导体和电介质
- 格式:doc
- 大小:303.00 KB
- 文档页数:4
电场中的导体与电介质一般的物体分为导体与电介质两类。
导体中含有大量自由电子;而电介质中各个分子的正负电荷结合得比较紧密。
处于束缚状态,几乎没有自由电荷,而只有束缚电子当它们处于电场中时,导体与电介质中的电子均会逆着原静电场方向偏移,由此产生的附加电场起着反抗原电场的作用,但由于它们内部电子的束缚程度不同。
使它们处于电场中表现现不同的现象。
1.3.1、静电感应、静电平衡和静电屏蔽①静电感应与静电平衡把金属放入电场中时,自由电子除了无规则的热运动外,还要沿场强反方向做定向移动,结果会使导体两个端面上分别出现正、负净电荷。
这种现象叫做“静电感应”。
所产生的电荷叫“感应电荷”。
由于感应电荷的聚集,在导体内部将建立起一个与外电场方向相反的内电场(称附加电场),随着自由电荷的定向移动,感应电荷的不断增加,附加电场也不断增强,最终使导体内部的合场强为零,自由电荷的移动停止,导体这时所处的状态称为静电平衡状态。
处于静电平衡状态下的导体具有下列四个特点:(a)导体内部场强为零;(b)净电荷仅分布在导体表面上(孤立导体的净电荷仅分布在导体的外表面上);(c)导体为等势体,导体表面为等势面;(d)电场线与导体表面处处垂直,表面处合场强不为0。
图1-3-1②静电屏蔽静电平衡时内部场强为零这一现象,在技术上用来实现静电屏蔽。
金属外壳或金属网罩可以使其内部不受外电场的影响。
如图1-3-1所示,由于感应电荷的存在,金属壳外的电场线依然存在,此时,金属壳的电势高于零,但如图把外壳接地,金属壳外的感应电荷流入大地(实际上自由电子沿相反方向移动),壳外电场线消失。
可见,接地的金属壳既能屏蔽外场,也能屏蔽内场。
在无线电技术中,为了防止不同电子器件互相干扰,它们都装有金属外壳,在使用时,这些外壳都必须接地,如精密的电磁测量仪器都装有金属外壳,示波管的外部也套有一个金属罩就是为了实现静电屏蔽,高压带电作用时工作人员穿的等电势服也是根据静电屏蔽的原理制成。
电介质和导体的物理特性电介质和导体是电学的基本概念,它们是电路中最重要的两种材料。
电介质和导体各自具有独特的物理特性,它们在电路中的作用也有所不同。
本文将介绍电介质和导体的物理特性及其在电路中的应用。
一、导体导体是一种能够传递电荷的物质。
通常情况下,所有金属都是导体,但并不是所有的导体都是金属。
导体材料最主要的特点是能够将电子传递给其他原子,使其处于高电势状态。
这些高电势原子又可以将电子传递给其他原子,从而使电子在导体内自由流动。
在导体中,电子的运动是自由的,它们可以自由地从一个原子跳跃到另一个原子。
这种自由运动的结果就是导体具有极低的电阻。
因为电子在导体内自由运动,所以导体可以被用作电线和电缆等电路元件。
导体在电路中的应用非常广泛。
电路中的铜线、铝线都是典型的导体。
导体具有良好的电导性,对电路的通电和电流传输起到了重要的作用。
此外,导体还可以作为各种电器设备的连接线路,如电子元器件、家电等。
二、电介质电介质是指那些不能很好地传导电荷的物质,比如空气、玻璃等。
电介质中的电子不能自由地在其中运动,这是由于电介质中的原子束缚电子的力比较大。
当电场通过电介质时,它会把原子拉伸并使电介质中的电子向一个方向暂时借助,从而形成一个致密电荷区,这个区域称为电介质中的电荷分布。
电介质在电路中的应用也有很多,它们主要是用于电容器、绝缘材料等。
电介质本身并不能导电,但在电场的作用下会形成电荷分布,进而形成电容器。
电容器的作用是能够储存电荷,在电路中用来过滤和平滑电压和电流。
电介质也常用作绝缘材料。
绝缘材料的主要作用是隔离电路中的导体,避免电流流失和短路。
电机、变压器、电缆、电线等电器中都需要使用大量绝缘材料。
这些材料不仅需要具备很好的绝缘性能,而且还需要耐高温、耐腐蚀和机械强度等特点,以保障电器设备的正常运行。
三、导体与电介质的对比导体和电介质是两种截然不同的材料,它们在电路中的作用也大相径庭。
导体具有优良的导电性能,它们能够传递电荷并将电压和电流传输到电路中的各个位置。
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
1一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为
(A) 0 . (B) d q
04επ.
(C) R q 04επ-. (D) )1
1(40R d q -πε.
2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,如果2d 1=d 2
两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2
(A) 1. (B) 2. (C) 3. (D) 4.
3 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,
则在球壳内半径为r 的P 点处的场强和电势为:
(A) 2
04r
Q E επ=,r Q
U 04επ=. (B) 0=E ,204r Q
U επ=.
(C) 0=E ,r Q
U 04επ=.
(D) 0=E , 104r Q
U επ=.
4当一个带电导体达到静电平衡时:
(A) 导体表面曲率较小处电荷密度较小. (B) 导体表面曲率较小处电势较高. (C) 导体内部任一点电势都为零.
(D) 导体内任一点与其表面上任一点的电势差等于零. [ ]
5 两个同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若内球壳带电荷Q ,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为
(A) U 1. (B) )(2
1
21U U +.
(C) U 1 + U 2. (D) U 2.
6当平行板电容器充电后,去掉电源,在两极板间充满电介质,其中正确的结果是
(A) 极板上自由电荷减少 (B) 两极板间的电势差变大 (C) 两极板间电场强度变小 (D) 两极板间的电场强度不变
7一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,其正确的结论是:
(A) 极板左半边电荷密度大.
+Q
(B) 左半边电介质内场强大. (C) 极板右半边电荷密度大.
(D) 左半边电介质内场强小. [ ]
8 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离变小,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化:
(A) U 12减小,E 减小,W 减小. (B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大. (D) U 12减小,E 不变,W 不变.
9 C 1和C 2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示. 则
(A) C 1上电荷增加,C 2上电荷减小. (B) C 1上电荷减小,C 2上电荷增加.
(C) C 1上电荷增加,C 2上电荷增加.
(D) C 1上电荷不变,C 2上电荷不变.
C 1和C 2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示. 则
(A) C 1上电势差减小,C
2上电势差增大.
(B) C 1上电势差减小,C 2上电势差不变. (C) C 1上电势差增大,C 2上电势差减小. (D) C 1上电势差增大,C 2上电势差不变.
C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则
(A) C 1极板上电荷增加,C 2极板上电荷增加. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷减少. (D) C 1极板上电荷减少,C 2极板上电荷减少.
两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则
(A) 电容器组总电容减小.
(B) C 1上的电荷大于C 2上的电荷. (C) C 1上的电压高于C 2上的电压 . (D) 电容器组贮存的总能量增大. [ ]
10 C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则
(A) C 1极板上电荷不变,C 2极板上电荷减少. (B) C 1极板上电荷不变,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变. (D) C 1极板上电荷减少,C 2极板上电荷不变.
C 1和C 2两空气电容器并联起来接上电源充电.然后
将电源断开,再把一电介质板插入C 1中,如图所示, 则
(A) C 1和C 2极板上电荷都不变.
(B) C 1极板上电荷增大,C 2极板上电荷不变. (C) C 1极板上电荷增大,C 2极板上电荷减少.
(D) C 1极板上电荷减少,C
2极板上电荷增大. [ ]
11两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 2000 V ,然后将它们反接(如图所示),此时两极板间的电势差为: (A) 600 V . (B) 200 V .
(C) 0 V . (D) 1200 V
1如图所示,两块很大的导体平板平行放置,面积都是S ,有一定厚度,带电荷分别为Q 1和Q 2.如不计边缘效应,则A 、B 、C 、
D 四个表面上的电荷分别为___________ 、______________、
_____________、____________.
2一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球
心处有一电荷为q 的点电荷,则球壳外表面上的电荷面密度σ =______________.
3地球表面附近的电场强度为 200 N/C .如果把地球看作半径为6.4×105 m 的导体球,则地球表面的电荷Q =___________________. (
2/C m N 10941
290
⋅⨯=πε)
4在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U 0,则立方体顶点A 的电势为
____________.
5分子的正负电荷中心重合的电介质叫做_______________ 电介质 .在外电场
作用下,分子的正负电荷中心发生相对位移,形成________________________.6在相对介电常量为εr的各向同性的电介质中,电位移矢量与场强之间的关系是___________________ .
7一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.
8一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.
9一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________.(填增大或减小或不变)
1
一半径a的金属球A,带电荷Q ,另一内半径为b、外半径为
势零点,内球和球壳的电势。
2一空气平行板电容器,两极板的面积为S,板间距为d,在两极板间平行的插入一面积也为S厚度为t的金属片,求
(1)导体系统的电容C
(2)金属片放在两极板间的位置对电容值有无影响?
3 三个电容器如图所示连接,其中C1=10×106F,C2=5×106F,C3=4×106F当AB间电压为100V时求,
(1)AB间的电容值
(2)当C被击穿时,在电容C1上的电荷荷电压值各变为多少?
4一平行板电容器,两极板的面积为S,板间距为d,中间充满各向同性的电介质,其界面与导体板平行,相对电容率分别为εr1和εr2,厚度分别为d1和d2,且d1 +d2=d设两极板上所带电荷分别为+Q和-Q求
(1)电容器的电容
(2)电容器储存的能量。