第3章双变量模型假设检验
- 格式:ppt
- 大小:3.05 MB
- 文档页数:44
第3章双变量模型:假设检验3.1 复习笔记一、古典线性回归模型古典线性回归模型假定如下:假定1:回归模型是参数线性的,但不一定是变量线性的。
回归模型形式如下:Y i=B1+B2X i+u i这个模型可以扩展到多个解释变量的情形。
假定2:解释变量X与扰动误差项u不相关。
但是,如果X是非随机的(即为固定值),则该假定自动满足。
即使X值是随机的,如果样本容量足够大,也不会对分析产生严重影响。
假定3:给定X,扰动项的期望或均值为零。
即E(u|X i)=0(3-1)假定4:u i的方差为常数,或同方差,即var(u i)=σ2(3-2)假定5:无自相关假定,即两个误差项之间不相关。
即:cov(u i,u j)=0,i≠j(3-3)无自相关假定表明误差u i是随机的。
由于假定任何两个误差项不相关,所以任何两个Y值也是不相关的,即cov(Y i,Y j)=0。
由于Y i=B1+B2X i+u i,则给定B值和X值,Y 随u的变化而变化。
因此,如果u是不相关的,则Y也是不相关的。
假定6:回归模型是正确设定的。
换句话说,实证分析的模型不存在设定偏差或设定误差。
这一假定表明,模型中包括了所有影响变量。
二、普通最小二乘估计量的方差与标准误有了上述假定就能够估计出OLS估计量的方差和标准误。
由此可知,教材式(2-16)和教材式(2-17)给出的OLS估计量是随机变量,因为其值随样本的不同而变化。
这种抽样变异性通常由估计量的方差或其标准误(方差的平方根)来度量。
教材式(2-16)和式(2-17)中OLS估计量的方差及标准误是:(3-4)(3-5)(3-6)(3-7)其中,var表示方差,se表示标准误,σ2是扰动项u i的方差。
根据同方差假定,每一个u i具有相同的方差σ2。
一旦知道了σ2,就很容易计算等式右边的项,从而求得OLS估计量的方差和标准误。
根据下式估计σ2:(3-8)其中,σ∧2是σ2的估计量,是残差平方和,是Y的真实值与估计值差的平方和,即()122212var ibiXbn xσσ==∑∑1se()b=()22222varbibxσσ==∑()2se b=22ˆ2ienσ=−∑2ie∑n -2称为自由度,可以简单地看作是独立观察值的个数。