水平输气干线工艺设计(末端储气)
- 格式:doc
- 大小:217.00 KB
- 文档页数:14
化工中间体Chenmical Intermediate· · 42015年第12期前 言:随着能源结构的日益变迁,天然气将会跃升为新时期的重要能源支柱,天然气的用量呈现逐年上升的趋势。
具体结合城市的用气规律、上游供气的特征,确定日用气量和季节用气量以及所采用的储气调峰方式就显得尤为重要。
对于国内而言,用户和气源之间的连接方式是输气管道,用户用气量的瞬变性与管道储气性质紧密相关,因此利用管道储气,来缓解气田产量和居民用气量的不均衡的矛盾,是最合事宜的方式,可以减少储罐建设,降低建造成本。
一、管道储气的调峰原理众所周知,输气管末段的门站处,天然气的供应量瞬息万变,其中在城市用气的问题上,将会出现每日、每月、每个季度的不均匀的用气规律。
由于供气量的忽高忽低,即有了用气量的高峰段和低谷段。
但是供气量和用气量的变化却不能等同起来,又有各自差异。
调峰的关键就是在用户供给充足的条件下协调用气和供气的不均衡。
下图给出了输气管末段用气量的变化曲线。
从图中我们可以看出,0:00-7:00是用气低谷,平均小时供气量均大于用气量,此时段管道即可以用来储气,从而表现出的是系统压力逐步升高,甚至达到最高点。
7:00-21:00是用气高峰,平均小时供气量低于平均小时用气量,不够的气体由末段中积存的气体来弥补,表现出的是系统压力逐步下降,直至最低点。
之后又开始了周而复始的循环,而末段的压力和流量也在随城市耗气量的多少而时刻变化着,使得管道运行处于动态变化中。
我们可以利用在规划建设的诸多输气管道,在满足其输气要求的前提之下,适当增加管道的长度和直径,使得其具备一定的储气能力。
我们可以将其分为两类,一个是利用分输站间的长输管线末段储气,另一个是利用敷设在城市的高压管道末段储气。
长输管线的末端储气仅局限于管道的末段,而城市敷设的高压管线应用则更为广泛,利用高压管线末段储气是利用了末段管径小,承压能力强的特点,进而可以节省地下施工量和减少占地。
天然气管道输送管线的工艺设计分析摘要:随着我国天然气开发力度不断加大,天然气需求量及贸易量的不断增加,对天然气输气系统提出了更高的要求。
天然气输气系统由若干输气干线、集气管网等组成,加强对天然气输送管线的工艺设计,对于提升输送管线的效率、降低能耗、提高输气管线的安全性具有重要意义。
关键词:天然气;输送管线;工艺设计1 前言随着我国不断加大环境保护力度,天然气作为清洁能源,生产及需求量快速增加,相应的天然气贸易量也不断增加。
为满足消费市场需求,必须要建成区域性或全国性天然气供气网络。
天然气输送系统由多条主干线,多个集气管网组成、配气管网,以及各种地下储气库组成。
通过天然气输送网络,可以油气田与千家万户连通起来,保证了供气网络的灵活性,形成了多个气源,多个通道的供气系统。
在天然气管道输送过程中,加强对管道设计,对于提供输送效率、节约输送能量、保障网络安全具有重要意义。
2 天然气输送管道风险分析天然气输送管线距离较长、输送压力较高、介质量大,且输送介质具有易燃、易爆危险性。
在运行管理过程中,可能存在设计不合理、施工质量问题,或因腐蚀、疲劳等因素,容易造成管线、阀门、仪器仪表等设备设施及连接部位泄漏而引起火灾、爆炸事故。
此外,由于气候原因会出现管道冻裂、腐蚀或应力腐蚀等。
设计不合理管道设计是确保工程安全的第一步,也是十分重要的一步。
设计不合理主要有以下影响因素:(1)工艺流程不合理;(2)系统工艺计算不准确;(3)管道强度计算不准确;(4)管道、站场的位置选址不合理;(5)材料选择、设备选型不合理;(6)防腐设计不合理;(7)管线布置、柔性考虑不周;(8)结构设计不合理;(9)防雷防静电设计缺陷等。
施工质量问题(1)管道施工队伍水平低、质量失控;(2)强力组装;(3)焊接缺陷;(4)补口、补伤质量问题;(5)管沟、管架质量问题;(6)穿、跨越质量问题;(7)检验控制问题;(8)没有严格按施工标准设计;(9)施工质量管理体系不健全。
输气管道输气工艺设计规范1.1 一般规定1.1.1 输气管道的设计输送能力应按设计委托书或合同规定的年或日最大输气量计算,设计年工作天数应按350d计算。
1.1.2 进入输气管道的气体必须清除机械杂质;水露点应比输送条件下最低环境温度低5℃;烃露点应低于最低环境温度;气体中硫化氢含量不应大于20mg/m3。
3. 1.3 输气管道的设计压力应根据气源条件、用户需要、管材质量及地区安全等因素经技术经济比较后确定。
1.1.4 当输气管道及其附件已按国家现行标准《钢质管道及储罐腐蚀控制工程设计规范》SY 0007和《埋地钢质管道强制电流阴极保护设计规范》SY/T 0036的要求采取了防腐措施时,不应再增加管壁的腐蚀裕量。
1.1.5 输气管道应设清管设施。
有条件时宜采用管道内壁涂层。
1.2 工艺设计1.2.1 工艺设计应根据气源条件、输送距离、输送量及用户的特点和要求,对管道进行系统优化设计,经综合分析和技术经济对比后确定。
1.2.2 工艺设计应确定下列主要内容:1 输气总工艺流程。
2 输气站的工艺参数和流程。
3 输气站的数量和站间距。
4 输气管道的直径、设计压力及压气站的站压比。
1.2.1 管道输气应合理利用气源压力。
当采用增压输送时,应合理选择压气站的站压比和站间距。
当采用离心式压缩机增压输送时,站压比宜为1.2~1.5,站间距不宜小于190km。
1.2.4 压气站特性和管道特性应协调,在正常输气条件下,压缩机组应在高效区内工作。
压缩机组的数量、选型、联接方式,应在经济运行范围内,并满足工艺设计参数和运行工况变化的要求。
1.2.5 具有配气功能分输站的分输气体管线宜设置气体的限量、限压设施。
1.2.6 输气管道首站和气体接收站的进气管线应设置气质监测设施。
1.2.7 输气管道的强度设计应满足运行工况变化的要求。
1.2,8 输气站应设置越站旁通。
进、出站管线必须设置截断阀。
截断阀的位置应与工艺装置区保持一定距离,确保在紧急情况下便于接近和操作。
第25卷第5期 油 气 储 运干线输气管道优化设计王国付3 吴 明 王书淼 陈福权 王力勇 (辽宁石油化工大学机械工程学院) (山东省天然气管道有限责任公司)王国付 吴 明等:干线输气管道优化设计,油气储运,2006,25(5)23~25。
摘 要 通过分析输气管道设计参数与管道建设中的经济技术指标之间的关系,根据技术经济学原理,引入现值费用作为管道的经济指标,结合工程实际,提出了含末端储气的输气管道优化数学模型,并采用混合离散变量法进行模型求解。
结合我国的天然气管道工程,给出了一个优化算例,计算结果表明,采用该方法可得到一个合理的优化方案,具有实际应用价值。
主题词 输气管道 末端储气 工艺参数 优化设计 输气管道建设投资巨大,建设周期长,运营费用高,能否确定优化的方案直接关系到管道的经济性,通过优化设计可获得最佳的经济效益。
管道优化设计是在指定线路、输量Q和压缩比ε已知的条件下,求解变量输气管道的直径D、管道壁厚δ、管道全线的压气站数量N、输气站间距L、压气站起点压力p q和终点压力p z,确定在管道寿命期内现值费用最低。
对于输气管道的优化设计问题,已有很多学者从不同的角度建立了输气管道设计模型〔1~4〕。
由于长距离输气管道的设计输气量一般是按其供气对象的年平均用气量确定的,在输气管道末段,由于季、日、时不均匀的用气规律,造成下游用户的用气量随季节变化波动较大,而气源的供应量却不能完全随用气量变化而变化,为了保证不间断、稳定地向用户供气,必须在供气与用气之间增加一个环节———储气。
目前常见的储气方法有管道末段储气、储气罐储气以及地下储气库储气等。
在考虑末端的储气量满足储气调峰要求的基础上,综合考虑各设计变量,使管道在寿命期内总费用最低作为优化设计的最优准则。
一、优化模型的建立1、 基本假设(1)输气管道为水平管道,不考虑沿程高差变化,所输气体沿程流量不变,即气体在管道内作稳定流动。
(2)各压气站间气体的平均压缩系数均相同。
1、合用范围:本规范合用于陆上输气管道工程设计。
2、输气工艺:1)输气管道的设计输送能力应按设计委托书或者合同规定的年或者日最大输气量计算,设计年工作天数应按 350d 计算(350d 是为冬夏平衡,同时最大输气量应以标态计算。
) .2)进入输气管道的气体必须除去机械杂质,且至少符合Ⅱ级天然气标准(GB17820) .3) 当输气管道及其附件已按照国家现行标准《钢质管道及储罐腐蚀控制工程设计规范》SY0007 和《埋地钢质管道强制电流阴极保护设计规范》SY/T0036 的要求采取了防腐措施时,不应再增加管壁的腐蚀裕量。
4)工艺设计应确定的参数有:输气总工艺流程;输气站的工艺参数和流程;输气站的数量和站间距;输气管道的直径、设计压力及压气站的站压比。
5)管道输气应合理利用气源压力.当采用增压输送时,应合理选择压气站的站压比和站间距.当采用离心式压缩机增压输送时,站压比宜为1 。
2~1 。
5,站间距不宜小于100km。
6)具有配气功能的分输站的分输气体管线宜设置气体的限量、限压设施。
7)输气管道首站温和体接收站的进气管线应设置气质监测设施。
8)输气管道的强度设计应满足运行工况变化的要求。
11)输气管道工艺设计应具被以下资料:管输气体的组成;气源数量、位置、供气量及可调范围;气源压力及可调范围,压力递减速度及上限压力延续时间;沿线用户对供气压力、供气量及其变化的要求,当要求利用管道储气调峰时,应具备用户的用气特性曲线和数据;沿线自然环境条件和管道埋设处地温。
12)输气管道的水力计算见本标准6~9 页以及简化标准的附录.13)输气管道安全泄放) 应根据管道最大允许操作压力 (P) 确定,并应符合下列要求:(3) 安全阀的定压 (Pa 当P≤1 。
8MPa 时,P=P+0 。
18MPa;=1 。
1P;b 当1 。
8MPa<P≤7.5MPa 时,Pc 当P>7.5MPa 时,P=1 。
05P。
(4)安全阀泄放管直径应按照下列要求计算:a 单个安全阀的泄放管直径,应按背压不大于该阀泄压力的10%确定,但不应小于安全阀的出口直径;b 连接多个安全阀的泄放管直径,应按所有安全阀同时泄放时产生的背压不大于其中任 何一个安全阀的泄放压力的 10%确定,且泄放管截面积不应小于各安全阀泄放支管截面积 之和。
重庆科技学院《管道输送工艺》课程设计报告学院:_ 石油与天然气工程学院_ 专业班级:油气储运工程学生姓名:学号:设计地点(单位)________ 石油科技大楼K704 _____ ___ __设计题目:______ _水平输气干线工艺设计(末端储气)____ _ ___ 完成日期:年月日指导教师评语: ___________ ___________ _________________ __________________________________________________________________________________ __________________________________________________________________________________ _____________________________________ __________ _成绩(五级记分制):______ __________指导教师(签字):________ ________目录摘要 (I)1 总论 (1)1.1 设计依据及原则 (1)1.1.1设计依据 (1)1.1.2 设计原则 (1)1.2 总体技术水平 (1)2 工程概况 (3)3 输气管道工艺计算 (4)3.1 末端管道规格 (4)3.1.1 天然气相对分子质量 (4)3.1.2 天然气密度及相对密度 (4)3.1.3 天然气运动粘度 (4)3.2 管道内径的计算 (5)3.3 确定管壁厚度 (5)3.4 确定管道外径及壁厚 (6)3.5末段长度和管径的确定原则 (7)3.6 末段最大储气能力的计算 (8)4 结论 (10)参考文献 (11)摘 要根据课程设计任务书中给出的工程概况和设计参数,通过查找相关规范和设计手册对水平输气干线末端储气进行工艺设计。
通过对末端管径的计算,综合国家标准管道选取规格,选择出了满足年输量为18.4亿标方的输气管道末端直径为φ660×9mm 。
又根据条件给出的km l z 200=,和前面选到的管径计算出了此种情况下末端最大储气量361046.2m ⨯,以及通过资料查得末段储气能力经验值取输气量的40%,即与条件中给出的输气量在理论上计算出的储气量36m 102.10⨯相比较,得出了设计储气量大于每日来气所需要的储气量,验证了本设计的正确性。
关键词:末端 管径 长度 储气量1 总论1.1 设计依据及原则本设计主要根据设计任务书,查询相关的国家标准和规范,以布置合理的长距离输气干线。
1.1.1设计依据(1)国家的相关标准、行业的有关标准、规范;(2)相似管道的设计经验;(3)设计任务书。
1.1.2 设计原则(1)严格执行现行国家、行业的有关标准、规范。
(2)采用先进、实用、可靠的新工艺、新技术、新设备、新材料,建立新的管理体制,保证工程项目的高水平、高效益,确保管道安全可靠,长期平稳运行。
(3)节约用地,不占或少占良田,合理布站,站线结合。
站场的布置要与油区内各区块发展紧密结合。
(4)在保证管线通信可靠的基础上,进一步优化通信网络结构,降低工程投资。
提高自控水平,实现主要安全性保护设施远程操作。
(5)以经济效益为中心,充分合理利用资金,减少风险投资,力争节约基建投资,提高经济效益。
1.2 总体技术水平(1)采用高压长距离全密闭输送工艺;(2)输气管线采用先进的SCADA系统,使各站场主生产系统达到有人监护、自动控制的管理水平。
既保证了正常工况时管道的平稳、高效运行,也保证了管道在异常工况时的超前保护,使故障损失降低到最小。
(3)采用电路传输容量大的光纤通信。
给全线实现SCADA数据传输带来可靠的传输通道,给以后实现视频传输、工业控制及多功能信息处理提供了可能。
(4)在线路截断阀室设置电动紧急切断球阀,在SCADA中心控制室根据检漏分析的结果,确定管道泄漏位置,并可及时关闭相应泄漏段的电动紧急切断球阀。
(5)站场配套自成系统。
(6)采用固化时间短、防腐性能优异的环氧粉末作为管道外防腐层。
2 工程概况拟建一条输气管线,全线起伏不大,输气管线未段距离为200公里,年输气量为18.4亿立方米。
采用末段储气,末段管道压力为终点配气站的最低压力P2min=1MPa,管材的最高工作压力P1min=6MPa。
管材的最高工作压力6MPa,其他参数如下:天然气相对密度Δ=0.58;平均压缩系数Z=0.905;平均温度t=42℃;管道的水力摩阻系数λ=0.0115。
3 输气管道工艺计算3.1 末端管道规格3.1.1 天然气相对分子质量 由气体的相对分子质量公式:(3-1)得出:M=16×94.31%+30×3.39%+44×0.67%+58×0.13%+58×0.11%+72×0.05%+72×0.04%+86×0.05%+34×0.03%+44×0.03%+28×0.00%+4×0.00%+2×1.19%+40×0.00% =16.69563.1.2 天然气密度及相对密度由天然气的密度公式得:0.694kg/m3.05516.6956/24===空天天M M ρ根据天然气的密度求相对密度:∆=ρρ天空=0.694/1.206=0.5755 3.1.3 天然气运动粘度(1)由各组分黏度计算天然气黏度:()()∑∑=iii ii ii M yM y μμ (3-2)按公式代入数据计算得动力黏度:μ=42.3515/4.0464=10.47MPa·s(2)计算天然气运动黏度:s mm /09.15694.047.102===ρμν 3.2 管道内径的计算由条件所给年输气量可计算每小时的输气量:h m q v /62.21904724350104.1838=⨯⨯=根据管道内径的计算公式:207.010038.0033.0207.04.11-∆=P q D v νρ (3-3) 式中 D ——管道内径,mm ; ρ——天然气密度,kg/m 3; ν——天然气运动黏度,mm 2/s ; v q ——体积流量,m 3/h ;100p ∆——100米管道压力降45kPa .代入数据计算管内径:mm D 45.5624562.21904709.15694.04.11207.038.0033.0207.0=⨯⨯⨯⨯=-3.3 确定管壁厚度输气管线的管径确定后,要根据其输送压力、管线材质等来设计壁厚。
油田油气集输和外输油、气管线可按下式计算: φσδF pds 2=(3-4)式中 p ——管线设计的工作压力,10MPa ;d ——管线内径,mm ;φ——焊缝系数:无缝钢管φ=1,缝管和螺旋焊缝钢管φ=1, 旋埋弧焊钢管φ=0.9;s σ——刚性屈服极限,MPa (查表3.1); F ——设计系数(查表3.2)表3.1 常见钢管材质屈服极限这里选用直焊缝钢管φ=1; 选用APIS-SL X70,s σ=482MPa ; 且因为是长输气管线,故F=0.60。
将数据代入计算管道壁厚:mm 83.514826.0245.5626=⨯⨯⨯⨯=δ3.4 确定管道外径及壁厚根据国家标准选取合理管道规格,具体规格见表3.3。
根据以上计算结果,结合表3.3,选取管径为φ660×9mm。
3.5末段长度和管径的确定原则当设计一条新的干线输气管道时,工艺计算应该从末段开始,先确定末段的长度和管径,然后再进行其他各中间管段的计算。
输气管道末段的计算与其他各段的区别是:应该考虑末段既能输气,又能储气的特点,也就是说,在末段的计算中除了要考虑与整条输气管道一致的输气能力,还必须考虑储气能力,最理想的是使末段能代替为消除昼夜用气不均衡所需的全部容积的储气罐。
计算输气管道末段长度和直径时,应考虑以下三个条件:①当用气处于低峰时(夜间),输气管道末段应能积存全部多余的气体,如条件不允许,可考虑部分满足;当用气处于高峰时(白天),应能放出全部积存的气体。
②输气管道末段的起点压力,即最后一个压缩机站的出口压力不应高于压缩机站最大工作压力,并且应在钢管强度的允许范围之内。
③末段的终点压力不应低于城市配气管网的最小允许压力。
具体计算步骤如下:A.假设输气管道末段长度和管径;B.根据条件二确定储气终了时末段起点压力;根据条件三确定储气开始时末段终点压力;C.计算储气终了时末段终点压力,计算储气终了时末段平均压力;D.计算储气开始时末段起点压力,计算储气开始时末段平均压力;E.计算末段储气能力,与要求的末段储气能力比较,若互相接近,则所假设的末段长度和管径满足工艺要求;否则重新假设末段长度或管径,返回步骤B重新计算,直到末段长度和管径满足工艺要求,计算结束。
3.6 末段最大储气能力的计算故结合工程概况所给的末端长度km l z 200=以及选取的管径d=660mm 进行末端储气的计算。
其中, 520dC TZ C ∆=λ (3-5)式中 d ——管线内径,mm ;0C ——取0.03848; λ——水力摩阻系数;Z ——气体的压缩因子;Δ——气体的相对密度; T ——气体的平均温度,K .经计算得:1025466.003848.031558.0905.00115.0d52520=⨯⨯⨯⨯=∆=C TZ C λ 储气开始时,终点的最低压力不低于配气站要求的最低压力:22min 2min 1v Z q CL P P += (3-6)储气结束时,起点的最高压力不超过管材的最高压力:22max 1max 2v Z q CL P P -= (3-7)平均压力按公式3-8计算:)(3221221m P P P P P ++= (3-8)代入数值后:MPa q CL P P v Z 93.220000085.6010254101212222min 2min 1=⨯⨯+⨯=+=MPa q CL P P v Z m 33.520000085.6010254106212222max 1ax 2=⨯⨯-⨯=-= MPa P P P P P 12.2)1193.2193.2(32)(322min 2min 12min 2min 1pjmin =++=++= MPa P P P P P 67.5)33.5633.56(32)(322max2max 12max 2max 1pjmax=++=++= 末段输气管的储气能力按公式3-9:ZTP T P P L D V V V pj pj Z 00min max 2min max s )(4-=-=π (3-9)式中 min V ——储气开始时末段管道中的存气量,m 3;max V ——储气结束时末段管道中的存气量,m 3;V ——末段管道的几何体积,m 3;Z ——气体的压缩因子. 代入数据后:366200min max 2s 1046.2315905.010********10.122-67.520000066.014.3)(4m ZTP T P P L D V pj pj Z ⨯=⨯⨯⨯⨯⨯⨯⨯⨯=-=)(π 根据资料查得经验值,末段储气能力取输气量的40%,由于:363681046.2m 102.10%40350104.18m Q ⨯<⨯=⨯⨯=故末段管道的最大储气能力,能够满足要求,末段管径取φ660×9mm ,末端长度取200km 合理。