分类变量的假设检验
- 格式:ppt
- 大小:890.50 KB
- 文档页数:60
假设检验的常用方法一种常见的方法是Z检验呢。
这个Z检验呀,就像是一个很直爽的小伙伴。
它比较适合那种总体方差已知,样本量还比较大的情况哦。
比如说,你想知道一个大工厂生产的产品尺寸是不是符合标准,你手里又清楚总体的方差情况,这时候Z检验就可以闪亮登场啦。
它通过计算样本统计量和总体参数之间的差异,然后看这个差异在标准正态分布下是不是合理的。
就好像是在一个大家都知道规则的游戏里,看看新的情况是不是符合这个规则一样。
还有t检验呢,这个就更灵活一点啦。
当总体方差未知,但是样本是小样本的时候,t检验就派上用场啦。
它就像是一个贴心的小助手,在数据不那么完整的时候来帮忙。
比如说你在研究一个新的小范围的实验结果,样本不多,总体方差也不清楚,t 检验就会说“我来看看这到底有没有啥不一样的”。
t检验会根据样本的数据来估算总体的情况,然后判断样本和假设的总体之间有没有显著差异呢。
卡方检验也很有趣哦。
它像是一个爱整理的小管家。
这个方法主要是用来检验分类变量之间的关系的。
比如说,你想知道男生和女生对于不同颜色的喜好有没有差别,这就是分类变量啦。
卡方检验就会把这些数据整理好,看看实际观察到的情况和我们假设的没有差异的情况之间的距离有多远。
如果这个距离很大,那就说明这两个分类变量之间可能存在着某种联系哦。
最后呀,还有F检验呢。
F检验就像是一个大管家,它主要是用来比较两个总体的方差是否相等的。
比如说有两组数据,你想知道它们的波动情况是不是差不多,F 检验就可以来帮忙啦。
它通过计算两个样本方差的比值,然后看看这个比值在F分布下是不是合理的。
如果不合理,那就说明这两组数据的方差可能是不一样的呢。
这些假设检验的方法呀,就像是我们在数据海洋里的小导航,帮助我们判断各种情况,是不是很神奇呢? 。
假设检验的基本步骤(三)假设检验的基本步骤统计推断1.建立假设检验,确定检验水准H0和H1假设都是对总体特征的检验假设,相互联系且对立。
H0总是假设样本差别来自抽样误差,无效/零假设H1是来自非抽样误差,有单双侧之分,备择假设。
检验水准,a=0.05检验水准的含义2.选定检验方法,计算检验统计量选择和计算检验统计量要注意资料类型和实验设计类型与样本量的问题,一般计量资料用t检验和u检验;计数资料用χ2检验和u检验。
3.确定P值,作出统计推理P≤a ,拒绝H0,接受H1P> a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误(四)两均数的假设检验(各种假设检验方法的适用条件与假设的特点、计算公式、自由度确定以与确定概率P值并做出推断结论)u检验适用条件t检验适用条件t检验和u检验1.样本均数与总体均数比较2.配对资料的比较/成组设计的两样本均数的比较配对设计的情况:3点3. 两个样本均数的比较(1)两个大样本均数比较的u检验(2)两个小样本均数比较的t检验(五)假设检验的两类错误与注意事项(Ⅰ和Ⅱ类错误)1.两类错误拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误;接受错误的H0称Ⅱ型错误-存伪。
用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。
两者的关系:α愈大β愈小;反之α愈小β愈大。
2.假设检验中的注意事项(1)随机化:代表性和均衡可比性(2)选用适当的检验方法(3)正确理解统计学意义(4)结论不绝对(5)单侧与双侧检验的选择四.分类变量资料的统计描述(一)相对数常用指标与其意义1.率2.构成比3.相对比(二)相对数应用注意事项1.观察例数要足够多2.不能犯以比代率的错误3.计算加权平均率或合并率4.可比性,消除混杂因素的影响(可采用标准化方法或分层分析方法。
交叉分类表(Cross Tabulations)是一种统计学工具,用于总结分类数据并研究两个分类变量之间的关系。
假设检验是交叉分类表分析中的一个重要步骤,以下是其假设检验的步骤:
提出假设:通常包括零假设(H0,又称“无效假设”)和备择假设(H1,又称“对立假设”)。
选择适当的统计方法:根据数据类型和分析目的,选择适当的统计方法进行检验。
计算统计量:根据所选择的统计方法,计算出统计量。
确定显著性水平:在假设检验中,显著性水平是用来判断假设是否成立的临界值。
进行决策:根据计算出的统计量和显著性水平,做出决策。
如果统计量小于显著性水平所对应的临界值,则接受零假设;否则,拒绝零假设。
解释结果:根据决策结果,对数据进行分析并解释。
需要注意的是,在进行假设检验时,需要遵循假设检验的基本原则,如样本独立性、样本代表性、随机抽样等。
同时,应注意假设检验的局限性,如样本量不足、数据质量不高等问题。