一元一次方程应用题2
- 格式:doc
- 大小:87.50 KB
- 文档页数:7
1.某移动通讯公司开设了两种通讯业务“全球通”和“神舟行”.全球通:使用者先交50元月租费,然后每通话一分钟付0.4元话费,累计起来作为使用者一个月的通讯费;神州行:不缴月租费,每通话一分钟,付话费0.6元现有甲、乙二人分别使用“全球通“和”神州行“,设他们在一个月内通话时间均为x分钟.(1)如果x=30小时,分别计算甲、乙二人这一个月的通讯费;(2)当他们在这一个月中缴纳的通讯费相等时,你能通过自己学习的知识求出他们的通话时间是多少吗?试一试.2.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?3.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:5 10 20 30 …一次复印页数(页)0.5 2 …甲复印店收费(元)0.6 2.4 …乙复印店收费(元)(2)复印张数为多少时,两处的收费相同?4.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?5.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B地,A、B两地间的路程是多少千米?6.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?7.某校组织7年级师生外出进行研究性学习活动,学校联系了旅游公司提供车辆.该公司现有50座和35座两种车型.如果用35座的,会有5人没座位;如果全部换乘50座的,则可比35座车少用2辆,而且多出15个座位.若35座客车日租金为每辆250元,50座客车日租金为每辆300元,(1)请你算算参加互动师生共多少人?(2)请你设计一个方案,使租金最少,并说明理由.8.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?9.将连续的奇数1,3,5,7,9,…,排成如图所示的数阵.(1)设中间数为a,用式子表示十字框中五数之和并化简.(2)若将十字框上下左右移动,可框住另外五个数,这五个数的和还有这种规律吗?十字框中五数之和能等于2005吗?若能,请写出这五个数,若不能,说明理由.10.为准备联合韵律操表演,甲、乙两校共100人准备统一购买服装(一人买一套)参加表演,其中甲校人数多于乙校人数,下面是服装厂给出的演出服装的价格表:1套至49套50套至99套100套及以上购买服装的套数60元55元50元每套服装的价格如果两所学校分别单独购买服装,一共应付5710元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加表演?(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?参考答案1.解:(1)30小时=1800分钟,甲一个月的通讯费为50+0.4×1800=770(元),乙一个月的通讯录为0.6×1800=1080(元).(2)根据题意得:50+0.4x=0.6x,解得:x=250.答:当通话时间为250分钟时,两人通讯费用相等.2.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.3.解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.4.解:(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.5.解:设A、B两地间的路程为x千米,根据题意得﹣=2解得x=240答:A、B两地间的路程是240千米.6.解:由题意得:50x+15﹣40x=30解得:x=1.5.答:经过1.5小时,两车相距30千米.7.解:(1)设参加互动师生共x人,由题意得:=+2即:10x﹣7x=105+50+700解得:x=285人,所以,参与本次师生互动的人共有285人.(2)设计方案为:租用1辆35座的车,租用5辆50座的车.设租用x辆35座的,则还需租用辆50座的,其中x≥0 由题意得:由于=5.7≈6辆,需要租金:6×300=1800元;所以当x=1时,=5,需要租金:250+300×5=1750元;当x=2时,=4.3≈5辆,需租金:250×2+300×5=2000元;当x=3时,=3.6≈4辆,需租金:3×250+4×300=1950元;当x=4时,=2.9≈3辆,需租金:4×250+3×300=1900元;当x=5时,=2.2≈3辆,需租金:5×250+3×300=2150元;当x=6时,=1.5≈2辆,需租金:6×250+2×300=2100元;当x=7时,=0.8≈1辆,需租金:7×250+300=2050元;当x=8时,≈1辆,需租金:8×250+300=2300元;当x=9时,35×9>285,此时需租金:9×250=2250元;综合上述比较当租用1辆35座的车,租用5辆50座的车时,所需资金最少.另法:假设租了35座汽车x辆,其余人乘坐50座客车,则所花租金等于:(285﹣35x)÷50×300+250x=(285﹣35x)6+250x=1710+40x,若要使租金最少,即要使(1710+40x)值最小,∴当x=1时,租金为1750元时为最低.或因为大车票价低于小车票价,所以尽可能多租大车,285÷50=5(辆)…35(人).故租了35座汽车1辆,50座客车5辆最合算.8.解:设每件服装的成本价为x元,那么每件服装的标价为:(1+40%)x=1.4x;每件服装的实际售价为:1.4x×0.8=1.12x;每件服装的利润为:0.12x;由此,列出方程:0.8×(1+40%)x﹣x=15;解方程,得x=125;答:每件服装的成本价是125元.9.解:(1)设中间数为a,则另外四个数分别为a﹣10、a﹣2、a+2、a+10,∴十字框中五数之和为(a﹣10)+(a﹣2)+a+(a+2)+(a+10)=5a.(2)无论如何移动,这五个数的和还有这种规律,十字框中五数之和不能等于2005,理由如下:设中间数为x时,五数之和为2005,根据题意得:5x=2005,解得:x=401,∵401为第201个奇数,且201=40×5+1,∴401为第40行的第一个数,∴401不能为中间数,∴十字框中五数之和不能等于2005.10.解:(1)若甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省:5710﹣50×100=710(元);(2)设甲校有学生x人(依题意50<x<100),则乙校有学生(100﹣x)人.依题意得:55x+60×(100﹣x)=5710,解得:x=58.经检验x=58符合题意.∴100﹣x=42.故甲校有58人,乙校有42人.(3)方案一:各自购买服装需49×60+42×60=5460(元);方案二:联合购买服装需(49+42)×55=5005(元);方案三:联合购买100套服装需100×50=5000(元);综上所述:因为5460>5005>5000.所以应该甲乙两校联合起来选择按50元每套一次购买100套服装最省钱.。
一元一次方程式应用题
1. 分配问题:
一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果。
求这一箱苹果的个数与小朋友的人数。
2. 追及问题:
甲、乙两人同时从相距100千米的两地出发,相向而行。
甲每小时走6千米,乙每小时走4千米。
甲带了一只小狗,狗每小时跑10千米。
小狗随甲同时出发,向乙跑去;当它遇到乙后,就立即回头向甲跑去;遇到甲后,就立即回头向乙跑去……直到甲、乙两人相遇狗才停住。
问这条小狗一共跑了多少路?
3. 相遇问题:
甲、乙两地相距180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍。
若两人同时出发,相向而行,问经过多少时间两人相遇?
4. 工程问题:
某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?。
一元一次方程的应用(二)【真题精选】1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是分钟时,选择方式一与方式二的费用相同.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有人.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:(注:应纳税额=纳税所得额﹣起征额﹣专项附加扣除)小吴2019年1月纳税所得额是7800元,专项附加扣除2000元,则小吴本月应缴税款元;与此次个税调整前相比,他少缴税款元.17.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.一元一次方程的应用(二)参考答案与试题解析一.试题(共17小题)1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,4x=5(90﹣x),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?【分析】首先根据题意,设有x个椅子,则有40﹣x个凳子,然后根据:椅子腿数+凳子腿数=145,列出方程,求出椅子的数量,进而求出凳子的数量即可.【解答】解:设有x个椅子,则有40﹣x个凳子,根据题意列方程,4x+3(40﹣x)=145,解方程,得:x=25,∴40﹣x=40﹣25=15.答:有25个椅子,15个凳子.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据题意列方程得,120x=2×80(42﹣x)解得x=24,则42﹣x=42﹣24=18.答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.【分析】可设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,根据方式一与方式二的费用相同的等量关系列出方程计算即可求解.【解答】解:设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,依题意有58+0.25(x﹣150)=88,解得x=270.故当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.故答案为:270.【点评】本题考查了一元一次方程的应用,关键是理解方式一与方式二两种移动电话的计费方式.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?【分析】(1)分别计算出方案一和方案二的花费,然后比较大小即可解答本题;(2)设一班有x人,根据已知得出两种方案费用一样,进而列出方程求解即可.【解答】解:(1)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(2)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.【点评】本题主要考查了一元一次方程的应用,根据已知得出关于x的方程是解题关键.6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.【分析】(1)根据A、B两家公司的优惠方案所提供的数量关系直接列代数式化简即可;(2)根据购买A、B两个公司体育用品的费用相等,列出方程可求x的值;(3)首先求出还需要购买排球的个数,即x的值,再将x的值分别代入(1)中所求的代数式,与10500比较,即可求解.【解答】解:(1)由A公司的优惠方案得,购买A公司体育用品的费用为:0.8×(100×50+40x)=(32x+4000)元;购买B公司体育用品的费用为:100×50+40(x﹣50)=(40x+3000)元;(2)依题意有32x+4000=40x+3000,解得x=125.故此时x的值为125;(3)还需要排球:600﹣(100+50)﹣50﹣100×2=200(个).在A公司采购需要的费用为:32×200+4000=10400<10500,在B公司采购需要的费用为:40×200+3000=11000>10500,所以能满足训练要求,应在A公司采购.【点评】本题考查一元一次方程的应用,列代数式,根据数量关系列出代数式是正确计算的前提,理解两个公司的优惠方案是解决问题的关键.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?【分析】可设他们买了x张优惠票,根据等量关系:买票共花费了1640元,依此列出方程求解即可.【解答】解:设他们买了x张优惠票,根据题意列方程得:80x+120(x﹣3)=1640,80x+120x﹣360=1640,200x=2000,解得x=10.答:他们买了10张优惠票.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡【分析】设一年内在便利店购买咖啡x次,用x表示出购买各类会员年卡的消费费用,把x=75、85代入计算,比较大小得到答案.【解答】解:设一年内在便利店购买咖啡x次,购买A类会员年卡,消费费用为40+2×(0.9×10)x=(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.【点评】本题考查的是有理数的混合运算的应用,掌握有理数的混合运算法则是解题的关键.10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?【分析】设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有(106﹣2x)人.根据初一(1)班有20多人,不足30人得出20<x<30,再分①46<106﹣2x≤60,②106﹣2x>60两种情况进行讨论,根据三个班都以班为单位购票,则一共应付1365元列出方程,求解即可.【解答】解:设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有[101﹣x﹣(x﹣5)]=(106﹣2x)人.依题意可知,20<x<30,∴x﹣5<25,46<106﹣2x<66.①如果46<106﹣2x≤60,那么15x+15(x﹣5)+12(106﹣2x)=1365,解得x=28,符合题意.所以x﹣5=23,101﹣x﹣x+5=50;②如果106﹣2x>60,那么15x+15(x﹣5)+10(106﹣2x)=1365.解得x=38.∵38>30,∴x=38不合题意舍去.答:初一(1)班有28人,初一(2)班有23人,初一(3)班有50人.【点评】本题考查了一元一次方程的应用,设初一(1)班有x人,根据x的取值范围得出初一(2)班与初一(3)班人数的范围,进而进行分类讨论是解题的关键.11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?【分析】(1)根据总价=单价×数量,即可求出结论;(2)设复印x张时,两处的收费相同,由甲,乙两店收费相同,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=2张A门票的价格,据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张,依题意,得,解方程组,得,答:小明预订了B等级门票2张,C等级门票5张.【点评】本题考查了二元一次方程组的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?【分析】(1)根据表格中的数据列出相应的方程,从而可以得到初一(2)班的人数;(2)根据表格中的数据和(1)中的结果,可知两个班一起购买最省钱,从而可以求得可以省多少钱.【解答】解:(1)设初一(1)班x人,初一(2)班y人,根据题意可得:12x+10y=1106,由于x,y都是整数,且40<x<50,50<x<100,当初一(1)班有48人时,48×12=576,1106﹣576=530,530÷10=53.当初一(1)班有43人时,43×12=516,1106﹣516=590,590÷10=59.所以,初一(2)班共有53人或59人;(2)两个一起买票更省钱,①8×(48+53)=808,1106﹣808=298(元).②8×(43+59)=816,1106﹣816=290(元).这样比原计划节省298元或290元.【点评】本题考查二元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?【分析】(1)根据里程费+时长费,列式可得车费;(2)根据行车里程1千米,列式可得车费;(3)可设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据等量关系:里程费+时长费=车费37.4元,列出方程求出速度,进一步得到从学校到小华家快车行驶的路程.【解答】解:(1)应付车费=1.8×6+0.8×10=18.8(元).故应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据题意得,解得x=12.∴3x=36.∴(千米).答:从学校到小华家快车行驶了9千米.故答案为:18.8;14.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出方程是解题的关键.15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有3人.【分析】设该家庭中购买普通票的有x人,则可以购买优惠票的有人,根据网络购票优惠的钱数,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入中即可求出结论.【解答】解:设该家庭中购买普通票的有x人,则可以购买优惠票的有人,依题意,得:120x﹣120×0.9x=1080﹣996,解得:x=7,∴=3.故答案为:3.【点评】此题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:。
一元一次方程应用题共同点:1、方程只含有一个未知数;2、未知数的次数是1;3、等式两边都是整式.只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程一、工程问题1某管道由甲乙两个工程队单独施工分别要30天,20天铺完。
1.如果两队从两端同时施工,需要多少天铺完?2.已知甲队单独施工每天200元,乙队单独施工每天280元,那么怎样施工才能满足少花钱多办事的目的。
2一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?3某工人若每小时生产38个零件,在规定时间内还有15个不能完成;若每小时生产42个,则可超额5个,问规定时间是多少?共生产多少个零件?4某工厂今年比去年增产60%,达到生产320万件产品的目标,那么该工厂去年的年产量是多少?5某工程,甲单独完成续20天,乙单独完成续12天甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?二.路程问题6甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?7小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速0.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?8小张骑车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进,已知两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求A、B两地间的路程。
9甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?10甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇?(2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?11小张开车去火车站,如果速度为30千米/时,则早15分钟到达,如果18千米/时,则迟到5分,现在打算提前5分钟到达,那么他开车的速度是多少?12A、B两地相距49千米,某人步行从A地出发,分三段以不同速度走完全程,共用10小时。
小学五年级一元一次方程应用题2(二套)目录:小学五年级一元一次方程应用题一小学五年级列方程解应用题二小学五年级一元一次方程应用题一2.甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇.两地间的水路长多少千米?3.一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米?4.甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车出发后多少小时相遇?5.王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米.如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去.这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?6.甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?7. A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米.一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去.这样一直飞下去,燕子飞了多少千米,两车才能相遇?8.甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米.一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?9.甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?10.甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?11.甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行.经过3小时后,两人相隔60千米.南北两庄相距多少千米?12.东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?13.甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米.几小时后甲可以追上乙?14.甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米.几小时后甲可追上乙?15.解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络.多长时间后,通讯员能赶上队伍?16.小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米.3分钟后两人相距多少米?17.甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?18.一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?19.光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑.亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?20.甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍.现在甲在乙后面250米,乙追上甲需要多少分钟?小学五年级列方程解应用题二一、填空题1.每包书有12册,n包书有()册.2.一本书共a页,每天看b页,则10天看了()页,剩下()页.3.甲鱼缸有金鱼b条,比乙鱼缸的条数少12条,b+12表示(),2b+12表示().4.钢笔每支a元,本子每本b元,李明买了3支钢笔和5个本子,一共()元.5.商店原有苹果a箱,卖出b箱后,又购进c箱,则商店现有苹果()箱.6.甲每小时加工零件a个,乙每小时比甲多2个,两个人1小时加工()个,m小时加工()个.二、解方程5(X+2)-2(2X+7)=0 5(14-X)=7(X-20)三、用方程法解文字题.1、一个数减42.6的差加上10乘2的和是3.4?2、一个数的4倍减去8,差是10,求这个数?五、列方程解应用题1、某数的3倍加上5与这个数的4倍减少3相等,这个数是多少?2、两数相除,商是3余数是2,已知被除数,除数,商和余数的和为179,被除数是多少?3、鸡兔同笼,鸡比兔多10只,但鸡脚却比兔脚少60条,问鸡兔各几只?4、三年前,父亲的年龄是儿子的9倍,6年后,父亲的年龄是儿子的3倍,求父、子今年各多少岁?5、一本《唐宋诗选》中,五言诗比七言诗多13首,字数反而少20字,(每首诗都是4句)五言诗和七言诗各多少首?6、小涛今年12岁,爸爸今年36岁,几年前爸爸的年龄是他的5倍?7、一条绳子绕树4圈,剩4米,如果绕5圈,还差1.4米.这棵树的周长是多少米?8、有甲、乙两桶油,甲桶里有油45千克.从甲桶里倒出多少千克油到乙桶里,才能使甲桶里的油是乙桶里油的1.5倍?列方程解应用题1、叔叔今年的年龄是侄子的6倍,6年后,叔叔的年龄是侄子的3倍,今年两人各多少岁?(年龄问题)2、有拾圆钞票和伍圆钞票共128张,其中拾圆的比伍圆的多260元,两种面额的钞票各多少张?(鸡兔同笼问题)3、某校四、五年级的学生乘坐汽车去春游.如果每车坐65人,则有15人坐不下;如果每车多座70人,恰好多出一辆车.四、五年级去春游的学生共有多少人?(盈亏问题)4、一个书架有两层,上层放的书是下层的4倍,如果把上层的书搬60本到下层,则两层的书的本书相同.原来上、下各有多少本书?(倍数问题)5、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙从A地,丙从B地同时出发,相向而行,丙遇到乙后2分钟遇到甲,求A、B两地的距离是多少?(相遇追及问题)列方程解应用题1.一个数的2倍加上3,等于这个数加上12,这个数是多少?2.一条绳子绕树4圈,剩4米;如果绕树5圈,还差1.4米.这棵树的周长是多少米?3.妈妈今年50岁,儿子今年26岁,几年前妈妈的年龄正好是儿子的4倍?4.果园里梨树和桃树共有365棵,桃树的棵树比梨树的5倍多5棵.果园里梨树和桃树各有多少棵?5.原来哥哥的画片是弟弟的3倍,后来2人各买了5张,这样哥哥的画片就是弟弟的2倍.原来兄弟俩各有画片多少张?6.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元.每张桌子多少元?列方程解应用题【倍数应用题】1.某数的5倍减14等于它的2倍加4,那么这个数是多少?2.甲乙丙三个数的和是25,甲数比乙数的5倍还多10,丙比乙的3倍少3,甲乙丙三个数各是多少?3.甲、乙、丙三人共103有张邮票,甲的邮票数是乙的2倍,乙的邮票比丙的3倍多1张,甲、乙、丙各有多少张邮票?4.一个书架有两层,上层放的书是下层的5倍,如果把上层的书搬60本到下层,则两层的书相等.原来上下层各有多少本书?5.甲站原有车52辆,乙站原有车32辆,如果每天从甲站开往乙站3辆,几天后,乙站的车辆是甲站的2倍?6.女儿今年6岁,母亲今年38岁,几年后母亲的年龄是女儿的3倍?7.今年强强的年龄是平平的9倍,5年后,强强的年龄是平平的4倍,今年两人各多少岁?8.刘老师的照片比李老师的2倍多4张,李老师又送给刘老师10张,这时刘老师的照片的张数是李老师的4倍.原来两人各有多少张?9.虹桥瓜果批发部有甲乙两个仓库,乙仓库的水果存数是甲仓库的5倍,如果从甲仓库抽出5吨水果放到乙仓库,那么乙仓库的水果数就是甲仓库的8倍,问原来两仓库的水果存数各是多少?10.两个整数相除,商是5,余数是11,被除数、除数、商及余数的和是99,求被除数和除数.【盈亏问题】11.同学们种树,如果每人栽4棵,还剩19棵;如果每人栽7棵,则差5棵,问有几个同学,有多少棵树?12.幼儿园老师给小朋友分饼干,每人分5块,则剩下66块;每人分8块,则剩下3块,问有多少个小朋友?有多少块饼干?13.小朋友分糖果,每人分10粒,正好分完;若每人分16粒,则缺36粒,问有多少个小朋友?多少粒糖果?14.某年级学生乘汽车春游.如果每车坐38人,则有10人不能乘车,如果每车多坐4人,恰好多一辆汽车.则一共有多少辆车?多少学生?15.某班级同学组织划船,如果每船6人则需加一条船;如果每船9人,则可减少一条船,问有多少条船?多少名同学?【鸡兔问题】16.鸡兔同笼,共51个头,172条腿,鸡兔各几只?17.兔同笼共有50个头,鸡的腿数比兔的腿数少80,问鸡兔各几只?18.46人去划船,恰好坐满大小船12只,已知大船每船坐5人,小船每船坐3人,请问大小船各几只?19.有拾元钞票与伍元钞票共100张,其中拾元的比伍元的多220元,两种面额的钞票各有多少张?20.托运玻璃100箱,合同规定每箱运费4角,如果损坏1箱不给运费并赔偿损失5元.结算时共得运费29.2元,共损失多少箱?列方程解应用题综合训练1、五(三)班在选中队委时,小青的选票比小华多6张,比小红少3张,如果这三人共有选票57张,那么小青得选票多少张?2、某中学利用暑假进行军训,晴天每日行35千米,雨天每日行22千米,13天共行403千米,这期间晴天有多少天?3、文化宫电影院有座位2000张,前排票每张4元,后排票每张2.5元,已知前排票比后排票的总价少1100元,该电影院有前排座和后排座各多少张?4、五(一)班上学期期末考试全班的平均分为87.5分,男生平均分为86分,女生平均分为90分,这个班共有56人.求男女生各有多少人?5、某农民饲养鸡兔若干只,已知鸡比兔多13只,鸡的脚比兔的脚多16条,问鸡兔各几只?6、今年爸爸、妈妈、哥哥、弟弟的年龄分别是36岁、34岁、8岁、6岁,多少年后,爸爸、妈妈的年龄之和是哥哥、弟弟年龄之和的3倍?7、两堆煤,甲堆煤有4.5吨,乙堆煤有6吨,甲堆煤每天用去0.36吨,乙堆煤每天用去0.51吨,几天后两堆煤剩下吨数相等?8、甲乙两根绳子,甲绳长65米,乙绳长29米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还多2米,甲绳所剩长度是多少米?9、有一元、二元、五元的人民币50张,面值共计116元.已知1元的人民币比2元的多2张,问三种人民币各有多少张?10、读书活动小组的学生从图书馆借来的科技书是故事书的2倍.平均每人看6本科技书,则余12本,每人看4本故事书,则差3本.读书活动小组有多少人?11、小红为美术兴趣小组买回80枝画笔,有2元一枝的、有5元一枝的、有10元一枝的,共付出人民币490元.已知5元一枝与10元一枝的笔的数量相同.这三种画笔各几枝?12、一架飞机所带燃料最多可以用6小时,飞机去时顺风,每小时可以飞1500千米,飞回时逆风,每小时飞1200千米.这架飞机最多能飞几千米就需往回飞?。
一元一次方程应用题第一篇:水桶倒水问题问题描述:小明有一个容量为12升的水桶,里面装满了水。
他用这个水桶分别给两个植物浇水,第一个植物每次需要2升水,第二个植物每次需要3升水。
假设两个植物都需要浇水n次,问小明能够连续给这两个植物浇水的最大次数是多少次?解决方法:设小明能够给两个植物连续浇水的次数为x次。
根据题意,每次给两个植物浇水后,第一个植物的水量会减少2升,第二个植物的水量会减少3升。
因此,通过一次操作,两个植物共需要消耗的水量为2x + 3x = 5x升。
而小明的水桶容量为12升,假设小明能够连续给这两个植物浇水n次,则总共需要消耗的水量为5xn升。
因此,5xn ≤ 12,解这个不等式可以得到小明能够连续给这两个植物浇水的最大次数n的取值范围。
首先,根据不等式5xn ≤ 12,我们可以将不等式两边同除以5得到n ≤ 12/5,即n的取值范围为n ≤ 2.4。
由于n是正整数,所以n的取值范围应该是n ≤ 2。
这意味着小明最多能够连续给这两个植物浇水2次。
因此,小明能够连续给这两个植物浇水的最大次数是2次。
第二篇:汽车加速问题问题描述:某辆汽车以初速度为10 m/s匀加速行驶,在行驶的过程中,速度与时间的关系为v(t) = 10 + 2t,其中v是速度(m/s),t是时间(s)。
问该汽车在何时速度能达到60 m/s?解决方法:根据题意,汽车的速度与时间的关系为v(t) = 10 + 2t。
我们需要找到一个时间t,使得v(t) = 60。
将v(t) = 10 + 2t = 60,化简得2t = 50,解得t = 25。
因此,该汽车在25秒时速度能达到60 m/s。
第3章列一元一次方程解应用题1、全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。
问这个班有多少位同学?2.某班在绿化校园的活动中共植树130棵,有5位学生每人种了2棵,其余学生每人种了3棵。
这个班共有多少学生?3.植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4. 毕业在即,九年级某班为纪念师生情谊,班委决定花800元班会费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念。
其中送给任课老师的留念册的单价比给同学的单价多8元。
请问这两种不同留念册的单价分别为多少元?5、在长为10m,宽为8m的长方形空地上,沿平行于矩形各边的方向分割出三个一样的小长方形花圃,其示意图如图所示.求其中一个小长方形花圃的长和宽.6. 学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?7.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米?8. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?9.一个两位数,十位上的数字是个位上数字的2倍。
如果把这个数的两个数位上的数字交换位置,所得的两位数比原数小36。
求原来的两位数?10.在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?11.某车间每个工人能生产螺栓12个或螺母18个,每个螺栓要有两个螺母配套,现在有工人28人,怎样分配生产螺栓和螺母的工人数,才能使每天生产量刚好配套?12.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?13.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?14. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?15. 某小学在6月1日组织师生共110人到趵突泉公园游览.趵突泉公园规定:成人票价每位40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?16.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?17. 在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少18. 古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力....完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.求A、B两工程队分别整治河道多少米.19.七年级学生外出春游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么可以空出一辆汽车,问共有多少辆车?共有多少学生?20.某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余恰好坐满。
一元一次方程应用题专题练习这种方程是最简单的方程之一,但在各种实际问题中却有广泛的应用,包括代数问题,几何问题,经济问题等等。
下面我们将通过一些具体的例子来讨论一元一次方程的应用。
例题2:商店举行特价促销活动,商品原价为x元,降价后的价格为x-30元,如果顾客购买该商品后只需支付60元,则原价是多少?解析:设原价为x元,则降价后的价格为x-30元。
根据题意,购买该商品支付的金额为60元,即x-30=60。
解这个方程可以得出x的值,即商品的原价。
例题3:一条长方形花坛的长是x米,宽是x/3米,花坛的面积是6平方米,这条花坛的周长是多少米?解析:设花坛的长为x米,则宽为x/3米。
花坛的面积是6平方米,即长乘宽等于6平方米,即x*(x/3)=6、解这个方程可以得出x的值,即长方形花坛的长和宽。
根据长方形的周长公式C=2*(长+宽),可以得到长方形花坛的周长。
通过以上例题可以看出,一元一次方程可以用来解决各种实际问题。
几何问题中可以应用一元一次方程来求解长度,面积,周长等问题;代数问题中可以应用一元一次方程来求解未知数的值;经济问题中可以应用一元一次方程来求解价格,成本,收入等问题。
在解决实际问题时,我们通常需要先列方程,然后解方程,最后验证结果。
列方程是根据问题中所给的条件,用字母表示未知数,建立数学模型。
解方程是根据所列方程求解未知数的值。
验证结果是将求解得到的值代入原方程中验证是否符合问题的条件。
在解一元一次方程的过程中,常用的解法有逆运算法、消元法、方程图法等。
根据问题的实际情况,选择不同的解法来解决问题。
总结:一元一次方程是一种简单而常用的方程形式,广泛应用于各个领域的实际问题中。
通过实例可以看出,运用一元一次方程可以解决各种数学问题,提高数学解题的能力和思维能力。
在解决实际问题时,应该注意建立数学模型,合理选择解法,并进行结果的验证,以确保解答正确。
1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几(3)如果将两管同时打开,每小时的效果如何如何列式(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间5. 有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。
前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块比小的一块大一倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人?(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。
一元一次方程应用题测验(二)列方程解应用题:(每题10分)1.整理一批图书,由一个人做要40小时完成。
现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?2、我们的身边有一些股民,某股民将甲、乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1600元,但亏损20%,该股民在这次交易中是盈利还是亏损,盈利或亏损多少元?3、小明到书店买书,办会员卡是6.8折,办卡费是20元,不办卡打九折,小明应该怎么办?4、一商店将某种商品按成本价提高40%后标价,元旦期间打8折销售以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?5.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分。
(1)小明同学参加了竞赛,成绩是96分。
请问小明在竞赛中答对了多少题?(2)小王也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分。
”请问小王有没有可能拿到100分?试用方程的知识来说明理由。
6.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?7、在一次数学竞赛中,共有60题选择题,答对一题得2分。
答错一题扣1分,不答题不得分也不扣分。
(1)小华在竞赛中有2题忘记回答,结果他得了92分。
问小华答对了多少题?(2)小胡放言:“我就算有3题没做也能拿100分。
”请问小胡这个说法正不正确?说明理由8.某校有住宿生若干人,若每间宿舍住8人,则有5人无处住;若每间宿舍增加1人,则还空35张床位,求共有多少间宿舍?有多少住宿生?(9分)9.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为?10.我国民间流传着许多趣味算题,它们多以顺口溜的形式表述,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少俩梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?11.某商店进了一批商品,提高进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为多少元?(9分)12.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?。
一、填空题1、某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为元.2、某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为元.3、一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元.4、某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为元,请填写下表:5、五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.6、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55 cm,此时木桶中水的深度是 cm.7、.某公园门票价格如下表,有27名中学生游公园,则最少应付费_________元.(游客只能在公园售票处购票)8、依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按下表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是元.9、某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为元时,获得的利润最多.10、某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名。
11、某商店的老板销售一种商品,他要以获得不低于20%的利润才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价________元,商店老板才肯出售.二、简答题12、“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了元钱.13、为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?14、某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.(1)求改进设备后平均每天耗煤多少吨?(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).15、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?17、在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:18、据统计,2008年底义乌市共有耕地267000亩,户籍人口724000人,2004年底至2008年底户籍人口平均每两年约增加2%,假设今后几年继续保持这样的增长速度。
(本题计算结果精确到个位)(1)预计2012年底义乌市户籍人口约多少人?(2)为确保2012年底义乌市人均耕地面积不低于现有水平,预计2008年底至2012年底平均每年耕地总面积至少应该增加多少亩?19、2009年5月22日,“中国移动杯”中美篮球对抗赛在吉首进行.为组织该活动,中国移动吉首公司已经在此前花费了费用120万元.对抗赛的门票价格分别为80元、200元和400元.已知2000张80元的门票和1800张200元的门票已经全部卖出.那么,如果要不亏本,400元的门票最低要卖出多少张?20、某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C的销售金额应比去年增加 %.21、某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需费用495元.(1)甲、乙两厂同时处理该城市的垃圾,每天需几个小时完成?(2)如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少需要多少小时?三、选择题22、家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是_______(A) (B)(C) (D)23、某商场对一种商品作调价,按原价的8折出售,仍可获利10%,此商品的原价是2200元,则商品进价是()A.1540元 B.1600元 C.1690元 D.1760元24、甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【】A.8 B.7 C.6 D.525、某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()折。
A、6折B、7折C、8折D、9折26、种饮料种饮料单价少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花了13元,如果设种饮料单价为元/瓶,那么下面所列方程正确的是()A. B. C. D.27、某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为()A.26元 B.27元 C.28元 D.29元28、某服装商同时卖出两套服装,每套均为168元,以成本计算,其中一套盈利20%,另一套亏本20%,这次出售商家()A.不赚不赔 B.赔14元 C.赚14元 D.赚37.2元29、小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列方程中能正确计算出x的是 ( )A.10x+20=100 B.10x-20=100 C.20-10x=100 D.20x+10=10030、今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后购买100000元股票,则比调整前少交证券交易印花税多少元?A.200元B.2000元C.100元D.1000元31、小宁买了20个练习本,店主给他八折(即标价的80%)优惠,结果便宜了1.60元,则每个练习本的标价是()A.0.20元 B.0.40元 C.0.60元 D.0.80元32、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%,以96元出售,很快就卖掉了,则这次生意的盈亏情况为()A.赚6元 B.不亏不赚 C.亏4元 D.亏2433、如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为克,再称得剩余电线的质量为克,那么原来这卷电线的总长度是()A.米 B.米 C.米 D.米四、计算题34、从称许到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10∶7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?35、2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修。
维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。
已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度。
36、A、B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A、B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”与甲队共同作业,此时甲队已完成了工程量的.(1)若滑坡受损公路长1 km,甲队行进的速度是乙队的倍多5 km,求甲、乙两队赶路的速度;(2)假设下午4点时两队就完成公路疏通任务,胜利会师.那么若只由乙工程队疏通这段公路时,需要多少时间能完成任务?37、5・12汶川大地震引起山体滑坡堵塞河谷后,形成了许多堰塞湖.据中央电视台报道:唐家山堰塞湖危险性最大.为了尽快排除险情,决定在堵塞体表面开挖一条泄流槽, 经计算需挖出土石方13.4万立方米,开挖2天后,为了加快施工进度,又增调了大量的人员和设备,每天挖的土石方比原来的2倍还多1万立方米,结果共用5天完成任务,比计划时间大大提前.根据以上信息,求原计划每天挖土石方多少万立方米?增调人员和设备后每天挖土石方多少万立方米?38、“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?39、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了,但售价未变,从而使超市销售这种计算器的利润提高了.这种计算器原来每个进价是多少元?(利润售价进价,利润率)40、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后将售价下降l0%,这样每件仍可以获利18元,又售出了全部商品的25%。