长输管道储气量计算
- 格式:doc
- 大小:61.50 KB
- 文档页数:6
如何计算管道气存储能力例题:压力在2MPa-3MPa之间.管径为300,长度约15.6KM.如何计算管内的气量.1、管容=0.3*0.3*3.14/4*15.6*1000气量(标准立方米)=压力(bar)*管容(立方米)1MPa=10bar一般这样就可以了,再精确点就再除以一个压缩因子。
2、长输管线距离长、管径大、输送压力较高,管线具有一定的储气能力,长输管线中间设有加压站时,按最末一个加压站至城市配气站的管段计算其储气能力;设有中间加压站的长输管线,可按全线计算其储气能力。
城市天然气输配系统往往利用大口径输气管线储存一定气量作为高峰负荷时增加用户气量之用,其储气能力为储气终了时与储气开始时输气管中存气量之差、一条已投产的输气干管的长度、容积、管线起点允许最高工作压力、终点允许最高工作压力、终点用户要求的最低供气压力及该管线正常输气量等都是已知的,可按下列步骤计算其储气量:(1)根据压气站的最高工作压力或管线强度允许压力,确定储气终了时管线起点压力。
由起点压力和正常输气量按下式算出储气终了时的管线终点压力:式中Q——天然气通过能力(m3/d);(20℃,101,3kPa)D——输气管内径(cm);P1——输气管线的起点绝对压力(106Pa);P2——输气管线的终点绝对压力(106Pa);S——天然气相对密度;Tf——天然气平均绝对温度(K);L——输气管线长度(km);Z——天然气平均压缩因子。
(2)求储气开始时起点压力式中P1min——储气开始时起点绝对压力(106Pa);P2min——储气开始时终点绝对压力(106Pa);P1max——储气终了时起点绝对压力(106Pa);P2max——储气终了时终点绝对压力(106Pa);(3)计算管线的容积V=(Л/4)D2L(4)储气开始时的平均压力(5)储气终了时的平均压力(6)储气量式中Q。
——输气管线储气量(m3);(20℃,101.3kPa)V——输气管线容积(m3);To——293(K);Tm——天然气平均温度(K);Po——标准状态下的压力(101.3kPa);Z1、Z2——在Pm2、Pm2下的压缩因子;Pm1——储气终了时的平均压力(106Pa);Pm2——储气开始时的平均压力(106Pa)。
气体管道压降和储气量计算一、气体管道压降计算气体在管道中输送会产生压力损失,这个损失称为压降。
正确计算气体管道压降可以保证气体输送的效率,避免发生压力不足的情况。
1.管道内阻力:由于气体与管壁之间的摩擦引起,管道越长、直径越小,阻力越大。
2.凸耗散:气体在管道的弯曲和局部收缩处发生污染和湍流,会导致能量损失。
3.突破及扩张:当气体通过突然变化截面积或管道直径的地方,会发生局部的能量损失。
4.气体输送速度:气体的流速越大,压降越大。
根据Darcy-Weisbach公式,气体管道的压降可以通过以下公式计算:△P=(f*L*ρ*V^2)/(2*D)其中:△P表示压降,单位为帕斯卡(Pa)f表示摩擦系数L表示管道长度,单位为米(m)ρ 表示气体密度,单位为千克/立方米(kg/m^3)V表示气体流速,单位为米/秒(m/s)D表示管道直径,单位为米(m)在实际计算中,需要根据实际情况选择合适的摩擦系数。
一般可根据管道材质和管道内壁状况选择常用值,如钢管的摩擦系数一般取0.02储气量计算是指计算在给定的压力和容器大小下,可储存的气体总量。
储气量的计算对于气体储存和输送系统的选型和设计至关重要。
储气罐的储气量可以通过以下公式计算:V=P*π*R^2*H其中:V表示储气罐的总容量,单位为立方米(m^3)P表示气体储存的压力,单位为帕斯卡(Pa)π表示圆周率,取近似值3.14R表示储气罐的半径,单位为米(m)H表示储气罐的高度,单位为米(m)储气罐的形状可以是圆柱形、球形或其他形式,根据实际情况选择合适的形状和尺寸。
需要注意的是,在实际工程设计中,还需要考虑安全因素和储气罐的利用率。
例如,需要留出一定的安全裕度,避免储气罐充满后压力过高;同时,还需要考虑储气罐的利用率,尽量提高储气设备的装载量。
综上所述,气体管道压降和储气量计算是工程设计中的重要内容,它们能够帮助设计人员合理选择管道尺寸和容器大小,保证气体输送的效率和安全。
三种计算方法得到的数据顺序为:PVT方法,差压方法,简单方法,尤其在压力较高时的误差更大,压力在3Mpa以下时结果就比较接近。
谁能告诉我三种方法的使用范围。
8 |( C0 |3 U% D' R) t1、简单计算方法$ B" F, c( P; w5 }' F目前庆哈、庆齐管道的用户需求量和设计输量差别很大,首末站的压降比较小,基本可以忽略不计。
计算管道的容积可以采用以下的公式:# q4 Q% w, m5 ^, m" X容积管容 v/ Z6 V( d" O+ S/ H- I3 U3 j3 w& w储气量(标准立方米)=压力(bar)*管容(立方米)*压缩因子: {( a" u% d- C# `! R( ^其中:# `; N: F" O' C, [7 |+ j而天然气压缩因子一般按照0.95计算# O# q6 D9 J# n2 r2 b管道运行压力以首末站平均压力计" D& z' f6 B# F' J5 x, x7 q(1 Mpa=10 bar)$ d/ A) L% U7 d- T! g3 z4 I; o: Q1 }下表是管道在不同的运行压力下管道储气量:9 Q2 p$ r6 s* _1 ]; c7 A# m4 _( j. N2 [: l" [3 ~+ |" r二、PVT计算方法) Q) c v# N5 n5 K稳态下管道容积理论公式;PV=ZRT4 |+ m9 i" ?0 T' s; _7 n4 Q6 ?; g- l) o$ v+ K; ]* P, E: K* W! d5 L+ R- T* J+ E$ r) q! x* s7 fPpj:管道介质平均压力,P0=101325Pa" Y% v, y0 e: eV0:管道容积$ w1 B% r, }$ E* FT0=273.15K,T=278.15K(目前管道的运行温度)' f, `( I' t& O) pZ:天然气压缩因子(因环境温度、管道压力变化而变化,Z0=1,Z=0.95)$ q' b# k" S7 T下表是管道在不同的运行压力下管道储气量:! d" [$ }8 Z' \3 N% s4 o; B2 L& U: [5 X Y- n: n* W" Z7 o5 t( t* M. k三、管道压差计算方法7 J% ?5 v) }: p$ N( `! L! j外输管网压力在升高或降低时,会导致管容量发生变化。
天然气长输管道管存计算方法研究朱瑞华;郭伟【摘要】目前,大多数管存计算公式采用稳态方法,精度较低。
为精确计算管道管存,应精确计算存气管道气体温度、压力及压缩因子。
文中将管段内气体由起点至终点参数动态变化看作一个多变指数为n的热力学参数变化过程,依据气体流动状态方程、运动方程推导出新的管存计算公式,计算过程采用分段计算累加的方法。
经实例计算,与其他计算公式及TGNET软件模拟结果进行对比,推导公式计算精度较高。
%At present , most of stock volume calculation formula adopts steady state method , and the accuracy is relative low.In order to calculate the stock volume of pipeline accurately , the gas temperature , pressure and compression factor of the gas pipeline should be calculated precisely .In this paper , the parameters dynamic change of gas stocked in the pipeline ( from start-ing point to the end point ) were considered as changing process of thermodynamic parameters with polytropic exponent of n.Ac-cording to the gas state equation of flow and the equation of motion , new volume calculation formula was deduced .The calcula-tion process adopted the method of subsection computing accumulation .By practical calculation , comparing with results calculated by other calculation formula and TGNET software simulation , computational accuracy of the derived formula is relative high.【期刊名称】《管道技术与设备》【年(卷),期】2016(000)006【总页数】3页(P56-58)【关键词】管存;多变过程;运动方程;状态方程;输气管道【作者】朱瑞华;郭伟【作者单位】中石油中亚天然气管道有限公司,北京 100007;中石油中亚天然气管道有限公司,北京 100007【正文语种】中文【中图分类】TE8天然气长输管道管存是指管道中实际储存的天然气在标态下的体积,是反映管道运行时的压力、温度、运行配置以及运行效率的综合指标,是控制管道进出气体平衡的重要指标。
长输管道末段储气量的计算与分析
长输管道末段储气量的计算与分析,是指沿着长输管道末段,利用适当的方法和工具对储存在管道内的天然气进行数量计算和分析的过程。
一般来说,长输管道末段储气量的计算可以包括三个步骤:
1. 估算管道末段的天然气量:根据管道段的露头、站点、地形特征等信息,估算出管道末段的天然气量。
2. 计算管道末段的天然气量:利用管道流量、压力等参数,利用管道流体力学原理计算出管道末段的天然气量。
3. 分析管道末段的天然气量:根据管道末段的天然气量,分析出管道末段的天然气含量、压力、流量、温度等参数。
以上就是关于长输管道末段储气量的计算与分析的相关内容,希望能够对你有所帮助。
天然气管存量计算公式
(1)管段管存计算公式:100
001
pj pj V P T Z V P T Z ⨯⨯⨯=
⨯⨯
式中:
0V ——管段在标准状态下的管存量,单位为立方米(m
3
) ; 1V ——管段的设计管容量,单位为立方米(m 3
) ,计算公
式为:4
V 21L
d ⨯⨯=π
式中:π=3.1415926;
d ——管段的内直径,单位为米(m ); L ——管段的长度,单位为米(m );
pj
P ——管段内气体平均压力(绝对压力),单位为兆帕
(MPa );
0T ——标准参比条件的温度,数值为293.15K ; 0Z ——标准参比条件下的压缩因子,数值为0.9980; 0P ——标准参比条件的压力,数值为0.101325MPa ; pj T ——管段内气体平均温度,单位为开尔文(K );
1Z ——工况条件下的压缩因子,根据
GB/T 17747.2《天然
气压缩因子的计算 第2部分:用摩尔组成进行计算》计算求得。
(2) 平均压力计算公式:
12121223pj P P P P P P P ⎡
⎤⨯=
⨯+-⎢⎥+⎣⎦
式中:1P ——管段起点气体压力,单位为兆帕(MPa);
2P ——管段终点气体压力,单位为兆帕(MPa)。
(3) 平均温度计算公式:
123132T T T pj ⨯+⨯=
式中:
1T ——管段起点气体温度,单位为开尔文(K );
2T ——管段终点气体温度,单位为开尔文(K )。
注:气体体积的标准参比条件是p 0=0.101325MPa ,T 0=293.15K。
一、输气常用计算公式1. 输气量计算用公式:当管段起终点得相对高差小于200米时[]51.053.2961.0222111522ZTLGP P EdQ -=当管段起终点得相对高差大于200米时()51.01)1(53.2112961.0222111522⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∑=⎥⎥⎦⎤⎢⎢⎣⎡-+∆+-=-ni i i i L aL h h ZTLG h a P P Ed Q式中:Q :气体流量(P 0=0.101325Mpa,T 0=293.15K ),m 3/d ; d :输气管内径,cm ;P 1,P 2:输气管计算段起点、终点的气体压力(绝),MPa ; Z :气体的压缩系数;T :气体的平均温度,非精确计算时可简化为加权平均值; L :计算段长度,km ; G :气体的相对密度;E :输气管的效率系数,DN 为300~800时,E=0.8~0.9; a :系数,a=0.0683(G/ZL),m -1; Δh :输气管段终点和起点的在日常运行管理过程中,针对鄯乌线当前实际(管线长度 L=301.625Km ;管径457×6mm ;),因此,此公式可简化为:Q输 = 7967538⎥⎦⎤⎢⎣⎡-TL PP 22210.51(Nm 3/h )2. 管道储气量计算公式式中:Q 储=管道的储气量,Nm3; V —管道的容积,m3; T 0—293.15K; P 0—0.101325Mpa; T —气体的平均温度;P 1m —管道计算段内气体的最高平均压力(绝),Mpa ; P 2m —管道计算段内气体的最低平均压力(绝),Mpa ; Z 1、Z 2—对应P1m 、P2m 时的气体压缩系数。
3.平均压力P m 及管道任意点气体压力P x 计算公式:⎪⎪⎭⎫- ⎝⎛=221100Z m P Z m P T P VT Q储)(3221221P P P P P m ++= (MPa )LXP P P P x )(222121--=(MPa)4.管道内气体平均温度t 、沿线任意点温度t X 计算式:t X =t 0+( t 0+t 0)e -aX式中:t —管道计算段内气体平均温度,℃; t 0—管道周围介质温度,℃; t 1—管道计算段内起点气体温度,℃; t X —管道任意点气体温度,℃; e —自然对数底数,e=2.718; L —管道计算段的实际长度,Km ; X —管道计算段起点至任意点的长度,Km;⎪⎭⎫⎝⎛--+=aL -1010e QL t t t t PQGC KDa610256.225⨯=a—计算常数;K—管道内气体到土壤的总传热系数,W/m2〃℃;D—管道外直径,m;Q—气体流量(p0=0.101325Mpa,T0=293.15K),m3/d;G—气体的相对密度;C P—气体的定压比热,J/kg〃℃。
管道储气能力计算管道储气是指利用管道系统存储气体资源,并在需要时释放出来供应给用户。
在现代社会,管道储气已经成为一种重要的能源储备方式,对于能源供应的稳定性和可靠性有着重要的作用。
本文将以管道储气能力计算为主题,介绍管道储气能力的定义、计算方法以及影响因素,旨在为相关领域的工作者提供指导和参考。
管道储气的能力是指管道系统在一定时间内所能存储的气体容量,也称为储气库容量。
储气库常用来调节和平衡气体生产与消费之间的差异,以保证供气的稳定性。
储气能力的计算需要考虑多个因素,包括管道系统的长度、直径、材料以及运输压力等。
在计算管道储气能力时,首先需要确定管道的净体积。
净体积是指管道内能够储存气体的有效容积,需要扣除管道内部中空的空间。
确定净体积后,可以根据储气库的设计压力以及所需储存的气体类型来计算储气容量。
储气容量通常以标准立方米或者其他适当的单位表示。
储气能力的计算还需要考虑输气速度。
输气速度是指气体从储气库流出的速率,通常以标准立方米/小时或者其他适当的单位表示。
为了保证储气库的稳定供气,输气速度应该与气体消费速度相匹配。
影响管道储气能力的因素主要包括管道直径、管道材料、管道长度以及输气压力等。
一般来说,管道直径越大,储气能力越高。
同时,管道材料的选择也会对储气能力产生影响。
一些材料具有较高的耐压性能,可以承受更高的输气压力,从而增加储气能力。
此外,管道长度也会影响储气能力。
一般情况下,较长的管道具有更高的储气能力,因为其储气容积更大。
然而,过长的管道长度也会增加气体流动的阻力,降低储气能力。
因此,在实际设计中需要综合考虑管道长度和储气能力之间的平衡。
综上所述,管道储气能力的计算是一个综合考虑多个因素的复杂过程。
通过合理的设计和计算,可以达到平衡供需、稳定供气的目的。
对于工程师和从事相关领域的专业人士来说,掌握管道储气能力的计算方法具有重要的意义,可以为实际工作提供指导和帮助。
同时,相关领域的研究者还可以进一步深入研究,探索管道储气能力的优化方法,提高能源利用效率,为可持续发展做出贡献。
三种计算方法得到的数据顺序为:PVT方法,差压方法,简单方法,尤其在压力较高时的误差更大,压力在3Mpa以下时结果就比较接近。
谁能告诉我三种方法的使用范围。
8 |( C0 |3 U% D' R) t1、简单计算方法$ B" F, c( P; w5 }' F
目前庆哈、庆齐管道的用户需求量和设计输量差别很大,首末站的压降比较小,基本可以忽略不计。
计算管道的容积可以采用以下的公式:# q4 Q% w, m5 ^, m" X
容积管容 v/ Z6 V( d" O+ S/ H- I3 U3 j3 w& w
储气量(标准立方米)=压力(bar)*管容(立方米)*压缩因子
: {( a" u% d- C# `! R( ^其中:# `; N: F" O' C, [7 |+ j
而天然气压缩因子一般按照0.95计算
# O# q6 D9 J# n2 r2 b管道运行压力以首末站平均压力计
" D& z' f6 B# F' J5 x, x7 q(1 Mpa=10 bar)$ d/ A) L% U7 d- T! g3 z4 I; o: Q1 }
下表是管道在不同的运行压力下管道储气量:
9 Q2 p$ r6 s* _1 ]; c
7 A# m4 _( j. N2 [: l" [3 ~+ |" r
二、PVT计算方法
) Q) c v# N5 n5 K稳态下管道容积理论公式;PV=ZRT
4 |+ m9 i" ?0 T' s; _
7 n4 Q6 ?; g- l) o$ v+ K; ]* P, E: K* W! d
5 L+ R- T* J+ E$ r) q! x* s7 f
Ppj:管道介质平均压力,P0=101325Pa" Y% v, y0 e: e
V0:管道容积$ w1 B% r, }$ E* F
T0=273.15K,T=278.15K(目前管道的运行温度)
' f, `( I' t& O) pZ:天然气压缩因子(因环境温度、管道压力变化而变化,Z0=1,Z=0.95)
$ q' b# k" S7 T下表是管道在不同的运行压力下管道储气量:
! d" [$ }8 Z' \3 N
% s4 o; B2 L& U: [5 X Y- n: n* W" Z7 o5 t( t* M. k
三、管道压差计算方法7 J% ?5 v) }: p$ N( `! L! j
外输管网压力在升高或降低时,会导致管容量发生变化。
通过管道压力计算公式:$ A) i" J$ h/ @1 I( u4 c- v
& I; P W, w+ n# s, q# A其中:—管线上任意一点的压力;
+ F1 a. S- j, h) @7 q& n —管线起点压力;
, f& b0 U' i" X: `% ]7 ] —管线终点压力。
; U. z& T& y/ Z, b- H9 w管容计算公式 : c" G1 q4 K4 M& O3 R2 e" n% x
* |& t# S" J' @积分,可得到8 K5 K5 |. Y# j
4 w' B4 ^( [. u3 E3 n1 k9 e; A- e( i
3 H, H7 w1 c) A- |1 v- h! |( T* M
4 [3 g% e
其中:—管线起点压力;4 M/ W A. o6 _' \- P, J m: K
! u1 h3 g* N) S
% Z" u. D: R2 i, L: k8 m0 V. _" r: m—管线终点压力
长输管线末端储气
长输管线距离长、管径大、输送压力较高,管线具有一定的储气能力,长输管线中间设有加压站时,按最末一个加压站至城市配气站的管段计算其储气能力;设有中间加压站的长输管线,可按全线计算其储气能力。
城市天然气输配系统往往利用大口径输气管线储存一定气量作为高峰负荷时增加用户气量之用,其储气能力为储气终了时与储气开始时输气管中存气量之差、一条已投产的输气干管的长度、容积、管线起点允许最高工作压力、终点允许最高工作压力、终点用户要求的最低供气压力及该管线正常输气量等都是已知的,可按下列步骤计算其储气量:
(1)根据压气站的最高工作压力或管线强度允许压力,确定储气终了时管线起点压力。
由起点压力和正常输气量按下式算出储气
终了时的管线终点压力:
式中Q——天然气通过能力(m3/d);(20℃,101,3kPa)
D——输气管内径(cm);
P1——输气管线的起点绝对压力(106Pa);
P2——输气管线的终点绝对压力(106Pa);
S——天然气相对密度;
T f——天然气平均绝对温度(K);
L——输气管线长度(km);
Z——天然气平均压缩因子。
(2)求储气开始时起点压力
式中P1min——储气开始时起点绝对压力(106Pa);
P2min——储气开始时终点绝对压力(106Pa);
P1max——储气终了时起点绝对压力(106Pa);
P2max——储气终了时终点绝对压力(106Pa);
(3)计算管线的容积
V=(Л/4)D2L
(4)储气开始时的平均压力
(5)储气终了时的平均压力
(6)储气量
式中Q。
——输气管线储气量(m3);
(20℃,101.3kPa)
V——输气管线容积(m3);
T o——293(K);
T m——天然气平均温度(K);
P o——标准状态下的压力(101.3kPa);
Z1、Z2——在P m2、P m2下的压缩因子;
P m1——储气终了时的平均压力(106Pa); P m2——储气开始时的平均压力(106Pa)。