奥数解题方法11
- 格式:docx
- 大小:10.90 KB
- 文档页数:1
第11讲假设法解题(二)一、知识要点已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。
应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。
虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。
二、精讲精练【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?练习1:1、丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2、在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。
求中、小学原来各植树多少棵?【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?练习2:1、甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?2、上学年,马村中学的学生比牛庄小学的学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?【例题3】小红的彩笔枝数是小刚的21,两人各买5枝后,小红的彩笔枝数是小刚的32,两人原来各有彩笔多少枝?练习3:1、小华今年的年龄是爸爸年龄的61,四年后小华的年龄是爸爸的41,求小华和爸爸今年的年龄各是多少岁?2、小红今年的年龄是妈妈的83,10年后小红的年龄是妈妈的21,小红今年多少岁?【例题4】王芳原有的图书本数是李卫的54,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的107,两人原来各有图书多少本?练习4:1、甲书架上的书是乙书架上的54,从这两个书架上各借出112本后,甲书架上的书是乙书架上的74,原来甲、乙两个书架上各有多少本书?2、小明今年的年龄是爸爸的116,10年前小明的年龄是爸爸的94,小明和爸爸今年各多少岁?【例题5】某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的43,现在男、女生各有多少人?练习5:1、甲车间的工人是乙车间的52,后来甲车间增加20人,乙车间减少35人,这样甲车间的人数是乙车间的97,现在甲、乙两个车间各有多少人?2、有一堆棋子,黑子是白子的32,现在取走12粒黑子,添上18粒白子后,黑子是白子的125,现在白子、黑子各有多少粒?三、课后作业1、两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。
小学奥数解题方法1——分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的;可分为这样几类:1以A为左端点的线段共4条,分别是:AB,AC,AD,AE;2以B为左端点的线段共3条,分别是:BC,BD,BE;3以C为左端点的线段共2条,分别是:CD,CE;4以D为左端点的线段有1条,即DE;一共有线段4+3+2+1=10条;还可以把图中的线段按它们所包含基本线段的条数来分类;1只含1条基本线段的,共4条:AB,BC,CD,DE;2含有2条基本线段的,共3条:AC,BD,CE;3含有3条基本线段的,共2条:AD,BE;4含有4条基本线段的,有1条,即AE;有长度分别为1、2、3、4、5、6、7、8、9、10、11单位:厘米的木棒足够多,选其中三根作为三条边围成三角形;如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度;设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边;1、11 一种2、11 2、10 二种3、11 3、10 3、9 三种4、11 4、10 4、9 4、8 四种5、11 5、10 5、9 5、8 5、7 五种6、11 6、10 6、9 6、8 6、7 6、6 六种7、11 7、10 7、9 7、8 7、7 五种8、11 8、10 8、9 8、8 四种9、11 9、10 9、9 三种10、11 10、10 二种11、11 一种1+2+3+4+5+6+5+4+3+2+1=36种小学奥数解题方法2——化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况化大为小,从中分析探寻出问题的规律,以获得问题的答案;这就是解数学题常用的一种方法,叫做归纳,我们也可以叫做“化大为小找规律”;10条直线最多可把一个长方形分成多少块提示:先不考虑10条直线,而是先看1条、2条、3条直线能把一个长方形分成几块10条直线最多可把一个长方形分成多少块第一条直线:分成 2 块第二条直线:分成2+2=4 块第三条直线:分成2+2+3=7 块10条直线最多可把一个长方形分成多少块我们发现这样的规律:=2+2+3+4+5+6+7+8+9+10=2+54=56块这就是说,10条直线可把长方形分为56块;小学奥数解题方法3——把未知量具体化一般情况下,题目中的未知量不可以随便假设;有时,问题中所求的未知量与其它相关的未知量具体是多少并没有关系;在这种情况下,可以把这些没有关系的未知量设为具体数;”幼儿园把一筐苹果平均分给大班和小班的小朋友,每个小朋友可分得6个;如果全部分给大班小朋友,那么平均每人可分10个;如果全部分给小班的小朋友,平均每人可分几个全部分给小班的小朋友,每人可分几个,与苹果的总个数有关系,而与人数无论是两班人数,还是大班人数都没有关系;苹果总数=两班总人数×6苹果总数=大班人数×10所以,大班人数×10=两班总人数×6设两班100人大班100×6 ÷ 10=60人小班100-60=40人600 ÷40=15个小学奥数解题方法4——试验将一根长为374厘米的铝合金管截成若干根长36厘米和24厘米的短管;问剩余部分的管子最少是多少厘米提示:从题目的问句看,应抓住“最少”二字来思考,先考虑没有剩余,再考虑剩余1厘米、2厘米……1如果把这根长管截成若干根两种不同规格的短管后没有剩余,那么374应该是4的倍数,因为两种短管的长度36厘米、24厘米都是4的倍数,但374不能被4整除,所以没有剩余不可能;2如果截成若干根两种不同规格的短管后只剩下1厘米,根据36、24都是偶数,“偶数的倍数是偶数”、“偶数与偶数的和是偶数”可推知,原来铝合金管长应为奇数,这与管长374偶数的条件矛盾,所以,剩1厘米也不可能;3如果最后剩下2厘米;这种情况有可能;374÷36+24=6……14;这说明两种都截6根余14厘米,这时需要调整:少截一根24厘米长的,加上14,24+14=36+2,正好合一根36厘米长的,还剩2厘米;小学奥数解题方法5——移多补少在“平均”二字中,“平”就是“拉平”,也就是移多补少,“均”就是相等;“平均”二字的意思,通俗地说,就是用“移多补少”的办法,使每份数量都相等;因此,移多补少是我们解答求平均数应用题的重要思考方法;新光机器厂装配拖拉机,第一天装配50台,第二天比第一天多装配5台,第三、第四两天装配台数是第一天的2倍多3台,平均每天装配多少台用四天装配总台数除以4,综合算式为:50+50+5+50×2+3÷4=52台采用移多补少的方法,假设每天都装配50台,那么四天一共多装配5+3=8台,把这8台平均分成四份,8÷4=2台,因此,平均每天装配50+2=52台综合算式为:50+5+3÷4=52台甲、乙、丙三人一起买了8个面包,平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没带钱,等吃完后一算,丙应该拿出4角钱,问甲应收回多少钱以分为单位4角=40分40× 3=120分120÷ 8=15分15× 5-40=35分小学奥数解题方法6——等量代换“曹冲称象”是运用了“等量代换”的思考方法:两个完全相等的量,可以互相代换;解数学题,经常会用到这种思考方法;百货商店运来300双球鞋,分别装在2个木箱、6个纸箱里;如果2个纸箱同1个木箱装的球鞋一样多,每个木箱和每个纸箱各装多少双球鞋提示:我们根据“2个纸箱同一个木箱装的球鞋一样多”,把木箱换成纸箱,也就是说,把300双球鞋全部用纸箱装,不用木箱装;根据已知条件,2个木箱里的球鞋刚好装满4个纸箱,再加上原来已装好的6个纸箱,一共是10个纸箱;这样,题目就变为“把300双球鞋平均装在10个纸箱里,平均每个纸箱装多少双球鞋”可以求出每个纸箱装多少双球鞋;也就能求出一个木箱装多少双球鞋;用两台水泵抽水,小水泵抽6小时,大水泵抽8小时,一共抽水312立方米;小水泵5小时的抽水量等于大水泵2小时的抽水量,两种水泵每小时各抽水多少立方米5小=2大大换小:8 ÷ 2 × 5=20 时小:312 ÷20+6=12立方米大:12 × 5 ÷ 2=30立方米小学奥数解题方法7——画图在数学中,“数”与“形”就像一对形影不离的亲兄弟;几乎所有的数量关系或数学规律都可以用生动形象的示意图来反映;A、B、C、D与小青五位同学一起比赛象棋,每两人都要比赛一盘;到现在为止,A 已经赛了4盘,B赛了3盘,C赛了2盘,D赛了1盘;问小青已经赛了几盘两堆煤,第一堆16吨,第二堆10吨,5天内两堆煤烧掉同样多吨数,这样第一堆剩下的煤正好是第二堆所剩煤的4倍;问5天中两堆煤被烧掉了多少吨小学奥数解题方法8——反过来想当你按习惯思路解决问题困难时,不妨也反过来想想;反过来想,是我们解数学题的一种很好的方法;用淘汰制比赛从200名乒乓球选手中产生一名冠军,问应进行多少场比赛淘汰199人需要比赛199场1至100的自然数中,不能被9整除的自然数的和是多少从1至100的和中去掉9的倍数,就是不能被9整除的数的和了1+2+3+;;;+100=50509 ×1+2+3+…+11=5945050-594=4456小学奥数解题方法9——分析因果关系分析,也就是抓住结果找原因;我们解数学题,也应当学会这种顺藤摸瓜,分析因果关系的本领;用一个杯子向一个空瓶里倒水;如果倒进3杯水,连瓶共重440克;如果倒进5杯水,连瓶共重600克;一杯水和一个空瓶各重多少我们先把两次倒水的情况作一次比较;从连瓶重量来看,第二次比第一次重了“600-440=160克”,怎么会多160克的呢因为第二次比第一次多倒了“5-3=2杯”水;这样,我们就容易求出每杯水的重量为:160÷2=80克;空瓶重量600- 80×5=200 克这类应用题的一般思路:1先比较两种情形,从数量上看出差别;2分析造成这种数量差别的原因;3利用这种因果关系来沟通题目中已知量与未知量的关系,并求出正确答案;兴旺养猪场,如果每间猪圈养猪8头,就还有4头猪没有猪圈养;如果每间猪圈养猪10头,将空出2间猪圈;问这个养猪场有多少间猪圈共养了多少头猪10×2+4÷10-8=12间8×12+4=100头或10×12-10×2=100头小学奥数解题方法10——假设小华解答数学判断题,答对一题给4分,答错一题扣4分,她答了20道判断题,结果只得56分;小华答对了几题假设小华全部答对:该得4×20=80分,现在实际只得了56分,相差80-56=24分,因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8分4+4=8,根据总共相差的分数以及做错一题相差的分数,就可以求出做错的题数:24÷8=3题,一共做20题,答错3题,答对的应该是:20-3=17题4×17=68分答对的应得分4×3=12分答错的应扣分68-12=56分实际得分某校有100名学生参加数学竞赛,平均得63分,其中男生平均得60分,女生平均得70分,那么,男生比女生多多少名假设100名同学都是男生,那么应得分60×100=6000分比实际少得63×100-6000=300分原因是男生平均分比女生少70-60=10分求出女生人数为300 ÷ 10=30名小学奥数解题方法11——转化数学题常用的也是十分重要的一种方法——转化;这种转化通常是指转化条件或问题,特别是转化题中的数量关系;一个两位小数,去掉小数点后比原来的数大;这个两位小数是多少一个数的99倍是,求这个数;两个数相除的商是21,余数是3;如果把被除数、除数、商和余数相加,它们的和是225;被除数、除数各是多少题目中前一句话换个说法就是:被除数比除数的21倍还多3;再换个说法就是:被除数与除数的和比除数的“21+1”倍还多3;题目中第二句话换个说法是:被除数与除数的和是225-21+3=201;整个题目的意思换个说法就是:201比除数的22倍多3;从而可以先求出除数是:201-3÷22=9可求出被除数是:21×9+3=192小学奥数解题方法12——抓不变量数学题中,常常会出现数量的增减变化,但这些量变化时,与它们相关的另外一些量却没有改变;这种“不变量”往往在分析数量关系时起到重要作用;例一今年小明8岁,小强14岁;几年后小明和小强岁数的和是40岁从年龄上不变来找解题的“突破口”小明和小强的年龄差是:14-8=6岁小明那一年是:40-6÷2=17岁是在几年之后呢17-8=9年例二王进和张明计算甲、乙两个自然数的积这两个自然数都比1大;王进把甲数的个位数字看错了,计算结果为91,张明却把甲数的十位数字看错了,计算的结果为175;两个数的积究竟是多少91=7×13 =1×91 ,所以175和91的公约数是1或7,因为乙数比1大,所以乙数一定是7;抓住:一个因数乙数没有变,乙是91和175的公约数91÷7=13……王进看错了的甲数175÷7=25……张明看错了的甲数;15×7=105小学奥数解题方法13——找隐蔽条件应用题中的隐蔽条件,往往是分析问题的突破口或者是最关键的一步;所以,审题时如果感到缺少条件,你不妨提醒自己:有没有什么隐蔽条件一个家庭由丈夫、妻子、女儿和儿子组成,他们的年龄和是73岁;丈夫比妻子大3岁,女儿比儿子大2岁;4年前这个家庭成员的年龄和是58岁;请问:这个家庭成员现在的年龄各是多少岁隐蔽条件,可以推知:儿子今年才3岁;由“女儿比儿子大2岁”可以算出女儿今年是:3+2=5岁从而可知,丈夫与妻子现在的年龄和是:73-5+3=65岁由他们的年龄差是3岁,容易算出丈夫今年是:65+3÷2=34岁妻子今年是:65-34=31岁一个等腰三角形的周长是24厘米,其中有一条边长是6厘米,求另外两条边的长;等腰三角形的腰不能是6厘米,所以只能底是6厘米另两条边:24- 6÷2=9厘米小学奥数解题方法14——整体看问题从整体上观察思考,全面地审题;例一有甲、乙、丙三种货物;如果买甲3件,乙7件,丙1件,共花去元;如果买甲4件,乙10件,丙1件,共花去元;现在买甲、乙、丙各1件,需要花多少钱买甲3件,乙7件,丙1件,花元①买甲4件,乙10件,丙1件,花元②要想求出买甲1件,乙1件,丙1件,共需花多少钱,必须使上述①与②中对应的“件数”相差1;为此,可转化已知条件:将条件①中的每个量都扩大3倍,得:买甲9件,乙21件,丙3件,花元③将条件②中的每个量都扩大2倍,得:买甲8件,乙20件,丙2件,花元④所以,买甲、乙、丙各一件,共需要花的钱数为元例二一条马路长2000米,老张在马路的一端,老李在马路的另一端;他们分别从这条马路的两端同时出发,相对而行;老张每分钟走60米,老李每分钟走40米;老张带着一条狗,狗每分钟跑120米;这条狗与老张一同出发,碰到老李时就向老张跑,碰到老张又向老李跑,……直到老张与老李相遇;问这条狗从出发到老张与老李相遇时共跑了多少米提示:不需要把狗每趟所跑的路分别算出来,只要用它的速度乘一共所跑的时间就可以了;小学奥数解题方法15——分情况讨论对于那些缺少条件,看上去无法回答的问题,经过全面深入的思考,分几种情况来讨论,是可以找到问题的完整全部答案的;例一甲地到乙地的公路长400千米,两辆汽车从两地同时出发对开,甲车每小时行38千米,乙车每小时行42千米;出发几小时后两车相距80千米例二在连续的49年中,最多可以有多少个闰年最少应该有多少个闰年49年中有几个4年,一般就有几个闰年在通常情况下,连续49年中有12个闰年;49年必须是连续的;但它没有规定这49年的起止时间;但,当第一年是闰年时,最后一年也正好是闰年例三把一根竹竿垂直插入水中,在竹竿上刻上一个记号表示水深;再把这根竹竿掉过头来插入水中,也刻上一个记号表示水深;已知两个记号相距10厘米,是水深的十分之一;求竹竿的长;一种:水深:10×10=100厘米竿长:100+100+10=210 厘米另一种:水深:10×10=100厘米竿长:100+100-10=190 厘米例四一根铁丝可以弯成长、宽分别是4厘米、3厘米的长方形;如果用这根铁丝弯成两个相同的正方形,每个正方形面积是多少4+3×2=14厘米14 ÷8=厘米× =平方厘米4+3×2=14厘米14 ÷7=2厘米2 × 2=4平方厘米小学奥数解题方法16——逐步调整你可以根据题中的部分条件,找到一个与正确答案比较接近的“准答案”,然后再对它进行修改或调整;这样一步一步地逼近,最后一定会得到符合题中所有条件的正确答案的;小学奥数解题方法17——合理变形把算式合理变形,是我们进行简便计算最常用的方法;99×99+199=100-1x100-1+200-1 =100x+1+200-1 =10000合理的变形可以使解题过程变得简捷而灵活;怎样的变形才是“合理”的呢1题目变形之后,要使隐蔽的简算特点暴露出来;2只能变“形”,而不能改变数的大小;小学奥数解题方法18——用字母表示数方方、圆圆、丁丁、宁宁四个小朋友共有45本书,但是不知道每人各有几本书;如果变动一下:方方的减少2本,圆圆的增加2本,丁丁的增加一倍,宁宁的减少一半,那么四个小朋友的书就一样多;问:每个小朋友原来各有几本书解:设一样多是x本;X+2+X-2+X ÷ 2+2X=45X=10小学奥数解题方法19——借来还去我国民间流传着这样一个故事,一位老人临终时决定把家里的17头牛全部分给三个儿子;其中大儿子分得二分之一,二儿子分得三分之一,小儿子分得九分之一,但不能把牛杀掉或卖掉;三个儿子按照老人的要求怎么也不好分;后来一位邻居用“借来还去”法顺利地把17头牛分完了;某汽水厂规定:用3个空汽水瓶可换一瓶汽水,某人买了10瓶汽水,问他总共可喝到几瓶汽水如果3个空瓶可换1瓶汽水,那么有2个空瓶就可喝到1瓶汽水;这是因为:有了2个空瓶,再到别人那里“借来”1个空瓶,就可换来1瓶汽水,喝完把空瓶给别人“还去”,这时不欠不余;10瓶汽水喝完后得10个空瓶, 10个空瓶又可换来5瓶汽水,总共可喝到“ 10+5=15”瓶汽水;。
第十一讲稍复杂的相遇和追及问题知识要点行程问题是小升初考试和小学四大杯赛四大题型(计算、数论、几何、行程)之一,在历年各类小学奥数竞赛试题中都占有很大的比重,具体题型变化多样,形成十多种题型,都有各自相对独特的解题方法。
同时也是小学奥数专题中的难点,较复杂的行程问题经常作为试卷中的压轴难题出现。
行程问题是“行路时所产生的路程、时间、速度的一类应用题”,所有行程问题都是围绕“路程=速度×时间”这一基本关系式展开的。
本讲主要涉及两大典型行程题——相遇问题和追及问题,在学习时需多注意从“简单”到“复杂”的推导过程,重在理解,在理解的基础上形成对各类行程问题中所涉及到的关系式的记忆和正确应用。
教学课时:两课时教学目标:1.使学生掌握通过画线段图分析二次相遇问题的整体数量关系2.使学生学会读题,能够透过现象看到条件的本质,找到个体的对应三个量之间的关系。
3、培养学生主动挖掘条件本质的能力,提高解决实际问题的信心。
教学重难点:通过审题,能够从整体找出所有运动人三量之间的关系,同时从局部找到每一个运动人自己三两之间的关系。
教具准备:动画展示。
本周通知:教学过程:1、故事导入师:相信“龟兔赛跑”的故事同学们都听过吧!最终谁是获胜者?生:乌龟~~~(这里老师也可以请一位同学来将这个故事,作为引入)师:据了解兔子每分钟大约能跑400米,乌龟每分钟大约只能跑5米。
被公认为赛跑高手的兔子怎么会输给乌龟的呢?生:因为兔子在比赛过程中睡着了~O(∩_∩)O哈哈~师:没错~~根据老师的调查,途中乌龟和兔子相遇了一次,兔子正呼呼大睡,乌龟见了差点笑出声来,不过它还是忍住了,否则,惊醒了兔子,相信结果就不会是这样的了!最终,乌龟比兔子早2分钟行完了2000米的全程,获得了胜利。
兔子先生特别懊恼,关在家里不停地计算自己到底睡了多长时间,可是始终没有答案。
在座的各位同学,你们能不能帮帮他?生:想要帮助他,但是。
我也不会计算。
奥数已经成为现在孩子学习的加强工具。
一种思维方式的训练,一种让孩子学以致用,举一反三的法宝,一种可以扩宽孩子思维的奥秘兵器。
老师经常对学生们说,养成好的学习品质,拥有好的学习方法比学习知识自己重要得多,它是学好知识的前提。
学习奥数更是如此。
奥数题对学生们的要求是非常严格的,你既要注意到思维有广度有深度,在做题时还要加倍小心。
有些题往往是一字之差,谬之千里。
习惯的养成不是一朝一夕之功。
要养成好的学习习惯,首先,需要学生对这个问题有个正确的认识,有些家长往往错误地认为。
只要是标题问题理解了,出点小错不妨。
这样做的结果,往往助长了学生粗心大意之习气。
而在奥数题中,一点小错,往往是致命的。
学生做题出错了,我们应把它做为一个好的教育学生的契机,引导学生找出错误原因并不停积累,是知识方面的,要牢记。
是习惯方面的,要改正。
相信久而久之,好的习惯必能养成。
第11讲错中求解一、知识要点在加、减、乘、除式的计算中,如果粗心大意将算式中的一些运算数或符号抄错,就会导致计算结果发生错误。
这一周,我们就来讨论怎样利用错误的答案求出正确的结论。
二、精讲精练【例题1】小玲在计算除法时,把除数65写成56,结果得到的商是13.还余52。
正确的商是多少?【思路导航】要求出正确的商,必须先求出被除数是多少。
我们可以先抓住错误的得数,求出被除数:13×56+52=780。
所以,正确的商是:780÷65=12。
练习1:1.小星在计算除法时,把除数87错写成78,结果得到的商是5,余数是45。
正确的商应该是多少?2.甜甜和蜜蜜在用同一个数做被除数。
甜甜用12去除,蜜蜜用15去除,甜甜得到的商是32还余6,蜜蜜计算的结果应该是多少?3.小虎在计算除法时,把被除数1250写成1205,结果得到的商是48,余数是5。
正确的商应该是多少?【答案】1.5 2.26 3.50【例题2】小芳在计算除法时,把除数32错写成320,结果得到商是48。
奥数知识十一——最不利原则最不利原则在日常生活和生产中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则。
下面通过具体例子说明最不利原则以及它的应用。
例1:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?分析与解:如果碰巧一次取出的4个小球的颜色都相同,就回答是“4”,那么显然不对,因为摸出的4个小球的颜色也可能不相同。
回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。
如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。
“最不利”的情况是什么呢?那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。
这样摸出的9个球是“最不利”的情形。
这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。
所以回答应是最少摸出10个球。
由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。
如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。
现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不利的情况分析问题。
例2:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。
其中红球3个、黄球5个、蓝球10个。
现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?分析与解:与例1类似,也要从“最不利”的情况考虑。
最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。
此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。
因此所求的最小值是12。
例3:一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。
小学奥数的十一种解题方法2021年小学奥数的十一种解题方法一1公式法运用定律、公式、规则、法则来解决问题的方法。
它表达的是由一样到专门的演绎思维。
公式法简便、有效,也是小学生学习数学必须学会和把握的一种方法。
但一定要让学生对公式、定律、规则、法则有一个正确而深刻的明白得,并能准确运用。
例3:运算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法分配律=59×50…………运用加法运算法则=(60-1)×50…………运用数的组成规则=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法运算法则=2950…………运用减法运算法则2比较法通过对比数学条件及问题的异同点,研究产生异同点的缘故,从而发觉解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也确实是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的差不多条件。
(4)要抓住要紧内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例4:填空:0.75的最高位是( ),那个数小数部分的最高位是( );十分位的数4与十位上的数4相比,它们的( )相同,( )不同,前者比后者小了( )。
这道题的意图确实是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。
例5:六年级同学种一批树,假如每人种5棵,则剩下75棵树没有种;假如每人种7棵,则缺少15棵树苗。
六年级有多少学生?这是两种方案的比较。
六年级奥数第11讲假设法解题(二)一、知识要点已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。
应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。
虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。
二、精讲精练【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6×3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6×3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。
(6×3-3)÷(5-3)+6=12(米)答:第二根原来有12米。
练习1:1.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。
求中、小学原来各植树多少棵?3.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。
求第二堆煤原来是多少吨?【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。
第11讲周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。
在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。
这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
二、精讲精练【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?练习1:1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?3.1/7=0.142857142857……,小数点后面第100个数字是多少?【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。
最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?练习2:1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3.在100米长的跑道两侧每隔2米站着一个同学。
这些同学以一端开始,按先两个女生,再一个男生的规律站立着。
这些同学中共有多少个女生?【例题3】 2001年10月1日是星期一,那么,2002年1月1日是星期几?练习3:1.2002年1月1日是星期二,2002年的六月一日是星期几?2.如果今天是星期五,再过80天是星期几?3.以今天为标准,算一算今年自己的生日是星期几?【例题4】将奇数如下图排列,各列分别用A、B、C、D、E为代表,问:2001所在的列以哪个字母为代表?A B C D E1 3 5 715 13 11 917 19 21 2331 29 27 25……………………练习4:1.将偶数2、4、6、8、……按下图依次排列,2014出现在哪一列?2.把自然数按下列规律排列,865排在哪一列?3.上表中,将每列上下两个字组成一组,如第一组为(小热),第二组为(学爱)。
仔细观察,可发现该数列的第6项同第1项,第7项同第2项,第8项同第3项,…也就是说该数列各项的出现具有周期性,…也就是说该数列各项的出现具有周期性,他们是循环出现他们是循环出现的,一个循环节包含5项.100100÷÷5=20.可见第100项与第5项、第10项一样(项数都能被5整除),即第100项是51234.例2 2 把写上把写上1到100这100个号码的牌子,像下面那样依次分发给四个人,你知道第73号牌子会落到谁的手里?号牌子会落到谁的手里?解:仔细观察,你会发现:解:仔细观察,你会发现:分给小明的牌子号码是1,5,9,1313,…,号码除以,…,号码除以4余1; 分给小英的牌子号码是2,6,1010,,1414,…,号码除以,…,号码除以4余2; 第十一讲 找规律法观察、观察、搜集已知事实,搜集已知事实,搜集已知事实,从中发现具有规律性的线索,从中发现具有规律性的线索,从中发现具有规律性的线索,用以探索未知事用以探索未知事件的奥秘,是人类智力活动的主要内容件的奥秘,是人类智力活动的主要内容. .数学上有很多材料可用以来模拟这种活动、培养学生这方面的能力数学上有很多材料可用以来模拟这种活动、培养学生这方面的能力. . 例1 1 观察数列的前面几项,找出规律,写出该数列的第观察数列的前面几项,找出规律,写出该数列的第100项来?项来? 1234512345,,2345123451,,3451234512,,4512345123,…,…,…解:为了寻找规律,再多写出几项出来,并给以编号:分给小方的牌子号码是3,7,1111,…,号码除以,…,号码除以4余3; 分给小军的牌子号码是4,8,1212,…,号码除以,…,号码除以4余0(整除)(整除). . 因此,试用4除73看看余几?看看余几?7373÷÷4=184=18…余…余…余 1 1可见73号牌会落到小明的手里号牌会落到小明的手里. .这就是运用了如下的规律:这就是运用了如下的规律:用这种规律预测第几号牌子发给谁,用这种规律预测第几号牌子发给谁,是很容易的,是很容易的,请同学们自己再试一试一试. .例3 3 四个小动物换位,开始小鼠、小猴、小兔和小猫分别坐在四个小动物换位,开始小鼠、小猴、小兔和小猫分别坐在1、2、3、4号位子上(如下图所示)号位子上(如下图所示)..第一次它们上下两排换位,第二次左右换位,第三次又上下交换,第四次左右交换位,第三次又上下交换,第四次左右交换..这样一直交换下去,问十次换位后,小兔坐在第几号座位上?位后,小兔坐在第几号座位上?解:为了能找出变化规律,再接着写出几次换位情况,见下图解:为了能找出变化规律,再接着写出几次换位情况,见下图. .盯住小兔的位置进行观察:盯住小兔的位置进行观察:第一次换位后,它到了第1号位;号位;第二次换位后,它到了第2号位;号位;第三次换位后,它到了第4号位;号位;第四次换位后,它到了第3号位;号位;第五次换位后,它又到了第1号位;号位;…可以发现,可以发现,每经过四次换位后,每经过四次换位后,每经过四次换位后,小兔又回到了原来的位置,小兔又回到了原来的位置,小兔又回到了原来的位置,利用这个利用这个规律以及1010÷÷4=24=2…余…余2,可知:,可知:第十次换位后,小兔的座位同第二次换位后的位置一样,小兔的座位同第二次换位后的位置一样,即在第二号即在第二号位.如果再仔细地把换位图连续起来研究研究,如果再仔细地把换位图连续起来研究研究,可以发现,可以发现,随着一次次地交换,交换,小兔的座位按顺时针旋转,小兔的座位按顺时针旋转,小鼠的座位按逆时针旋转,小鼠的座位按逆时针旋转,小猴的座位按顺时针旋转,小猴的座位按顺时针旋转,小猫的座位按逆时针旋转,小猫的座位按逆时针旋转,按这个规律也可以预测任何小动物在交换几次后的座位按这个规律也可以预测任何小动物在交换几次后的座位. .例4 4 从从1开始,每隔两个数写出一个数,得到一列数,求这列数的第100个数是多少?个数是多少?1,4,7,1010,,1313,…,…,…解:解:不难看出,不难看出,不难看出,这是一个等差数列,这是一个等差数列,这是一个等差数列,它的后一项都比相邻的前一项大它的后一项都比相邻的前一项大3,即公差,即公差=3=3=3,还可以发现:,还可以发现:,还可以发现:第2项等于第1项加1个公差即个公差即4=1+14=1+1××3.第3项等于第1项加2个公差即个公差即7=1+27=1+2××3.第4项等于第1项加3个公差即个公差即10=1+310=1+3××3.第5项等于第1项加4个公差即个公差即13=1+413=1+4××3.…可见第n 项等于第1项加(项加(n-1n-1n-1)个公差,即)个公差,即)个公差,即按这个规律,可求出:按这个规律,可求出: 第100项=1+=1+((100-1100-1)×)×)×3=1+993=1+993=1+99××3=298.例5 5 画图游戏先画第一代,一个△,再画第二代,在△下面画出两画图游戏先画第一代,一个△,再画第二代,在△下面画出两条线段,条线段,在一条线段的末端又画一个△,在一条线段的末端又画一个△,在一条线段的末端又画一个△,在另一条的末端画一个○;在另一条的末端画一个○;在另一条的末端画一个○;画第画第三代,三代,在第二代的△下面又画出两条线段,在第二代的△下面又画出两条线段,在第二代的△下面又画出两条线段,一条末端画△,一条末端画△,一条末端画△,另一条末端画另一条末端画○;○;而在第二代的○的下面画一条线,而在第二代的○的下面画一条线,而在第二代的○的下面画一条线,线的末端再画一个△;线的末端再画一个△;线的末端再画一个△;…一直照此…一直照此画下去(见下图),问第十次的△和○共有多少个?解:解:按着画图规则继续画出几代,按着画图规则继续画出几代,按着画图规则继续画出几代,以便于观察,以便于观察,以便于观察,以期从中找出图形的以期从中找出图形的生成规律,见下图生成规律,见下图. .数一数,各代的图形(包括△和○)的个数列成下表:可以发现各代图形个数组成一个数列,可以发现各代图形个数组成一个数列,这个数列的生成规律是,这个数列的生成规律是,从第三项起每一项都是前面两项之和三项起每一项都是前面两项之和..按此规律接着把数列写下去,可得出第十代的△和○共有89个(见下表):个(见下表):这就是著名的裴波那契数列这就是著名的裴波那契数列..裴波那契是意大利的数学家,他生活在距今大约七百多年以前的时代距今大约七百多年以前的时代. .例6 6 如下图所示,如下图所示,如下图所示,55个大小不等的中心有孔的圆盘,个大小不等的中心有孔的圆盘,按大的在下、按大的在下、按大的在下、小小的在上的次序套在木桩上构成了一座圆盘塔的在上的次序套在木桩上构成了一座圆盘塔..现在要把这座圆盘塔移到另一个木桩上一个木桩上..规定移动时要遵守一个条件,每搬一次只许拿一个圆盘而且任何时候大圆盘都不能压住小圆盘任何时候大圆盘都不能压住小圆盘..假如还有第三个木桩可作临时存放圆盘之用盘之用..问把这5个圆盘全部移到另一个木桩上至少需要搬动多少次?(下图所示)(下图所示)解:先从最简单情形试起解:先从最简单情形试起. .① 仅有一个圆盘时,显然只需搬动一次(见下页图)仅有一个圆盘时,显然只需搬动一次(见下页图). .②当有两个圆盘时,只需搬动3次(见下图)次(见下图). .③当有三个圆盘时,需要搬动7次(见下页图)次(见下页图). .对于有更多圆盘的情况可由这个公式算出来对于有更多圆盘的情况可由这个公式算出来. .进一步进行考察,并联想到另一个数列:若把n 个圆盘搬动的次数写成an an,把两个表对照后,,把两个表对照后,,把两个表对照后, 总结,总结,找规律找规律:①当仅有一个圆盘时,只需搬1次.②当有两个圆盘,上面的小圆盘先要搬到临时桩上,上面的小圆盘先要搬到临时桩上,等大圆盘搬到中等大圆盘搬到中间桩后,小圆盘还得再搬回来到大圆盘上间桩后,小圆盘还得再搬回来到大圆盘上..所以小的要搬两次,下面的大盘要搬1次.这样搬到两个圆盘需3次.③当有三个圆盘时,必须先要把上面的两个小的圆盘搬到临时桩上,见上图中的(见上图中的(11)~()~(33).由前面可知,这需要搬动3次.然后把最下层的最大圆盘搬一次到中间桩上,见图(最大圆盘搬一次到中间桩上,见图(44),之后再把上面的两个搬到中间桩上,这又需搬3次,见图中(次,见图中(55)~()~(77).所以共搬动2×3+1=7次.④推论,当有4个圆盘时,就需要先把上面的3个圆盘搬到临时桩上,需要7次,然后把下面的大圆盘搬到中间桩上(1次),之后再把临时桩上的3个圆盘搬到中间桩上,这又需要7次,所以共需搬动2×7+1=15次.⑤可见当有5个圆盘时,要把它按规定搬到中间桩上去共需要:2×15+1=31次.这样也可以写出一个一般的公式(叫递推公式)可得出可得出有了这个公式后直接把圆盘数代入计算就行了,不必再像前一个公式那样进行递推了那样进行递推了. .习题十一1.1.先计算下面的前几个算式,找出规律,再继续往下写出一些算式:先计算下面的前几个算式,找出规律,再继续往下写出一些算式: ①1×9+2= 9+2= ②②9×9+7=1212××9+3= 989+3= 98××9+6=123123××9+4= 9879+4= 987××9+5=12341234××9+59+5== 9876 9876××9+4=… …2.2.先计算下面的奇妙算式,找出规律,再继续写出一些算式:先计算下面的奇妙算式,找出规律,再继续写出一些算式:19+919+9××9=118+98118+98××9=1117+9871117+987××9=11116+987611116+9876××9=111115+98765111115+98765××9=…3.3.先计算下面的前几个算式,找出规律,再继续写出一些算式:先计算下面的前几个算式,找出规律,再继续写出一些算式:1×1=1111××11=111111××111=11111111××1111=1111111111××11111=…4.4.有一列数是有一列数是2、9、8、2、…,从第三个数起,每一个数都是它前面的两个数相乘积的个位数字(比如第三个数8就是2×9=18的个位数字).问这一列数的第100个数是几?个数是几?5.5.如果全体自然数按下表进行排列,那么数如果全体自然数按下表进行排列,那么数1000应在哪个字母下面?面?6.6.如果自然数如下图所示排成四列,问如果自然数如下图所示排成四列,问101在哪个字母下面?在哪个字母下面?7.37.3××3的末位数字是9,3×3×3的末位数是7,3×3×3×3的末位数字是1.1.求求35个3相乘的结果的末位数字是几?相乘的结果的末位数字是几?习题十一解答1.1.①①1×9+2=111212××9+3=111123123××9+4=111112341234××9+5=111111234512345××9+6=111111 123456123456××9+7=1111111 12345671234567××9+8=11111111 1234567812345678××9+9=111111111. ②9×9+7=889898××9+6=888987987××9+5=8888 98769876××9+4=88888 9876598765××9+3=888888 987654987654××9+2=8888888 98765439876543××9+1=88888888.2.19+92.19+9××9=100 118+98118+98××9=1000 1117+9871117+987××9=10000 11116+987611116+9876××9=100000 111115+98765111115+98765××9=1000000 1111114+9876541111114+987654××9=10000000 11111113+987654311111113+9876543××9=100000000 111111112+98765432111111112+98765432××9=1000000000 1111111111+9876543211111111111+987654321××9= 10000000000.3.1×1=11111××11=121111111××111=1232111111111××1111=12343211111111111××11111=123454321111111111111××111111=1234565432111111111111111××1111111=12345676543211111111111111111××11111111=123456787654321111111111111111111××111111111=123456789876543214.4.解:解:按数列的生成规律再多写出一些数来,再仔细观察,找出规律: 2、9、8、2、6、2、2、4、8、2、6、2、2、4、8、2、6、2、2、4、…、… 可见,除最前面的两个数2和9以外,以外,88、2、6、2、2、4这六个数依次重复出现因此,可利用这个规律,按下面的方法找出第100个数出来:来:100-2=98100-2=98,,9898÷÷6=166=16……2.即第100个数与这六个数的第2个数相同,即第100个数是2.5.5.解:不难发现,每个字母下面的数除以解:不难发现,每个字母下面的数除以7的余数都是相同的的余数都是相同的..如第1列的三个数1、8和1515,除以,除以7时的余数都是1;第2列的三个数2、9和1616,除以,除以7时的余数都是2;第3列的三个数3、10和1717,除以,除以7的余数都是3;….利用这个规律,可求出第1000个自然数在哪个字母下面:10001000÷÷7=142142 (6)所以1000在字母F 的下面的下面. .6.6.解:可以这样找出排列的规律性:全体自然数依次循环排列在解:可以这样找出排列的规律性:全体自然数依次循环排列在A 、B 、C 、D 、D 、C 、B 、A 八个字母的下面,即八个字母的下面,即。
奥数解题方法11——转化
数学题常用的也是十分重要的一种方法——转化。
这种转化通常是指转化条件或问题,特别是转化题中的数量关系。
一个两位小数,去掉小数点后比原来的数大53.46。
这个两位小数是多少?
一个数的99倍是53.46,求这个数。
两个数相除的商是21,余数是3。
如果把被除数、除数、商和余数相加,它们的和是225。
被除数、除数各是多少?
题目中前一句话换个说法就是:被除数比除数的21倍还多3。
再换个说法就是:被除数与除数的和比除数的“21+1”倍还多3。
题目中第二句话换个说法是:被除数与除数的和是225-(21+3)=201。
整个题目的意思换个说法就是:201比除数的22倍多3。
从而可以先求出除数是:(201-3)÷22=9
可求出被除数是:21×9+3=192。