触发方式对示波器波形的影响_电子测量研讨报告
- 格式:docx
- 大小:1.02 MB
- 文档页数:13
示波器的使用实验报告示波器的使用试验报告1在数字电路试验中,需要使用若干仪器、仪表观看试验现象和结果。
常用的电子测量仪器有万用表、规律笔、一般示波器、存储示波器、规律分析仪等。
万用表和规律笔使用方法比较简洁,而规律分析仪和存储示波器目前在数字电路教学试验中应用还不非常普遍。
示波器是一种使用特别广泛,且使用相对简单的仪器。
本章从使用的角度介绍一下示波器的原理和使用方法。
1 示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。
它是观看数字电路试验现象、分析试验中的问题、测量试验结果必不行少的重要仪器。
示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。
它将电信号转换为光信号。
正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。
在荧光膜上常又增加一层蒸发铝膜。
高速电子穿过铝膜,撞击荧光粉而发光形成亮点。
铝膜具有内反射作用,有利于提高亮点的辉度。
铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能马上消逝而要保留一段时间。
亮点辉度下降到原始值的10%所经过的时间叫做"余辉时间'。
余辉时间短于10s为极短余辉,10s1ms为短余辉,1ms0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。
一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。
一般示波器多采纳发绿光的示波管,以爱护人的眼睛。
2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称其次栅极)、第一阳极(A1)和其次阳极(A2)组成。
它的作用是放射电子并形成很细的高速电子束。
数字示波器的触发方式数字示波器是一种广泛应用于电子测量领域的仪器,它能够将电信号转化为可视化的波形图形,通过触发方式来捕捉并显示特定的信号。
触发方式是数字示波器的关键功能之一,它决定了示波器是否能够准确地捕捉到待测信号的波形。
本文将介绍数字示波器的几种常见触发方式,并对其原理和适用场景进行详细的说明。
1. 自动触发方式自动触发方式是数字示波器最简单、最常用的触发方式之一。
在自动触发模式下,示波器不需要外部触发信号,而是自动捕捉并显示输入信号。
这种触发方式适用于信号频率较低、无需精确触发的情况。
例如,当我们需要捕捉一些周期性较慢的信号时,可以选择自动触发方式。
2. 边沿触发方式边沿触发方式是数字示波器最常用的触发方式之一,它是通过检测输入信号的边沿(上升沿或下降沿)来触发示波器。
边沿触发方式适用于需要准确捕捉信号的特定时刻或特定状态的情况。
例如,当我们需要捕捉一个特定的脉冲信号或观察一个特定的信号变化时,可以选择边沿触发方式。
3. 触发电平方式触发电平方式是数字示波器常用的触发方式之一,它是通过检测输入信号的电平(高电平或低电平)来触发示波器。
触发电平方式适用于需要捕捉信号的特定电平状态的情况。
例如,当我们需要观察一个特定电平的信号时,可以选择触发电平方式。
4. 触发宽度方式触发宽度方式是数字示波器的一种特殊触发方式,它是通过检测输入信号的脉冲宽度来触发示波器。
触发宽度方式适用于需要捕捉特定宽度脉冲的情况。
例如,当我们需要捕捉一个特定宽度的脉冲信号或观察脉冲宽度变化时,可以选择触发宽度方式。
5. 触发模式选择数字示波器通常具有多种触发模式的选择,用户可以根据实际需求选择合适的触发方式。
常见的触发模式包括单次触发、连续触发和多次触发。
单次触发模式适用于只需要捕捉一次特定信号的情况;连续触发模式适用于需要连续捕捉信号的情况;多次触发模式适用于需要多次捕捉信号并进行比较分析的情况。
总结:数字示波器的触发方式是保证测量准确性和可靠性的关键因素之一。
电子示波器的使用实验报告实验名称:电子示波器的使用实验目的:1. 掌握电子示波器的基本原理和使用方法。
2. 了解电子示波器的特性和参数,如频率响应、带宽、采样率等。
3. 熟练使用示波器观测电路中的信号波形,理解电路中信号的特点。
实验器材:1. 示波器一台2. 信号发生器一个3. 电路板一个实验步骤:1. 将信号发生器和电路板连接,将正弦波输入电路板。
2. 打开示波器,调节示波器的扫描频率、灵敏度和触发电平,使得电路中的正弦波的波形在示波器屏幕上完整显示。
3. 恢复标准设置,更改输入信号的频率,观察示波器屏幕上的波形变化,并记录观察结果。
4. 更改输入信号的幅值,再次观察示波器屏幕上的波形变化,并记录观察结果。
5. 更改示波器中的采样率,观察示波器屏幕上的波形变化,并记录观察结果。
实验结果:通过实验的观察和记录,我们得到了以下结论:1. 示波器的扫描频率、灵敏度和触发电平能够影响波形的显示效果,需要根据实际需要进行调节。
2. 示例波器的频率响应和带宽等特性能够影响示波器的使用效果,需要根据实际需求进行选择。
3. 增大输入信号的频率和幅值会导致波形的变化,需要通过示波器观察波形变化进行分析。
4. 更改示波器中的采样率对波形的显示效果有一定影响,需要根据实际需要进行选择。
实验结论:电子示波器是一种非常重要的电子测量仪器,在电子工程领域得到广泛的应用。
通过本次实验,我们深入了解了电子示波器的使用方法和相关特性,掌握了实际使用中的技巧和注意事项。
同时,我们丰富了对电路中信号波形的理解,为今后的电子工程实践打下了坚实的基础。
灵活使用示波器触发功能,帮助大大提高测量效率每个工程师刚刚开始接触示波器的时候,都是从最基础的数字信号的信号质量开始测量的。
找一块板子,接一个时钟信号,一个数据信号,测量它们的最大/ 最小电压(Max/Min) 、建立/ 保持时间(Setup/Hold Time) 、上升/ 下降时间(Rise/Fall Time) 等基础参数。
这些基础参数的测量老工程师们都耳熟能详,也都知道怎么去测量它们,但很多朋友却不知道,如果能灵活地使用示波器的各种触发功能进行辅助,将会使测量时间大大缩短,测量结果更加精准。
下面我们来看一看示波器的触发功能在信号质量测量时的一些经典应用。
最古老的也是最经典的触发–边沿触发带给我们的启示边沿触发从示波器诞生之日起就与示波器密不可分,最早的模拟示波器只有一种触发功能,就是边沿触发。
边沿触发非常简单和常用,以至于很多工程师用了几年的示波器都没有意识到这是一种触发功能。
边沿触发包括上升沿触发和下降沿触发,以上升沿触发为例,示波器的触发器会比较触发电平(Trigger Level)前后两个点的电压,当后一个点的电压高于前一个点时,就会判定为上升沿触发;下降沿触发则反之。
信号的最大/最小电压(Max/Min)测量是一个常规的测量项目,一般常用的方法有两种,一种是直接用示波器的自动测量,打开统计功能,找出最大/最小值,第二种是打开示波器的无限余辉,累积一段时间后,用光标测量最大/最小值。
但这两种方法都有一个小缺点,就是无法直观地看到Max/Min电压所对应的波形。
对于Debug而言,更希望能清楚地看到这个最坏的波形,以便能找到调试的思路。
利用传统的边沿触发,通过调节边沿触发的触发电平,我们就可以轻松地看到最大/最小电压所对应的波形并进行测量。
选择上升沿触发,将触发模式调成 Normal (注1)。
然后慢慢调高触发电平,直到触发事件变得非常稀少(示波器面板上Trig’d绿色指示灯的亮/灭间隔明显变长或屏幕波形刷新速度明显变慢),这意味着电压的上升已处于极限位置,此时触发点的波形就是最大电压的波形。
示波器的原理与使用实验报告示波器是一种用于显示电信号波形的仪器,它可以帮助工程师和技术人员观察和分析各种电信号的特性。
本实验将介绍示波器的原理和使用方法,并通过实验报告展示示波器在不同情况下的应用效果。
首先,让我们来了解一下示波器的基本原理。
示波器的核心部分是示波管,它能够将电信号转换成可视的波形。
当电信号输入到示波器中时,示波器会对信号进行放大和垂直偏移,然后通过水平扫描来显示波形。
通过调节示波器的各种参数,我们可以清晰地观察到电信号的幅值、频率、相位等特性。
在实际使用示波器时,我们首先需要连接待测信号到示波器的输入端,并根据信号的特性来选择合适的测量范围和耦合方式。
接下来,我们可以通过调节示波器的触发方式和触发电平来稳定地显示波形。
此外,示波器还可以通过设置时间基准和垂直灵敏度来调整波形的水平和垂直位置,以便更清晰地观察信号的特性。
在本次实验中,我们将分别对正弦波、方波和脉冲波进行测量和观察。
首先,我们将输入一个正弦波信号,并通过调节示波器的垂直灵敏度和时间基准来观察波形的变化。
然后,我们将输入一个方波信号,并通过调节触发方式和触发电平来稳定地显示波形。
最后,我们将输入一个脉冲波信号,并通过设置测量范围和耦合方式来观察波形的特性。
通过本次实验,我们可以更加深入地了解示波器的原理和使用方法,掌握如何正确地观察和分析各种电信号的波形特性。
同时,我们也可以通过实验报告来展示示波器在不同情况下的应用效果,为工程师和技术人员提供参考和借鉴。
总之,示波器作为一种重要的电子测量仪器,具有广泛的应用价值。
通过深入学习示波器的原理和使用方法,并通过实验来验证和应用所学知识,我们可以更好地掌握示波器的使用技巧,提高工程实践能力,为电子技术领域的发展贡献自己的力量。
示波器的调整和使用实验报告示波器的调整和使用实验报告引言:示波器是一种常用的电子测量仪器,广泛应用于电子工程、通信工程、医疗设备等领域。
它可以用来观察和测量电信号的波形、幅度、频率等参数,对于电路故障排除和信号分析有着重要的作用。
本实验旨在通过调整示波器的各项参数,并进行实际测量,掌握示波器的正确使用方法。
一、示波器的基本调整1. 亮度和聚焦调整示波器的亮度和聚焦调整对于显示清晰的波形至关重要。
首先,将亮度调节旋钮逆时针旋转至最低,然后逐渐调节至合适的亮度。
接下来,通过旋转聚焦调节旋钮,使波形显示清晰锐利。
2. 触发调整触发是示波器稳定显示波形的关键。
在进行触发调整前,需选择适当的触发源和触发方式。
通常情况下,选择外部触发源,并将触发方式设置为边沿触发。
然后,通过调节触发电平和触发斜率,使波形能够稳定地显示在屏幕上。
3. 垂直和水平调整垂直调整主要是调节信号的幅度和位置。
首先,将示波器的垂直灵敏度调节旋钮设置为合适的量程,使波形能够占满屏幕。
然后,通过调节垂直位移旋钮,使波形在屏幕上的位置合适。
水平调整主要是调节波形的时间基准和位置。
首先,选择合适的时间基准,例如1ms/div或0.1ms/div,以便观察波形的细节。
然后,通过调节水平位移旋钮,使波形在屏幕上的位置合适。
二、示波器的使用方法1. 测量直流电压示波器可以用来测量直流电压。
首先,将示波器的输入通道连接到待测电路的输出端。
然后,选择合适的量程和耦合方式,例如直流耦合。
最后,通过调整垂直灵敏度和水平基准,观察并记录电压波形。
2. 测量交流电压示波器也可以用来测量交流电压。
与测量直流电压类似,首先将示波器的输入通道连接到待测电路的输出端。
然后,选择合适的量程和耦合方式,例如交流耦合。
最后,通过调整垂直灵敏度和水平基准,观察并记录电压波形。
3. 测量频率和周期示波器可以用来测量信号的频率和周期。
首先,将示波器的输入通道连接到待测信号源。
然后,选择合适的触发源和触发方式。
电子测量大作业实验一(6-13):触发电平、触发极性、触发耦合方式对示波器波形显示的影响示波器根据触发电平和触发极性的不同可分为四种情形:正电平正极性触发、正电平负极性触发、负电平正极性触发、负电平负极性触发,不同情形下的出发点是不同的,在Multsim下用Agilent54622D虚拟示波器对这四种情形进行仿真。
一、触发耦合方式:耦合方式包括交流触发和直流触发,试验中中需要参加直流电源,本试验中参加了1v的直流电源。
2、交流触发:二、触发极性:示波器根据触发电平和触发极性的不同可分为四种情形:正电平正极性触发、正电平负极性触发、负电平正极性触发、负电平负极性触发,不同情形下的出发点是不同的,在Multsim下用Agilent54622D虚拟示波器对这四种情形进行仿真。
1、正电平正极性触发:2、正电平负极性触发:4、负电平负极性触发:网络分析仪一、根本功能网络分析仪是测量网络参数的一种新型仪器,可直接测量有源或无源、可逆或不可逆的双口和单口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。
自动网络分析仪能对测网络分析仪的网络是指一组内部相互关联的电子元器件。
网络分析仪的功能之一是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。
每当射频信号由一个元件进入另一个时,总会有一局部信号被反射,而另一局部被传输。
网络分析仪产生一个正弦信号,通常是一个扫频信号。
有响应时,会传输并且反射入射信号。
传输和反射信号的强度通常随着入射信号的频率发生变化。
网络分析仪可以分为标量〔只包含幅度信息〕和矢量〔包含幅度和相位信息〕两种分析仪。
近年来矢量网络分析仪由于其较低的本钱和高效的制造技术,流行度超过了标量网络分析仪。
二、根本原理:〔1〕网络分析仪的根本结构网络分析仪主要包括合成信号源、S参数测试装置、幅相接收机和显示局部。
网络分析仪的根本结构如下列图所示:合成信号源由3~6GHz YIG振荡器、3.8GHz介质振荡器、源模块组件、时钟参考和小数环组成。
专业:应用物理题目:示波器的使用[实验目的](1)了解示波器的结构和工作原理。
(2)熟练掌握示波器的基本操作。
(3)学会用示波器测量电压、频率和相位差的方法。
(4)学会周期信号的频谱分析。
(5)观察李萨如图形、拍现象,加深对振动合成的理解。
[实验仪器]TBS1102B-EDU 型数字存储示波器,TFG6920A 型函数/任意波形发生器。
[实验原理]1.数字示波器(1)触发控制(触发器)1)边沿触发:在达到触发电平(阈值)时,输入信号的上升边沿或下降边沿触发示波器,也是示波器默认触发方式。
2)预/后触发:事件发生在显示屏中心触发位置前/后。
3)视频触发:一般由视频信号的场或线触发示波器.4)脉冲宽度触发:一般由异常脉冲触发示波器。
5)触发频率:示波器计算可触发事件发生的速率以确定触发频率并在屏幕的右下角显示该频率。
(2)垂直控制(增益和位置):将波形进行缩放和上下移动。
(3)采集数据(模式和时基):通过在不连续点处采集输入信号的值来数字化波形。
1)采样模式:等间隔采集2500点,以水平刻度设置进行显示。
2)峰值检测模式:采集间隔1250,每个间隔取最大值和最小值点,以水平刻度设置进行显示。
多用于检测窄至10ns的毛刺并减少假波现象的概率。
取样速率够快时无需采用峰值检测。
3)平均值模式:将大量波形进行平均,减少信号中的随机噪声。
4)扫描模式:连续监视变换缓慢的信号。
(4)时域假波现象:如果示波器对信号进行采样时不够快,采样率小于1/2信号带宽,违反奈奎斯特抽样定律,从而无法建立精确的波形记录时,就会有假波现象。
判断方法:1.旋转“水平标度”旋钮更改水平刻度,波形剧烈变化。
2.使用“峰值检测”检测速度更快的信号,波形剧烈变化。
3.触发频率大于信息显示速度4.正观察的信号也是触发源时,使用刻度或光标来估计所显示波形的频率与显示屏右下角的“触发频率”读数相比相差很大(5)带宽对波形影响:频率超过带宽,检测精度会下降2.交变信号参数测量交变信号:正弦波:交变信号最简单形式参数:周期T、有效值VRMS 、零-峰值VOP、峰-峰值VPP 、平均值VAVG 方波:只有高低两电平参数:脉冲上升/下降时间、脉冲宽度、电压、占空比(在一个频率周期内高电平所占的时间百分数)三角波:电压逐渐增大突然降到零(1)刻度法:显示屏上相关距离x相关标度(2)光标法;读取光标读数(3)自动测量法:Measure菜单自动完成测量。
示波器触发源如何选择,触发的作用是什么 在“浅谈模拟示波器触发模式和功能”中我们了解了众多关于模拟示波器的触发模式,在这一篇,我们就来了解一下关于示波器的触发源,以及触发的作用 什幺是触发 触发就是在使用示波器时,为了使扫描信号与被测信号同步,我们可以设定一些条件,将被测信号不断地与这些条件相比较,只有当被测信号满足这些条件时才启动扫描,从而使得扫描的频率与被测信号相同或存在整数倍的关系,也就是同步,这些条件就是触发条件,如致远电子ZDS2024Plus示波器标配了22种协议触发,可以根据我的需求来设置触发方式。
触发的目的是为了每次显示的时候都在波形的同一位置开始,波形可以稳定显示。
一般模拟示波器有边沿触发、视频触发和市电触发,在数字示波器上有了更多的触发条件被称为高级触发如逻辑触发,毛刺触发和脉宽触发等。
触发的作用 当一个信号引进示波器,这时如果不对信号的显示作出相应的控制,那幺显示则是杂乱无章的,每一屏的显示都不同,当示波器快速刷新的时候,我们看到的信号是混叠的,没有稳定的图像,无法观察和测量。
为了解决这种情况,我们就需要规定示波器的触发条件,以达到稳定同步,把信号清楚的显示出来 关于触发模式的处发源 几乎总是必需要触发示波,但不一定要在显示的信号上触发。
通常用于触发扫描的来源包括: 进入任何输入通道的信号 应用到输入通道上的信号之外的外部来源 “工频”电源信号示 波器内部根据一条或多条输入的评估结果计算得出的信号 在大多数时间内,都可以把示波器设置成在显示的通道上触发。
但是,仪器可以在任何通道输入上触发,而不管其是否显示;也可以从与连接专用触发输入的来源上触发。
大多数泰克示波器还提供了一个离散输出,为另一台仪器提供触发信号,如计数器、信号源、等等。
触发源的选择 要是屏幕上显示稳定的波形,则需要将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。
触发源选择确定信号由何处供给。
示波器的原理及使用实验报告示波器的原理及使用实验报告引言:示波器是一种常用的电子测量仪器,广泛应用于电子工程、通信工程、医学、物理等领域。
本实验旨在通过对示波器的原理及使用进行研究,深入了解示波器的工作原理及使用方法。
一、示波器的原理示波器是一种能够显示电压随时间变化的仪器。
其原理基于电压信号的变化通过垂直放大器放大后,再通过水平放大器进行时间基准的调整,最终通过示波管将信号以波形的形式显示出来。
1. 垂直放大器:垂直放大器是示波器中的核心部分,其作用是将输入的电压信号放大到适合示波管显示的范围。
垂直放大器通常由放大器、直流耦合、交流耦合和可变增益控制等组成。
2. 水平放大器:水平放大器用于调整时间基准,控制波形在示波器屏幕上的水平位置和宽度。
水平放大器通常由时基控制、触发控制和扫描控制等组成。
3. 示波管:示波管是将放大后的电压信号以波形的形式显示在屏幕上的部分。
示波管通常由电子枪、偏转板和荧光屏等组成。
电子枪发射出的电子束经过偏转板的控制,最终在荧光屏上形成波形。
二、示波器的使用方法在实际使用示波器时,需要注意以下几个方面:1. 连接电路:首先需要将待测电路与示波器进行连接,确保电路正常工作并能够输出信号。
2. 调整垂直放大器:根据待测信号的幅度范围,适当调整垂直放大器的增益,使得波形能够在屏幕上完整显示。
3. 调整水平放大器:根据待测信号的频率范围,调整水平放大器的时间基准,使得波形在屏幕上的位置和宽度合适。
4. 设置触发源:示波器的触发功能可以使波形在屏幕上稳定显示。
根据待测信号的特点,设置合适的触发源和触发电平。
5. 观察波形:通过示波器的屏幕,可以清晰地观察到待测信号的波形。
可以通过调整示波器的控制按钮,如水平扫描控制、垂直偏移控制等,来获取更详细的波形信息。
6. 数据分析:示波器还可以通过测量功能,对波形的各种参数进行测量和分析,如频率、幅度、相位等。
结论:通过本次实验,我们深入了解了示波器的工作原理及使用方法。
Beijing Jiaotong University 电子测量技术研讨研究触发方式对示波器波形的影响学院:电子信息工程学院小组成员:学号:班级:指导教师:时间:2013.11.27题目:在Multisim环境下,利用Agilent54622D虚拟示波器,通过仿真实验来说明触发电平、触发极性、触发耦合方式对波形显示的影响。
1、实验目的➢认识示波器的触发电路及其作用➢熟悉Multisim环境并进行仿真电路的设计➢掌握Agilent54622D虚拟示波器的触发设置➢理解触发电平、触发极性及触发耦合方式对波形显示的影响2、实验原理被测信号从示波器的Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。
由此可知,正确的触发方式直接影响到示波器的有效操作。
为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
2.1触发源要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。
触发源选择确定触发信号由何处供给。
通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。
内触发使用被测信号作为触发信号, 如通道1、通道2。
外触发使用外加信号作为触发信号,外触发信号与被测信号间应具有周期性的关系,何时开始扫描与被测信号无关电源触发使用交流电源频率信号作为触发信号。
这种方法在测量与交流电源频率有关的信号时是有效的。
特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
正确选择触发信号对波形显示的稳定、清晰有很大关系。
例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。
2.2耦合方式触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。
AC耦合又称电容耦合。
它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。
通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。
但是如果触发信号的频率小于10Hz,会造成触发困难。
直流耦合(DC)不隔断触发信号的直流分量。
当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。
低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。
此外还有用于电视维修的电视同步(TV)触发。
2.3触发电平及触发极性触发电平调节又叫同步调节,它使得扫描与被测信号同步。
电平调节旋钮调节触发信号的触发电平。
一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。
顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。
当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。
当信号波形复杂,用电平旋钮不能稳定触发时,用Hold Off旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。
极性开关用来选择触发信号的极性。
拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。
拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。
触发极性和触发电平共同决定触发信号的触发点。
3、Agilent54622D虚拟示波器使用说明3.1Agilent54622D虚拟示波器图1 Agilent54622D虚拟示波器Agilent54622D示波器的操作与模拟示波器类似,但是功能更强大,在使用Agilent54622D前,必须首先通过面板设置仪器,然后才能进行测量并读取测量结果。
3.1.1调整模拟通道垂直位置模拟通道垂直调整区内,其中:旋钮是模拟通道垂直衰减旋钮;旋钮是模拟通道波形位置旋钮;按钮是模拟通道1的按钮;按钮是模拟通道2的按钮;是数据选择按钮。
单击模拟通道1选择按钮,选择模拟通道1。
模拟通道的耦合方式通过coupling软按钮选择。
耦合方式的三种选择是:DC(直流耦合)、AC(交流耦合)和GND(地)。
波形位置调整按钮用来垂直移动信号位置,以便把信号放在显示中央。
应注意随着转动位置按钮会短时显示电压值指示参考电平与屏幕中心的距离,还应该注意屏幕左端的参考接地电平符号随位置按钮的旋转而移动。
单击Vemier软按钮,可微调波形的位置。
单击Invert软按钮,可使波形反相。
3.1.2连续运行与单次采集运行控制包括连续运行(Run)和单次触发(Single)两种触发模式。
其中,是运行/停止控制按钮,按钮是单次触发按钮。
(1)当运行/停止控制按钮变成绿色时,示波器处于连续运行模式,显示屏显示的波形是对同一信号多次触发的结果,这种方式与模拟触发器显示的波形方法类似。
当运行/停止按钮变成红色时,示波器停止运行,即停止对信号触发,显示屏顶部状态行中触发模式位置上显示Stop。
但是,此时旋转按钮和垂直按钮可以对保存的波形进行平移和缩放。
(2)当Single(单次触发)按钮变成绿色时,示波器处于单次运行模式,显示屏显示的波形是对信号的单次触发。
利用Single运行控制按钮观察单次事件,显示波形不会被后面继续的波形覆盖。
在平移和缩放需要最大存储器深度,并且希望得到最大取样率时应使用单次触发模式。
示波器停止运行,Run/Stop 按钮点亮红色,再次单击single按钮,又一次触发波形。
3.1.3选择模式和设置抑制单击触发区中的Mode/Compling(模式/耦合)按钮,显示屏的下部出现Mode、Holdoff软按钮,通过设置软按钮,改变触发模式和设置抑制。
(1)改变触发模式触发模式影响示波器搜索触发的方式。
单击Mode(模式)软按钮,出现Normal、Auto、Auto Level触发三种选择。
其中:a.Normal模式显示符合触发条件时的波形,否则触发器既不触发扫描,显示屏也不更新。
对于输入信号频率低于20Hz时或不需要自动触发的情况,应使用常规模式触发。
b.Auto模式自动进行扫描信号,即使没有输入信号或者输入信号没有被触发同步时,屏幕上仍可以显示扫描基线。
c.Auto Level模式适用于边沿触发或外部触发。
示波器首先尝试常规触发,如果未找到触发信号,它将在触发源的10%的范围搜索信号,如果仍没有信号,示波器就自动触发。
在把探头从信号源的一点移到另一点时,这种工作模式很有效。
3.1.4选择触发方式Agilent54622D示波器触发方式有边沿触发、脉冲宽度(毛刺)触发、码触发三种类型。
(1)边沿触发:通过面板上的按钮,可以选择触发源和触发方式。
单击面板上的按钮,显示屏下方弹出软按钮和软按钮。
通过软按钮,能够选择触发源,主要有模拟通道1、模拟通道2、Ext(外部)、数字通道。
通过Slope (斜率)软按钮,选择触发类型并显示在屏幕右上角。
(2)脉冲宽度(毛刺)触发:单击按钮,选择脉冲宽度触发并显示脉冲宽度触发菜单。
a.和边沿触发类似,单击Sourse软按钮选择触发源,并根据需要合理设置。
b.单击脉冲极性软按钮选择所要捕获的脉冲宽度的正极性或负极性。
所选脉冲极性显示于屏幕右上角。
c.通过时间限定符软按钮可把示波器设置为在不同条件下的脉冲宽度触发。
4、实验步骤4.1 Multisim环境设计仿真电路在电子仿真软件Multisim10电子平台上调出安捷伦虚拟函数信号发生器和安捷伦虚拟示波器各一台,并连好电路。
Agilent示波器的型号是54622D,是一个2模拟通道、16个逻辑通道、100-MHz的宽带示波器。
Agilent示波器下方的18个连接端是信号输入端,右侧是外接触发信号端、接地端。
单击电源按钮,即可使用示波器,实现各种波形的测量。
图标:4.2设置函数发生器为1.00Vpp的1.00KHz正弦信号作为电源触发4.3 设置示波器触发类型和电平正负,观察波形显示(1)正(负)极性、零电平触发波形显示trigger为设置触发区注意,观察波形时,上下挪动波形将触发点T设在Y=0处。
正极性、零电平触发,如下图:负极性、零电平触发,如下图:(2)正极性、正(负)电平触发波形显示正极性、正电平触发,如下图:正极性、负电平触发,如下图:(3)负极性、正(负)电平触发波形显示负极性、正电平触发,如下图:负极性、负电平触发,如下图:(4)观察正极性、零电平及DC、AC耦合方式触发波形显示外加250mV的正弦直流分量正极性、零电平、DC直流耦合方式的触发,如下图:正极性、正电平、DC直流耦合方式的触发,如下图:正极性、负电平、DC直流耦合方式的触发,如下图:负极性、正电平、DC直流耦合方式的触发,如下图:负极性、负电平、DC直流耦合方式的触发,如下图:五、规律总结➢正弦信号的初始相位取决于触发极性和触发电平,与耦合方式无关。
➢触发极性:极性相反,初始相位相反,波形以关于时间轴对称(没有直流耦合的情况下)➢触发电平:正负电平触发可以改变初始相位,连续调节类似波形左右“平移”➢耦合方式:加入直流耦合相当于波形整体上下移动。