和地球重力加速度有关,当长度增加或重力加速度减小时,振动周期增加,即摆动速度减慢。
单摆振动周期公式的应用非常广泛。
一个典型的应用是在建筑物的抗震设计中。
建筑物的抗震设计是非常重要的,可以保证建筑物在地震中的稳定性和安全性。
在抗震设计中,需要考虑建筑物的振动特性,以及地震力的作用。
单摆振动周期公式可以用于计算建筑物的自由振动周期,从而帮助工程师选择合适的结构参数,使得建筑物在地震中具有较好的抗震性能。
另一个应用是在钟表制作中。
钟表的摆钟是一种应用了单摆原理的装置,它的精确度和稳定性与单摆的振动周期有关。
根据单摆振动周期公式,可以通过调节摆钟的长度,使得摆钟的振动周期达到所需的精确值。
这样一来,摆钟就能够以非常准确的频率进行摆动,从而实现钟表的正常计时功能。
此外,单摆振动周期公式还可以应用到其他一些领域。
例如,在物理实验中,可以通过改变单摆的长度和重力加速度,来研究对振动周期的影响。
在工程计算中,可以根据单摆振动周期公式,计算一些动态系统的振动周期,例如桥梁的自由振动周期。
在天文学中,单摆振动周期公式可以用于计算天体的周期运动,例如行星的公转周期。
除了对单摆的普通振动,单摆振动周期公式还可以拓展到一些特殊情况下。
例如,当单摆受到阻尼力或驱动力的作用时,振动周期公式需要进行修正。
在阻尼振动中,振动周期随着阻尼系数的增加而减小。
在驱动振动中,振动周期与外力的频率相同或其整数倍相关。
在非线性振动中,单摆振动周期公式也需要进行修正。