示波器显示波形的原理示意图
- 格式:ppt
- 大小:1.47 MB
- 文档页数:15
示波器波形显示原理示波器是一种用于测量电信号的仪器,它可以将电信号转换成可视化的波形,以便于分析和诊断。
示波器的波形显示原理主要包括信号采集、信号处理和波形显示三个部分。
信号采集是示波器的第一步,它通过探头将待测电信号引入示波器内部。
探头通常由一个金属探针和一个接地夹组成,探针用于接触待测电路,接地夹则用于将探头接地,以避免电路中的干扰。
当探头接触待测电路时,它会将电信号转换成电压信号,并将其传递到示波器内部。
信号处理是示波器的第二步,它对采集到的电信号进行放大、滤波和数字化处理。
放大是为了增强信号的强度,使其能够被更好地观察和分析。
滤波则是为了去除电路中的杂波和干扰,使得波形更加清晰。
数字化处理则是将信号转换成数字信号,以便于计算机进行处理和存储。
波形显示是示波器的第三步,它将处理后的信号转换成可视化的波形。
示波器的显示屏通常由一个阴极射线管和一个电子枪组成。
电子枪会发射出一束电子束,经过加速和偏转后,击中阴极射线管的荧光屏上,形成一个亮点。
当电子束按照一定的规律扫描荧光屏时,就可以形成一个完整的波形图像。
示波器的波形显示原理可以用以下公式来表示:V(t) = Vp*sin(2πft + θ)其中,V(t)表示电信号的电压值,Vp表示电信号的峰值,f表示电信号的频率,t表示时间,θ表示电信号的相位。
根据这个公式,我们可以知道,电信号的波形是由振幅、频率和相位三个参数共同决定的。
总之,示波器的波形显示原理是一个复杂的过程,它涉及到信号采集、信号处理和波形显示三个部分。
只有通过这三个步骤的精确处理,才能够得到准确的波形图像,以便于分析和诊断电路中的问题。
3.1 波形显示原理示波器是电子示波器的简称,是一种用途极为广泛的电子测量仪器。
它的基本原理是利用电子束轰击阴极射线管(CRT),并使它发光来产生肉眼可见的光点。
我们知道,电子学中的信号大都是时间的变量,信号随时间的变化可用函数f(t)来描述。
在示波器上,如果用X轴代表时间,用Y轴代表f(t),来描绘出被测信号随时间的变化规律,就把我们肉眼看不见的,非常抽象的电信号变化过程,转换为肉眼可以直接观看的波形,在荧光屏上显示出来,从而可以对电信号进行分析并测量其参数。
示波器可以测量很多电参数,如电压、电流、功率、频率、周期、相位、脉冲宽度、脉冲上升及下降时间等。
如果配上相应的传感器,还可以用来测量温度、压力、振动、密度、声、光、热、磁效应等非电量。
因而示波器在各个领域中得到了越来越多的应用。
示波器对电信号的分析是按时域法进行的,研究信号的瞬间幅度与时间的函数关系,因此有捕获、显示及分析时域波形的功能。
作为实验室常用的电子测量仪器,它具有下述特点:①具有良好的直观性,能显示波形,能测信号瞬时值。
②灵敏度高,显示速度快,工作频带宽,可方便观察瞬变信号细节。
③输入阻抗高(MΩ级),对被测电路影响小,这对测量精度是很重要的。
④是一种信号比较器,可显示、分析任意两个量之间的函数关系。
无论现在和将来,电子示波器都是一种不可缺少的电子测量仪器,它正向自动化、智能化方向发展。
3.1.1 波形显示原理1.示波管工作原理:电子示波器的心脏是示波管,又称阴极射线管(CRT),它是一种特殊的电子管,是能够把电信号转换为光信号的显示器件,因此是示波器能观测电信号波形的关键器件。
示波管主要由电子枪、偏转系统和荧光屏三部分组成,它的基本结构如图2-1所示。
图3-1:示波管的基本原理图电子枪的作用是产生极细的高速电子束,轰击荧光屏产生光点。
目前绝大多数示波管采用无阳极电流型电子枪,它由灯丝(F)、阴极(K)、控制栅极(G)、第一阳极(A1)和第二阳极(A2)组成。
示波器的原理和使用【实验简介】示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。
从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。
在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。
若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。
正确使用示波器是进行电子测量的前提。
第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。
发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。
【实验目的】1、了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。
2、学习用示波器观察电信号的波形和测量电压、周期及频率值。
3、通过观察李萨如图形,学会一种测量正弦波信号频率的方法。
【实验仪器】VD4322B型双踪示波器、EM1643型信号发生器、连接线等图1 VD4322型双踪示波器面板○1:电源开关○2:电源指示灯○3:聚焦旋钮○4:辉度旋钮○5:Y1(X)信号输入端口○6:Y2(Y)信号输入端口○7、○8:输入耦合选择开关(AC-GND-DC)○9、○10:垂直偏转因数选择开关(V/格)○11:Y1垂直位移旋钮○12:Y2垂直位移旋钮○13:工作方式选择开关(Y1、Y2、交替、断续和Y1+Y2)○14:扫描速度(时间/格)选择开关○15:扫描微调旋钮○16:水平位移旋钮○17:电平调节旋钮○18:外触发源输入端口○19:内触发选择开关○20:触发方式选择开关【实验原理】示波器显示随时间变化的电压,将它加在电极板上,极板间形成相应的变化电场,使进入这个变化电场的电子运动情况随时间作相应地变化,从而通过电子在荧光屏上运动的轨迹反映出随时间变化的电压。
示波器的原理和应用一、实验内容:1)了解示波器的主要组成部分,扫描和整步的作用原理,加深对振动合成的理解;2)熟练掌握示波器的使用(1)观察信号特征(正弦波、三角波、方波);(2)利用李萨如图形测量信号频率。
二、实验仪器:双踪示波器函数信号发生器三、实验原理:示波器动态显示随时间变化的电压信号思路是将电压加在电极板上,极板间形成相应的变化电场,使进入这变化电场的电子运动情况相应地随时间变化,最后把电子运动的轨迹用荧光屏显示出来。
示波器主要由示波管(见图1)和复杂的电子线路构成。
示波器的基本结构见图2。
1.偏转电场控制电子束在视屏上的轨迹偏转电压U 与偏转位移Y (或X )成正比关系。
如图3所示:y U Y 。
图3偏转电压U 与偏转位移Y如果只在竖直偏转板(Y 轴)上加一正弦电压,则电子只在竖直方向随电压变化而往复运动,见图4。
要能够显示波形,必须在水平偏转板(X 轴)上加一扫描电压,见图5。
图4 信号随时间变化的规律 (加在Y 偏转板) 图5 锯齿波电压(加在X 偏转板)图1 示波管示意图图2 示波器的基本结构简图示波器显示波形实质:见图6,沿Y 轴方向的简谐运动与沿X 轴方向的匀速运动合成的一种合运动。
显示稳定波形的条件:扫描电压周期应为被测信号周期的整数倍,即T x =nT y ( n=1,2,3…)(见图7)2.同步扫描(其目的是保证扫描周期是信号周期的整数倍)若没有“扫描”(横向的扫描电压),被测信号随时间规律变化规律就显示不出来;如果没有“整步”,就得不到稳定的波形图像。
为了达到“整步”目的,示波器采用三种方式:“内整步”:将待测信号一部分加到扫描发生器,当待测信号频率f y 有微小变化,它将迫使扫描频率f x 追踪其变化,保证波形的完整稳定;“外整步”:从外部电路中取出信号加到扫描发生器,迫使扫描频率f x 变化,保证波形的完整稳定;“电源整步”:整步信号从电源变压器获得。
一般在观察信号时,都采用“内整步”(或称为“内触发”)。
实验二示波器的使用一、实验目的1、了解示波器显示图象的原理.2、学习用示波器观察电信号的波形.3、学习用示波器测定电信号的电圧和频率.二、实验器材双踪示波器多用信号发生器示波器:阴极射线示波器(简称示波器)是一种用途较广的电子仪器,它可以把原來肉眼看不见的变化电压变换成可见的图像,以供人们分析研究。
示波器除了可以直接观测电压随时间变化的波形外,还可以测量频率、相位等. 利用换能器还可以将应变、加速度、圧力以及其它非电量转换成电压进行测量。
由丁?电子质量非常小,没有机械示波器所具有的惯性,因而可以在很高的频率范围内工作,这是示波器很重要的优点.信号发生器是一种能输出稳定的交流信号,IL 电圧和频率可以在某一特定范围内任选的电源装置。
三、实验原理示波器包括两大部分:示波管和控制示波管工作的电路。
1、示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏.示波管的侧视图见图1。
图 1 示波管构造图电子枪由灯丝f,阴极K、栅极G以及一组阳极A所组成。
灯丝通电后炽热,使阴极发热而发射电子。
由丁-阳极电位高于阴极,所以电子被阳极加速。
当高速电子撞击在荧光屏上会使荧光物质发光,在屏上就能看到一个亮点。
改变阳极电位,可以使不同发射方向的电子恰好会聚在荧光屏某一点上,这种调节称为聚焦。
栅极G 电位较阴极K 为低,改变G 电位的高低,可以控制电子枪发射电子流的密度, 甚至完全不使电子通过,这称为辉度调节,实际上就是调节荧光屏上亮点的亮暗。
Y 偏转板是水平放置的两块电极. 当Y 偏转板上电压为零时,电子束正好射在荧光屏正中P点。
如果Y偏转板加上电压,则电子束受到电场力作用,运动方向发生偏移,(见图2)?如果所加的电压不断发生变化,P点的位置也跟着在铅垂线上移动。
在屏上看到的是一条铅直的亮线。
荧光屏上亮点在铅直方向的位移Y和加在Y偏转板的电压U Y成正比。
目录第一章示波器基本原理 (2)1、1 模拟示波器 (2)1、1、1示波管 (2)1、1、2模拟示波器方框图 (3)1、2 数字存储示波器(DSO) (4)第二章示波器的使用 (5)2、1示波器的各个系统和控制 (5)2、2示波器的正确使用 (7)第三章模拟示波器的校准 (9)第四章数字存储示波器的使用和校准 (13)4、1 TDS220的结构 (13)4、2 TDS220的常规检查 (14)4、3 TDS220的校准过程 (16)第一章 示波器基本原理示波器是一种图形显示设备,它能够直接观测和真实显示被测信号,是观察电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器,它可分为模拟和数字类型。
下面就分模拟和数字部分对示波器的基本原理进行简单介绍。
1、1 模拟示波器模拟示波器是第一代示波器产品,拥有极佳的"波形更新率"(约每秒超过二十万次),它仅仅在扫描的回扫时间及闭锁(Hold off )时间内不显示信号,因此又称为模拟实时示波器(Analog Real Time Oscilloscope )。
由于模拟示波器是数字示波器在的基础,我们先来看模拟示波器的工作原理。
1、1、1示波管模拟示波器的心脏是阴极射线管(CRT ),示波管由电子枪、偏转系统和荧光屏组成,它们被密封在真空的玻璃壳内,如图1-1所示。
电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打在荧光屏上,荧光屏的内表面涂有荧光物质,这样电子束打中的点就发出光来。
电子在从电子枪到屏幕的途中要经过偏转系统,在偏转系统上施加电压就可以使光点在屏幕上移动。
偏转系统由水平(X )偏转板和垂直(Y )偏转板组成。
这种偏转方式称为静电偏转。
将输入信号加到Y 轴偏转板上,而示波器自己使电子束沿X 轴方向扫描。
这样就使得光点在屏幕上描绘出输入信号的波形。
这样扫出的信号波形称为波形轨迹1、1、2模拟示波器方框图从上一小节可以看出,只要控制X 轴偏转板和Y 轴偏转板上的电压,就能控制示波管显示的图形形状。
示波器显示波形原理示波器是一种用于显示电信号波形的仪器,它可以将电压随时间变化的波形显示在荧光屏上,通过观察波形的形状和特征来分析电路的工作状态。
示波器广泛应用于电子、通信、医疗、汽车等领域,是电子工程师和技术人员必不可少的工具之一。
示波器的显示波形原理主要包括信号采集、水平扫描、垂直放大和显示四个部分。
下面我将详细介绍示波器显示波形的原理。
首先是信号采集部分。
示波器通过探头将待测信号引入示波器内部,经过放大、滤波等处理后,将信号转换为能够被示波器识别的电压信号。
这个过程类似于我们用耳朵听到声音后,大脑对声音进行处理和分析的过程。
其次是水平扫描部分。
示波器内部有一个水平扫描发生器,它产生一定频率的方波信号,控制示波器荧光屏上的电子束水平移动,从而形成水平方向的时间基准。
这样就能够在屏幕上按照时间轴显示信号的变化情况。
接着是垂直放大部分。
示波器内部有多个放大器,用于对信号进行垂直放大,即将输入信号的幅值放大到一定范围内,以便在屏幕上显示出清晰的波形。
通过调节示波器的垂直灵敏度和增益,可以观察到不同幅值的信号波形。
最后是显示部分。
示波器的显示部分由示波管和荧光屏组成,示波管发射出的电子束在荧光屏上扫描,根据输入的信号波形,荧光屏上就会显示出对应的波形图像。
通过观察这个波形图像,我们可以了解信号的频率、幅值、相位等信息,从而对信号进行分析和诊断。
总的来说,示波器显示波形的原理是通过信号采集、水平扫描、垂直放大和显示四个部分的协同作用,将待测信号的波形以图形的方式显示在荧光屏上,为工程师和技术人员提供了一种直观、准确地观察和分析电信号的方法。
在实际工程应用中,对示波器的原理和操作方法有深入的了解,对于故障排除和电路设计都有着重要的意义。
希望本文对示波器的显示波形原理有所帮助,谢谢阅读。
示波器用处广泛,它的最大特点是能把看不见的电信号变换成能直接观察的电压波形,并能测定电压信号的幅度、周期和频率等参数。
双踪示波器还可测量两个信号之间的位相差,是工程技术中常用的电子仪器。
1.了解示波器的主要结构和基本工作原理。
2.学会使用示波器和信号发生器。
3.学会用示波器观察信号波形。
4 .学会用示波器观察李萨如图形并测量市电的频率。
示波器、函数信号发生器、小变压器等。
示波器的规格和型号不少,但不管哪种示波器都由图 4-6-1 所示的几个基本组成部份:示波管、竖直放大器(Y 轴放大器)、水平放大器(X 轴放大器)、扫描发生器、触发同步和直流电源等部份。
图 4-6-1 示波器结构框图一、示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。
如图 4-6-2 所示。
图4-6-2 示波管1.电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部份组成,阴极是一个表面涂有氧化层的金属圆筒,灯丝通电加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位比阴极稍低,对阴极发射出来的电子起控制作用,惟独初速度较大的电子才干穿过栅极顶端的小孔,然后在阳极加速下奔向荧光屏。
示波器面板上的“亮度”调整旋钮,就是通过调节栅极电位以控制射向荧光屏的电子流密度,从而改变屏上光斑的亮度。
阳极电位比阴极电位高不少,电子被它们之间的电场加速形成射线。
当控制栅极、第一阳极与第二阳极之间电位调节合适时,电子枪内的电场对电子射线有聚焦作用,所以第一阳极也称聚焦阳极,第二阳极电位更高,又称加速阳极。
面板上的“聚焦”调节旋钮,就是调节第一阳极电位,使荧光屏上的光斑成为璀璨、清晰的小圆点。
有的示波器还有“辅助聚焦”,实际是调节第二阳极电位。
2.偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,称为Y 偏转板;一对水平偏转板,称为 X 偏转板。
在偏转板上加之适当电压,当电子束通过时运动方向将发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。