导体与电介质复习2012
- 格式:ppt
- 大小:782.00 KB
- 文档页数:41
第十章静电场中的导体与电介质10-1将一个带正电的带电体A从远处移到一个不带电的导体B 附近,则导体B 的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A).10-2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端接地(如图所示),则()(A) N上的负电荷入地(B)N上的正电荷入地(C) N上的所有电荷入地(D)N上所有的感应电荷入地题 10-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关.因而正确答案为(A).10-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0== (B )dεqV d εq E 020π4,π4==(C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ).10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解 根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4r εq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7 一真空二极管,其主要构件是一个半径R 1=5.0×10-4 m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3 m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2) 计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力.解 (1) 电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2) 两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r ER 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布:r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9 地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解 由于地球半径R 1=6.37×106 m ;电离层半径R 2=1.00×105 m +R 1 =6.47×106 m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解 建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据 F 1052.512-⨯=C题 10-10 图10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2 ,两金属片之间的距离是0.600 mm.如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC 按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=S C d Cd d d d ε10-12 一片二氧化钛晶片,其面积为1.0 cm 2 ,厚度为0.10 mm .把平行平板电容器的两极板紧贴在晶片两侧.(1) 求电容器的电容;(2) 当在电容器的两极间加上12 V 电压时,极板上的电荷为多少? 此时自由电荷和极化电荷的面密度各为多少? (3) 求电容器内的电场强度.解 (1) 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dS εεC r (2) 电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQ σ 晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr(3) 晶片内的电场强度为1-5m V 102.1⋅⨯==dU E 10-13 如图所示,半径R =0.10 m 的导体球带有电荷Q =1.0 ×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10m ,另一层介质为空气,充满其余空间.求:(1) 离球心为r =5cm 、15 cm 、25 cm 处的D 和E ;(2) 离球心为r =5 cm 、15 cm 、25 cm 处的V ;(3) 极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d q S D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=r V lE d求得,或者由电势叠加原理求得. 极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ. 解 (1) 取半径为r 的同心球面为高斯面,由高斯定理得 r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π4 22π4rQ D =;202π4r εεQ E r = r >R +d Q r D =⋅23π423π4r Q D =;203π4rQ E ε= 将不同的r 值代入上述关系式,可得r =5 cm 、15 cm 和25 cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1 =5 cm ,该点在导体球内,则01=r D ;01=r Er 2 =15 cm ,该点在介质层内,εr =5.0,则2822m C 105.3π42--⋅⨯==r Q D r 12220m V 100.8π42-⋅⨯==r εεQ E r r r 3 =25 cm ,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ; 13220m V 104.1π43-⋅⨯==r Q E r ε(2) 取无穷远处电势为零,由电势与电场强度的积分关系得 r 3 =25 cm ,V 360π4d 0r 331==⋅=⎰∞rεQ V r E r 2 =15 cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Q d R Q r Q V r r d R d R εεεεεr E r E r 1 =5 cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQ d R εεQ R εεQ V r r d R R d R r E r E (3) 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0 ,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-= ()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-= ()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n 介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号.10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3 C /m 2 ,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差.解 (1)细胞壁内的电场强度V /m 108.960⨯==r εεσE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15 如图(a )所示,有两块相距为0.50 的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K 内,金属盒上、下两壁与A 、B 分别相距0.25 mm ,金属板面积为30 mm ×40 mm.求(1) 被屏蔽后电容器的电容变为原来的几倍;(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析 薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容.解 (1) 由等效电路图可知13232123C C C C C C C C ++⋅=+= 由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C == ,因此A 、B 间的总电容12C C =(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16 在A 点和B 点之间有5 个电容器,其连接如图所示.(1)求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U AC 、U CD 和U DB .题 10-16 图解 (1) 由电容器的串、并联,有μF 1221=+=C C C ACμF 843=+=C C C CD51111C C C C CD AC AB ++=求得等效电容C AB =4 μF.(2) 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACAB AC U C C UV 6==AB CDAB CD U C C UV 2==AB DBAB DB U C C U 10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQ U r 00+-= 相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=0综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容d SεC 00=充电后,极板上的电荷和极板间的电场强度为U d SεQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδSεεδS εεQ δd S εQQ C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδU S εεQE r r -+=='011空气中电场强度()δd εδUεS εQ E r r -+==011(3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02U δd SεQ -=02导体中电场强度 02='E 空气中电场强度 δd U E -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18 为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr 的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0 为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析 导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17 的分析.解 由分析可知,该装置的电容为()d d d S C r r -+=00εεε 则介质的厚度为()()C εS εεd εεC εS εεC d εd r r r r r r r 1110000---=--= 如果待测材料是金属导体,其等效电容为dd S εC -=00 导体材料的厚度CS εd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19 有一电容为0.50 μF 的平行平板电容器,两极板间被厚度为0.01 mm 的聚四氟乙烯薄膜所隔开,(1) 求该电容器的额定电压;(2) 求电容器存贮的最大能量.分析 通过查表可知聚四氟乙烯的击穿电场强度E b =1.9 ×107 V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量.解 (1) 电容器两极板间的电势差V 190b max ==d E U(2) 电容器存贮的最大能量J 1003.92132max e -⨯=CU W 10-20 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量.分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE == 查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为 ()1210m π2R r R r R r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε== 沿轴线单位长度的最大电场能量r r E R r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε 14122210m m J 1076.5ln π--⋅⨯==R R E R W b ε 10-21 一空气平板电容器,空气层厚1.5 cm ,两极间电压为40 kV ,该电容器会被击穿吗? 现将一厚度为0.30 cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10 MV · m -1 .则此时电容器会被击穿吗?分析 在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17 可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40 kV 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿.解 未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6 -26 可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εV εE r r 此时,因b E E > ,空气层被击穿,击穿后40 kV 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.10-22 某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅ ,如果用它来作平板电容器的电介质,要制作电容为0.047 μF,而耐压为4.0 kV 的电容器,它的极板面积至少要多大.解 介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0 kV ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047 μF 的平板电容器,其极板面积210m 42.0==εεCd S 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装.10-23 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1) 电容器能量的改变;(2) 此过程中外力所作的功,并讨论此过程中的功能转换关系.分析 在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功.解 (1) 极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221SεQ E εw e ==在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加Sεd Q V w W e e 022ΔΔ== (2) 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为Sεd Q QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
第6章 静电场中的导体和电介质一、选择题1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场. 此后将该点电荷移至距球心r /2处,种情况? [ ] (A) 对球壳内外电场无影响 (B) 球壳内外电场均改变(C) 球壳内电场改变, 球壳外电场不变(D) 球壳内电场不变, 球壳外电场改变2. 当一个导体带电时, 下列陈述中正确的是[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表面的电势相等(D) 导体内的场强大小和电势均是不为零的常数4. 当一个带电导体达到静电平衡时[ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A)2q (B) 2q- (C) q (D) q -6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若使q 偏离球心, 则表面电荷分布情况为[ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来. 若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比 σ m /σ n 为[ ] (A) n m (B) mn(C)22n m (D) 22m n8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) 2Q q +- (D) 2Qq +9. 在带电量为+q 的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q /3)的试验电荷, 电荷受力为F, 则该点的电场强度满足[ ] (A) q F E 6> (B) q FE 3>(C) q F E 3< (D) qFE 3=10. 在一个带电量为Q 的大导体附近的P 点, 置一试验电荷q , 实验测得它所受力为F .若考虑到q 不是足够小, 则此时F/q 比P 点未放q时的场强[ ] (A) 小 (B) 大(C) 相等 (D) 大小不能确定11. 有一负电荷靠近一个不带电的孤立导体, 则导体内场强大小将[ ] (A) 不变 (B) 增大 (C) 减小 (D) 其变化不能确定12. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中.在距球心为r (R r <)处的电场与放入小球前相比将 [ ] (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定13. 真空中有一组带电导体, 其中某一导体表面处电荷面密度为σ, 该表面附近的场强大小0/εσ=E , 其中E 是[ ] (A) 该处无穷小面元上电荷产生的场 (B) 该导体上全部电荷在该处产生的场 (C) 这一组导体的所有电荷在该处产生的场 (D) 以上说法都不对14. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为U , 则球外离球心距离为r 处的电场强度大小为3qQqq[ ] (A) 32r U R (B) r U (C) 2rRU(D) R U15. 一平行板电容器始终与一端电压恒定的电源相连.当此电容器两极间为真空时, 其场强为0E , 电位移为0D; 而当两极间充满相对介电常数为εr 的各向同性均匀电介质时, 其间场强为E , 电位移为D, 则有关系[ ] (A) 00,/D D E E r==ε(B) 00,D D E E ==(C) r r D D E E εε/,/00== (D) 00,D D E E r ε==16. 一空气平行板电容器接上电源后, 在不断开电源的情况下浸入媒油中, 则极板间的电场强度大小E 和电位移大小D 的变化情况为[ ] (A) E 和D 均减小 (B) E 和D 均增大 (C) E 不变, D 减小 (D) E 不变, D 增大17. 把一个带正电的导体B 靠近一个不带电的绝缘导体A 时, 导体A 的电势将[ ] (A) 升高 (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后[ ] (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等19. 在无穷大的平板A 上均匀分布正电荷, 面电荷密度为σ,带净电荷的大导体平板B , 则A 板与B 板间的电势差是 [] (A) 02εσd (B) 0εσd(C) 03εσd(D) σεd 020. 导体壳内有点电荷q , 壳外有点电荷Q , 导体壳不接地.当Q 值改变时, 下列关于壳内任意一点的电势和任意两点的电势差的说法中正确的是 [ ] (A) 电势改变, 电势差不变 (B) 电势不变, 电势差改变T6-1-15图(C) 电势和电势差都不变 (D) 电势和电势差都改变21. 两绝缘导体A 、B 带等量异号电荷.现将第三个不带电的导体C 插入A 、B 之间, 但不与A 、B 接触, 则A 、B 间的电势差将[ ] (A) 增大 (B) 减小(C) 不变 (D) 如何变化不能确定22. 两个薄金属同心球壳, 半径分别为R 和r (R >r ), 若分别带上电量为Q 和q 的电荷, 此时二者的电势分别为U 和V .现用导线将二球壳连起来, 则它们的电势为[ ] (A) U (B) V(C) U +V (D) )(21V U +23. 就有极分子电介质和无极分子电介质的极化现象而论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同24. 一平行板电容器中充满相对电容率为r ε的各向同性均匀电介质.已知电介质表面极化电荷面密度为±σ', 则极化电荷在电容器中产生的电场强度大小为 [ ] (A)εσ' (B)2εσ'(C)rεεσ0'(D)rεσ'25. 一导体球外充满相对电容率为r ε的均匀电介质, 若测得导体表面附近场强为E , 则导体球面上的自由电荷面密度σ为[ ] (A) E 0ε (B) E r εε0 (C) E r ε (D) E r r )(0εεε-27. 在一点电荷产生的电场中, 以点电荷处为球心作一球形封闭高斯面, 电场中有一块对球心不对称的电介质, 则 [ ] (A) 高斯定理成立,并可用其求出封闭面上各点的场强 (B) 即使电介质对称分布, 高斯定理也不成立 (C) 高斯定理成立, 但不能用其求出封闭面上各点的电场强度 (D) 高斯定理不成立28. 在某静电场中作一封闭曲面S .若有⎰⎰=⋅sS D 0d , 则S 面内必定[ ] (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷(C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零29. 关于介质中的高斯定理⎰⎰∑=⋅sq S D 0d, 下列说法中正确的是[ ] (A) 高斯面的D通量仅与面内的自由电荷的代数和有关(B) 高斯面上处处D为零, 则高斯面内必不存在自由电荷 (C) 高斯面的D通量由面内的自由电荷和束缚电荷共同决定(D) 高斯面内不包围自由电荷时, 高斯面上各点电位移矢量D为零30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起自正电荷, 止于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平行 (C) 电位移线只出现在有电介质的空间(D) 起自正自由电荷, 止于负自由电荷, 任何两条电位移线不相交31. 两个半径相同的金属球, 一个为空心, 另一个为实心.把两者各自孤立时的电容值加以比较, 有[ ] (A) 空心球电容值大 (B) 实心球电容值大 (C) 两球容值相等 (D) 大小关系无法确定32. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对33. n 只具有相同电容的电容器, 并联后接在电压为∆U 的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V 和系统的电场能W [ ] (A) U n V ∆=,W 增大 (B) U n V ∆=,W 不变 (C) U n V ∆=,W 减小 (D) U nV ∆=1,W 不变34. 把一充电的电容器与一未充电的电容器并联.如果两电容器的电容一样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减小 (D) 如何变化不能确定35. 平行板电容器的极板面积为S , 两极板间的间距为d , 极板间介质电容率为ε. 现对极板充电Q , 则两极间的电势差为[ ] (A) 0 (B)S Qd ε (C) S Qd ε2 (D) SQdε436. 一平行板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平行板电容器的极板间距拉大, 将会发生什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增大(C) 两极间的场强减小 (D) 电容器储存的能量不变38. 真空中带电的导体球面和带电的导体球体, 若它们的半径和所带的电量都相等, 则球面的静电能W 1与球体的静电能W 2之间的关系为[ ] (A) W 1>W 2 (B) W 1=W 2 (C) W 1<W 2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增大为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B)21倍 (C) 4倍 (D) 21倍 40. 一空气平板电容器, 充电后把电源断开, 这时电容器中储存的能量为0W .然后在两极板间充满相对电容率为r ε的各向同性均匀电介质, 则该电容器中储存的能量W 为[ ] (A) 0W W r ε= (B) rW W ε0=(C) 0)1(W W r +=ε (D) 0W W =41. 一平行板电容器, 两板间距为d , 与一电池联接时, 相互作用力为F.若将电池断开,极间距离增大到3d , 则其相互作用力变为[ ] (A) 3F (B)F 3 (C) 9F(D) 不变42. 金属圆锥体带正电时, 其圆锥表面[ ] (A) 顶点处电势最高 (B) 顶点处场强最大 (C) 顶点处电势最低(D) 表面附近场强处处相等43. 平板电容器与电源相连, 现把两板间距拉大, 则 [ ] (A) 电容量增大T6-1-42图(B) 电场强度增大 (C) 带电量增大(D) 电容量、带电量及两板间场强都减小44. 空气平行板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插入电容器的两极板之间.则插入前后, 电容C 、场强E和极板上的电荷面密度σ的变化情况为[ ] (A) C 不变, E不变, σ不变(B) C 增大, E不变, σ增大 (C) C 不变, E增大, σ不变(D) C 增大, E增大, σ增大45. 空气平板电容器与电源相连接.现将极板间充满油液, 比较充油前后电容器的电容C 、电压U 和电场能量W 的变化为 [ ] (A) C 增大, U 减小, W 减小 (B) C 增大, U 不变, W 增大 (C) C 减小, U 不变, W 减小 (D) C 减小, U 减小, W 减小46. 一空气平行板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.比较充入电介质前后的情形, 以下四个物理量的变化情况为[ ] (A) E增大, C 增大, ∆U 增大, W 增大(B) E减小, C 增大, ∆U 减小, W 减小(C) E减小, C 增大, ∆U 增大, W 减小 (D) E增大, C 减小, ∆U 减小, W 增大47. 平行板电容器两极板(可看作无限大平板)间的相互作用力F 与两极板间电压∆U 的关系是:[ ] (A) U F ∆∝ (B) U F ∆∝1 (C) 2U F ∆∝ (D) 21U F ∆∝48. 在中性导体球壳内、外分别放置点电荷q 和Q , 当q 在壳内空间任意移动时, Q 所受合力的大小[ ] (A) 不变 (B) 减小(C) 增大 (D) 与q 、Q 距离有关49. 在水平干燥的玻璃板上, 放两个大小不同的小钢球, 且小球上带的电量比大球上电量多.发现两球被静电作用力排开时, 小球跑得较快, 这是由于 [ ] (A) 小球受到的斥力较大 (B) 大球受到的斥力较大(C) 两球受到的斥力大小相等, 但大球惯性大 (D) 以上说法都不对50. 一带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球面、外球面电势相等(B) 球内、内球面、外球面电场强度大小相等 (C) 球壳内电场强度为零,球心处场强不为零 (D) 球壳为等势体, 球心处电势为零51. 如果在平行板电容器的两极板间平行地插入一块与极板面积相等的电介质板, 则由于电介质的插入及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减小, 但与电介质板的位置无关 (B) 使电容减小, 且与电介质板的位置有关(C) 使电容增大, 但与电介质板的位置无关 (D) 使电容增大, 且与电介质板的位置有关52. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳. 若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 [ ] (A) E =0, U =0 (B) E =0, U ≠0(C) E ≠0, U ≠0 (D) E ≠0, U =053. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如T6-1-53图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则[ ] (A) U B > U A ≠0 (B) U B > U A = 0(C) U B = U A (D) U B < U A二、填空题1. 两金属球壳A 和B 中心相距l ,原来都不带电.现在两球壳中分别放置点电荷q 和Q ,则电荷Q 作用在q 上的电力大小为F = .如果去掉金属壳A ,此时,电荷Q 作用在q 上的电力大小是 .T6-1-51图ABC2. 在T6-2-2图所示的导体腔C中,放置两个导体A和B,最初它们均不带电.现设法使导体A带上正电,则这三个导体电势的大小关系为.3. 半径为r的导体球原来不带电.在离球心为R (rR>)的地方放一个点电荷q, 则该导体球的电势等于.4. 金属球壳的内外半径分别r和R, 其中心置一点电荷q, 则金属球壳的电势为.5. 一个未带电的空腔导体球壳内半径为R.在腔内离球心的距离为d处(d < R) 固定一电量为+q的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O处的电势为.6. T6-2-6图所示的11张金属箔片平行排列,奇数箔联在一起作为电容器的一极,偶数箔联在一起作为电容器的另一极.如果每张箔片的面积都是S,相邻两箔片间的距离为d,箔片间都是空气.忽略边缘效应,此电容器的电容为C = .7. T6-2-7图中所示电容器的电容321CCC、、已知,4C的值可调.当4C的值调节到A、B两点的电势相等时,=4C.8. 位于边长为l的正三角形三个顶点上的点电荷电荷量分别为q、q2和q4-,这个系统的静电能为.9. 有一半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为.10. 电荷q均匀分布在内外半径分别为1R和2R的球壳体内,这个电荷体系的电势能为,电场能为.11. 一平行板空气电容器, 极板面积为S, 间距为d, 接在电源上并保持电压恒定为U.若将极板距离拉开一倍, 则电容器中的静电能改变量为.12. 有一半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为.三、计算题1. 真空中一导体球A原来不带电.现将一点电荷q移到距导体球A的中心距离为r处,此时,导体球的电势是多少?2. 真空中一带电的导体球A半径为R.现将一点电荷q移到距导体球A的中心距离为r处,测得此时导体球的电势为零.求此导体球所带的电荷量.3. 一盖革-米勒计数管,由半径为0.1mm的长直金属丝和套在它外面的同轴金属圆筒构成,圆筒的半径为10mm.金属丝与圆筒之间充以氩气和乙醇蒸汽,其电场强度最大值为6103.4⨯V⋅m-1. 忽略边缘效应,试问金属丝与圆筒间的电压最大不能超过多少?4. 设有一电荷面密度为0(0)σ>放置一块原来不带电,有一定厚度的金属板,不计边缘效应, (1)板两面的电荷分布;(2) 把金属板接地,金属板两面的电荷又将如何分布5. 在一块无限大的接地金属板附近有一个电量为q(>0)的点电荷,它与金属板表面相距为h,求金属板表面上的感应电荷分布及感应电荷总量.6. 一平行板电容器两极板的面积都是S,其间充有N层平行介质层,它们的电容率分别为Nεεεε、、、321,厚度分别为Ndddd、、、321.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所示,一球形电容器由半径为R1的导体球和与它同心的半径为R2的导体球壳组成.导体球与球壳之间一半是空气,另一半充有电容率为ε的均匀介质.求此电容器的电容.8. 静电天平的原理如T6-3-8图所示:面积为S、相距x的空气平行板电容器下板固定,上板接到天平的一端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放入天平另一端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U, 问此物的质量是多少?9. 两块面积相同的大金属平板A、B, 平行放置,板面积为S,相距d,d远小于平板的线度.今在A,B板之间插入另外一面积相同,厚度为l的金属板,三板平行.求A、B 之间的电容.10. 真空中两个同心的金属薄球壳,内外球壳的半径分别为R1和R2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容又是多大?11. 已知一均匀带电球体(非导体)的半径为R,带电量为q.如果球体内外介质的电容q率均近似为ε,在半径为多大的球面空间内的电场能量为其总能量的一半?12. 半径为R 的雨点带有电量q .现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“无限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. 一面积为S 、间隔为d 的平板电容器,最初极板间为空气,在对其充电±q 以后与电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪儿去了?14. 一种利用电容器控制绝缘油液面的装置示意如T6-3-14图,平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连.当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作.已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.15. 如T6-3-15图所示,在场强为E的均匀电场中,静止地放入一电矩为p 、转动惯量为J 的电偶极子.若电矩p与场强E 之间的夹角θ 很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到p与E 方向一致时所经历的最短时间.第6章 静电场中的导体和电解质一、选择题 1. C 2. C 3. C 4. A 5. D 6. D 7. B 8. B 9. B10. A 11. A 12. B 13. C 14. C 15. D 16. D 17. A 18. D 19. A 20. A 21. B 22. A 23. D 24. A 25. B 26. B 27. C 28. C 29. A 30. D 31. C 32. D 33. B 34. C 35. B 36. C 37. C 38. B 39. C 40. B 41. D 42. B 43. D 44. B 45. B46. B 47. C 48. A 49. C 50. A 51. C 52. B 53. D二、填空题 1.20π4l qQ ε,20π4l qQε 2. 0>>>C B A U U U3. R q 0π4ε4. Rq 0π4ε 5.)11(π40Rd q -ε 6. d SNC 0ε=7. 1324C CC C =8. lq W 02π25ε-=9. 1:510. 2222121023222122131)(π40)2463(3R R R R q R R R R R R +++++ε,2222121023222122131)(π40)2463(3R R R R q R R R R R R +++++ε 11. dSU 420ε-12. 1:5 三、计算题1. 解:导体平衡时是一等势体,球的电势即球心的电势.据电势叠加原理,球心的电势等于点电荷在A 球心处的电势与导体球在球心处的电势之和 点电荷q 在导体球A 之球心处的电势为rqU q 0π4ε=设导体球A 的半径为R , 因静电感应在为⎰⎰'''='=q q A q R R q U d π41π4d 00εε 因导体球感应电荷之和为0,所以0d ='⎰'q q球心处的电势rqU U U A q 0π4ε=+=2. 解:由上题的讨论可知,球心的电势应等于点电荷在A 球心处的电势与导体球在球心处的电势以及导体球上感应电荷球心处的电势之和A6-3-1图q设导体球带电Q ,它在球心处的电势为RQU Q 0π4ε=利用上题的结果, 球心处的电势为RQr q U U U U Q A q 00π4π4εε+=++=由题意有0π4π400=+=++=RQr q U U U U Q A q εε所以,导体球的带电量Q 为q rR Q =3. 解:设金属丝单位长度上的电量为λ,由高斯定理可求得金属丝与圆筒之间离轴线r 处电场强度大小为rE ελπ2=于是,金属丝与圆筒之间的电势差为内外内外外内外内R R rE R R r r U R R R R ln ln π2d π2d ==⋅=⋅=⎰⎰ελελr E此式表明:max U 对应于m ax E ,由rE ελπ2=知m ax E 对应着内和R r =max λ (V)1098.11.010ln 103.4101.0ln363max max ⨯=⨯⨯⨯⨯==-内外内R R E R U4. 解:(1) 不计边缘效应,则金属板两相对表面均匀带电,设其上的电荷面密度分别为1σ和2σ,如A6-3-4(a)图所示.因金属板原来不带电,由电荷守恒定律有120σσ+= ①设P 点为厚板内任意一点,根据场强叠加原理及导体的静电平衡条件,可得P 点的场强应满足0222020100=-+=εσεσεσP E ② 由①、 ②两式可解得2,2201σσσσ=-=σA6-3-4(a) 图(2) 把金属板接地后,板与地成为一个导体, 达到静电平衡后两者的电势必须相等,因而金属板右表面不能带电.反证如下:设板的右表面带电,则必有电场线从金属板的正电荷发出终止 于地面(或由地面发出终止于金属板的负电荷),这样,板与地之间一定存在电势差,这与静电平衡时导体的性质相矛盾,因而不可能.设接地后,板的左表面的电荷面密度为σ,按与(1)中相同的解法,根据电场强度叠加原理和导体静电平衡条件,求得金属板内任一点处的电场强度满足022000=+εσεσ 因此0σσ-=, 即金属板接地后不仅(1)中板右表面的正电荷被来自地面的负电荷中和,而且板的左表面的负电荷也增加了一倍,这时电场全部集中在带电平面与金属板之间, 如A6-3-4(b)图所示.5. 解:接地意味着该金属板的电势与地电势同为零,为满足静电平衡条件和零电势,感应电荷只出现在金属板上与点电荷相近一侧的表面,且不均匀分布.在金属板的带电面的内、外侧选取两个无限接过的场点P '和P ,它们与点电荷相距r ,与垂足O 点相距R , 如A6-3-5图所示.设q E 和PE ''分别表示点电荷和金属表面感应电荷在P '点产生的电场强度,则根据导体的静电平衡条件,P '点的合场强为零,有0='+=''P q P E E E 即,q P E E -='',由此得PE ''的大小为 20π4rq E Pε=''由于P 和P '分居金属板带电面两侧,位置对称,可知其面上感应电荷在此两点产生的场强也对称,即,PE ' 的大小应与P E ''的大小相等,而其方向如A6-3-5图所示.同时,由于P '和P 二者无限接近,点电荷在此两点产生的场强相同.因此,金属板外侧P 点的合场强Pq P E E E'+= , 由矢量合成图可见,合场强的大小 2/322020)(π2π42cos 2R h qhr h r q E E q P +===εεθ P E的方向垂直表面指向导体内部, 即与带电表面的外法线反向.根据静电平衡时导体表面电场强度n e Eεσ=,可得P 点处感应电荷的面密度为 2/3220)π(2R h qhE P +-=-='εσ 结果表明,金属板表面的感应电荷分布不均匀,在0=R 处,σ'的绝对值最大,在离开O 点很远处(即R →∞)感应电荷面密度趋势于零.选取以O 为中心,半径为R 到R R d +的圆环,其上的电荷为σA6-3-4(b) 图P E-=''PA6-3-5图R R q d π2d σ'='=R R h qhRd )(2/322+-故整个表面上感应电荷的总量q R R h qhRq q q -=+-='='⎰⎰∞'2/322d )(d 即与金属板旁点电荷q 等量异号.6. 解:设电容器两极板加有电压U ,极板上的电量为Q ±.由高斯定理可得,第i 层介质内电场强度的大小为SQ D E i i i i i εεσε===极板间电压∑∑⎰⎰==-+-+===⋅=N i i iNi i i d S Q d E l E U 11d d εl E由电容器电容的定义∑===Ni iid SUQC 1ε7. 解:设想通过球心的平面将一个球形电容器分成了两个半球形的电容器,再相互并联.已知球形电容器的电容为1221π4R R R R C -=ε于是,两半球形电容器的电容分别为122100π2R R R R C -=ε, 1221π2R R R R C -=εε所求之电容为)(π2π2π2012211221122100εεεεε+-=-+-=+=R R R R R R R R R R R R C C C8. 解:设加上电压U 后电容器极板上的带电量为q ±,则电容器上极板所受的电力为Sq q qE F 02022εεσ=== 由电容定义CU q =和平板电容器dSC 0ε=可得20)(21xU S F ε=天平平衡时 mg F =所以20)(21xUS F ε=A6-3-6图A6-3-8图9. 解:方法一设A ,B 两块板分别带有+q 和-q 的电量,在题设条件下,由导体的静电平衡条件可确定,电荷均匀分布在两极板的相对表面上,其电荷面密度分别为S qS q -=-=σσ和,而插入的第三个金属板两侧表面感应带等量异号的面电荷.由无限大均匀带电平面的电场可知,金属板之间的电场强度的大小SqE 00εεσ==方向垂直于板面,而金属板内场强为零;因此A ,B 两板之间的电势差为Sl d q l d E U 0)()(ε-=-==∆ 根据电容的定义式,得ld S U qC -=∆=0ε 解法二 设所插入的金属板的左侧面与A 板相距d 1,则其右侧面与B 板相距12d l d d --=A ,B 之间的电容可看成A 与插入的金属板的左侧面之间的电容C 1和B 与插入的金属板的右侧面之间的电容C 2串联而成.由平板电容器电容公式,有202101,d SC d SC εε==由串联电容公式 Sl d S d d C C C 002121111εε-=+=+= 故A ,B 之间的电容为ld SC -=0ε两种解法结果相同.10. 解:(1) 设两球壳分别带有+Q 和-Q 的电量,由导体的静电平衡条件可知, 电荷均匀分布于球面. 因此,两球面之间的电场强度方向沿径向,大小为 20π4rQE ε=两球壳之间的电势差为)11(π4d π42102021R R Q r RQU R R -==∆⎰εε 按定义,球形电容器的电容为12210π4R R R R U QC -=∆=ε (2) 令内球壳接地,则其电势为零解法一 由于无限远电势也为零,即与内球壳等电势,故此时外金属球壳和接地内金属球壳之间的电容可看作一球形电容器1C 和一由外A6-3-9图S SA6-3-10(a)图球壳与无限大(远)球壳构成的电容器2C 二者的并联,而后一电容器的电容实际就是孤立导体球的电容,因此此时两金属球壳之间的电容为1222201221021π4π4π4R R R R R R R R C C C -=+-=+=εεε 解法二 令金属球壳带电,由于内球壳接地,它所带的电荷不可能与外球壳的电荷等量异号,而应满足一定的关系.设分别为Q 1和Q 2 ,它们各自均匀分布在两个球面上,由电势叠加原理,二同心均匀带电球面在内球面形成的电势为0π4π42021011=+=R Q R Q U εε因此1221R R Q Q -= 又两金属球壳之间的电势差为 )11(π42101R R Q U -=∆ε 此时,外球壳是电容器的一个完整的电极,它所带的电荷才是电容器所带的电量,因此按定义,电容值为)(π41212101212R R Q R R R R Q U Q U QC -⋅=∆=∆=ε 1222π4R R R -=ε 结果与解法一的相同.结果讨论: 对球形电容器,如果两球壳的间距远小于球壳的半径,即1212,R R R R R <<-=∆,则221π4π4R R R ≈,为球壳面积S .由此电容器的电容可近似为 RSR R R R C ∆≈-=012210π4εε式中R ∆是两电极之间的距离d , dSC 0ε=,球形电容器的电容演化为平板电容器的电容.。