语音信号处理的算法实现
- 格式:doc
- 大小:894.50 KB
- 文档页数:31
语音信号处理实验报告实验二一、实验目的本次语音信号处理实验的目的是深入了解语音信号的特性,掌握语音信号处理的基本方法和技术,并通过实际操作和数据分析来验证和巩固所学的理论知识。
具体而言,本次实验旨在:1、熟悉语音信号的采集和预处理过程,包括录音设备的使用、音频格式的转换以及噪声去除等操作。
2、掌握语音信号的时域和频域分析方法,能够使用相关工具和算法计算语音信号的短时能量、短时过零率、频谱等特征参数。
3、研究语音信号的编码和解码技术,了解不同编码算法对语音质量和数据压缩率的影响。
4、通过实验,培养我们的动手能力、问题解决能力和团队协作精神,提高我们对语音信号处理领域的兴趣和探索欲望。
二、实验原理(一)语音信号的采集和预处理语音信号的采集通常使用麦克风等设备将声音转换为电信号,然后通过模数转换器(ADC)将模拟信号转换为数字信号。
在采集过程中,可能会引入噪声和干扰,因此需要进行预处理,如滤波、降噪等操作,以提高信号的质量。
(二)语音信号的时域分析时域分析是对语音信号在时间轴上的特征进行分析。
常用的时域参数包括短时能量、短时过零率等。
短时能量反映了语音信号在短时间内的能量分布情况,短时过零率则表示信号在单位时间内穿过零电平的次数,可用于区分清音和浊音。
(三)语音信号的频域分析频域分析是将语音信号从时域转换到频域进行分析。
通过快速傅里叶变换(FFT)可以得到语音信号的频谱,从而了解信号的频率成分和分布情况。
(四)语音信号的编码和解码语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以减少存储空间和传输带宽的需求。
常见的编码算法有脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)等。
三、实验设备和软件1、计算机一台2、音频采集设备(如麦克风)3、音频处理软件(如 Audacity、Matlab 等)四、实验步骤(一)语音信号的采集使用麦克风和音频采集软件录制一段语音,保存为常见的音频格式(如 WAV)。
语音信号处理中的MFCC算法在语音信号处理的领域中,MFCC算法(Mel-Frequency Cepstral Coefficients)是一种很常用的特征提取算法。
MFCC算法可以将语音信号转化为一组频率和幅度特征,这些特征可以被用于识别语音信号中的不同音素或者说词汇。
MFCC算法的原理MFCC算法的原理是将语音信号分割成若干个短时间片段,对于每个时间片段,先对它进行预加重处理,然后进行傅里叶变换,得到该时间片段的频率谱。
接着,MFCC算法会将该频率谱通过滤波器组进行滤波,这些滤波器组的设计是基于人耳的听觉感知特性而来的。
因为人耳并不是对所有频率都有同样的灵敏度,而是对中间频率范围内的声音比较敏感。
滤波后,MFCC算法会将每个滤波器组的输出进行离散余弦变换(Discrete Cosine Transform,DCT),得到该时间片段的倒谱系数(Cepstral Coefficients)。
倒谱系数的意义是对一个信号在频率域上的谱信息进行合成,并且忽略相位信息。
这些倒谱系数通常被用来表示语音信号的声学特性。
最后,根据选择的MFCC参数,将这些倒谱系数通过一些加权、归一化等处理,得到最终的MFCC特征向量。
MFCC算法的应用MFCC算法是一种通用的特征提取算法,它可以应用于许多语音信号处理中的任务,例如语音识别、音色识别、说话人识别以及语音合成等。
在语音识别中,MFCC算法的应用是将语音信号转化为一种可以被识别器(Recognizer)理解的表示形式。
这种表示形式可以更好地反映语音信号的本质特征,可以更准确地识别不同的语音词汇。
在音色识别中,MFCC算法可以用于判断不同的语音信号来源,例如男性和女性的声音、年轻人和老年人的声音等。
这些信息可以对于语音信号的高级应用如说话人识别有很大的帮助。
在说话人识别中,MFCC算法通常与高级机器学习算法结合使用。
经过MFCC处理后,每个语音信号都被转化为一个含有多个MFCC特征向量的矩阵。
跳汰机原理
跳汰机是一种用于语音信号处理的算法,主要用于去除噪声、增强
语音信号的清晰度。
它的原理是基于人耳对声音的感知特性,通过对语音信号的频谱进
行分析和调整,将较低频率的噪声成分滤除,并增强较高频率的语
音信号。
具体来说,跳汰机主要包括以下几个步骤:
1. 声音分帧:将连续的语音信号划分为短时间段的帧,通常每帧持
续20-30毫秒。
这样做是为了适应语音信号在时间上的变化。
2. 快速傅里叶变换(FFT):对每一帧的声音信号进行FFT变换,
将它从时域转换为频域,得到语音信号的频谱图。
3. 能量计算:对每一帧的频谱图计算能量,即各频率分量的平方根。
4. 阈值计算:通过统计多个帧的能量值,计算出合适的能量阈值。
阈值可以根据噪声水平和所需的语音清晰度进行调整。
5. 能量比较:将每一帧的能量与阈值进行比较。
如果能量高于阈值,则将该帧视为语音帧,否则视为噪声帧。
6. 语音增强:将语音帧进行增强处理,通常使用滤波算法或增益增强算法,以增强语音信号的清晰度。
7. 语音合成:将增强后的语音帧合并,得到去噪后的语音信号。
总体来说,跳汰机通过对语音信号的频域分析和增强处理,实现对噪声的滤除和语音信号的提取。
这种方法可以在一定程度上改善语音信号的质量,提高语音识别、语音合成等应用的性能。
声学信号处理的算法与应用声学信号处理(Acoustic Signal Processing)是利用数字信号处理的技术来处理声音信号的一门学科。
随着科技的发展和应用领域的扩大,声学信号处理在语音识别、音频编解码、环境音频分析等方面发挥着重要作用。
本文将介绍声学信号处理的算法和应用。
一、声学信号处理算法1. 声音波形分析声音波形是声学信号处理重要的起点,分析声音波形可以了解声音的基本特征。
常见的声音波形分析算法有傅里叶变换(Fourier Transform)和离散小波变换(Discrete Wavelet Transform)。
傅里叶变换将波形信号转换为频域信号,可以得到声音的频谱信息;离散小波变换则可以同时获得时域和频域的声音特征。
2. 语音信号处理语音信号处理是声学信号处理的一个重要分支,在语音识别、语音合成和语音压缩等方面得到广泛应用。
其中,语音信号的特征提取是首要任务。
常用的特征提取算法包括Mel频率倒谱系数(Mel-Frequency Cepstral Coefficients)和线性预测编码(Linear Predictive Coding),它们可以提取语音信号的频域和时域特征,用于后续的分类和识别。
3. 声音增强在噪声环境中进行声音信号处理时,常常需要对声音进行增强,以提高信号的质量和可懂度。
常见的声音增强算法包括频域滤波、时域滤波和自适应滤波。
频域滤波通过滤除噪声频率成分,保留声音频率成分来实现增强;时域滤波则是通过时域相关性的分析来实现增强;自适应滤波则根据噪声情况动态调整滤波参数,实现更精确的声音增强效果。
二、声学信号处理应用1. 语音识别语音识别是将声音转化为文字的过程,广泛应用于语音助手、智能家居等领域。
声学信号处理在语音识别中起着至关重要的作用。
通过特征提取和模型训练等步骤,可以实现对不同语音信号的识别和解析。
2. 音频编解码音频编解码是将声音信号进行压缩和解压缩的过程,以节省存储空间和传输带宽。
基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。
本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。
二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。
在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。
通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。
三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。
通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。
2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。
预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。
3. 特征提取在语音信号处理中,特征提取是一个关键步骤。
通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。
4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。
通过模型训练,可以实现对不同语音信号的自动识别和分类。
四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。
这些模块相互配合,构成一个完整的系统架构。
2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。
良好的界面设计可以提升系统的易用性和用户体验。
五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。
华南理工大学《语音信号处理》实验报告实验名称:DTW算法实现及语音模板匹配姓名:学号:班级:10级电信5班日期:2013年6 月17日一、实验目的运用课堂上所学知识以及matlab工具,利用DTW(Dynamic Time Warping,动态时间规整)算法,进行说话者的语音识别。
二、实验原理1、语音识别系统概述一个完整特定人语音识别系统的方案框图如图1所示。
输入的模拟语音信号首先要进行预处理,包括预滤波、采样和量化、加窗、端点检测、预加重等,然后是参数特征量的提取。
提取的特征参数满足如下要求:(1)特征参数能有效地代表语音特征,具有很好的区分性;(2)参数间有良好的独立性;(3)特征参数要计算方便,要考虑到语音识别的实时实现。
图1 语音识别系统方案框图语音识别的过程可以被看作模式匹配的过程,模式匹配是指根据一定的准则,使未知模式与模型库中的某一个模型获得最佳匹配的过程。
模式匹配中需要用到的参考模板通过模板训练获得。
在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。
在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。
2、语音信号的处理1、语音识别的DTW算法本设计中,采用DTW算法,该算法基于动态规划(DP)的思想解决了发音长短不一的模板匹配问题,在训练和建立模板以及识别阶段,都先采用端点检测算法确定语音的起点和终点。
在本设计当中,我们建立的参考模板,m为训练语音帧的时序标号,M为该模板所包含的语音帧总数,R(m)为第m帧的语音特征矢量。
所要识别的输入词条语音称为测试模板,n为测试语音帧的时序标号,N为该模板所包含的语音帧总数,T(n)为第n帧的语音特征矢量。
参考模板和测试模板一般都采用相同类型的特征矢量(如LPCC系数)、相同的帧长、相同的窗函数和相同的帧移。
考虑到语音中各段在不同的情况下持续时间会产生或长或短的变化,因而更多地是采用动态规划DP的方法。
语音信号处理算法研究语音信号处理算法是一种应用广泛的技术,在语音识别、语音合成、语音增强等领域都得到了广泛的应用。
本文将介绍语音信号处理算法的基础知识、常见算法以及未来的研究方向,以帮助读者全面了解语音信号处理算法的概念、原理和应用。
一、语音信号处理算法基础语音信号处理算法是指对语音信号进行处理和分析的方法和技术,在语音信号处理中,最基本的是语音采样和数字化两个过程。
语音信号的采样是指将连续的语音信号转换为离散的采样值,一般情况下,语音信号的采样频率为8kHz、16kHz、44.1kHz或者48kHz等。
采样频率越高,表示每秒钟采样的次数越多,语音信号的质量就越高。
数字化是将模拟语音信号转换为数字信号的过程,数字化时需要对语音信号进行量化和编码。
量化是指将采样值量化为一个离散的数字,即将连续的信号离散化,常用的量化器是均匀量化器和非均匀量化器。
编码是将量化的数字信号用二进制编码,常用的编码方式有脉冲编码调制(PCM)、三角波编码(Delta Modulation)、自适应差分脉冲编码调制(ADPCM)等。
二、常见语音信号处理算法(一)语音信号去噪算法语音信号去噪算法常用于语音通信和语音识别领域中,主要是对语音信号中的噪声进行去除。
常用的语音信号去噪算法有基于频域分析的傅里叶变换法、小波变换法、基于时域分析的自适应滤波法等。
(二)语音合成算法语音合成算法主要是通过计算机对文本进行语音合成,生成自然流利的语音信号。
常见的语音合成算法有基于参数的联合模型算法(HMM)、基于拼接的语音合成算法、基于规则的语音合成算法等。
(三)语音识别算法语音识别算法是将语音信号转换为对应文本的过程。
常见的语音识别算法有隐马尔可夫模型(HMM)、动态时间规整算法(DTW)等。
三、未来研究方向随着人工智能技术的不断发展,语音信号处理算法的应用范围将越来越广泛,研究方向主要有以下几个方面:(一)深度学习算法在语音信号处理方面的应用深度学习算法在图像识别和自然语言处理领域中已经获得了巨大的成功,如何将深度学习算法应用于语音信号处理,进一步提高语音信号处理的准确性和速度,是深度学习算法在未来的研究方向之一。
codec 2算法原理
"Codec 2算法原理"
Codec 2是一种开源语音编解码器,旨在提供高质量的语音通信,同时保持较低的比特率。
该算法在无线通信、语音传输和数字语音广播等领域具有广泛的应用。
Codec 2算法的原理是通过对语音信号进行压缩和解压缩,以实现在有限的带宽和资源下传输高质量的语音。
该算法的原理基于声学特性和语音信号处理理论。
首先,语音信号被采样并转换为数字信号,然后通过一系列信号处理技术,如预测编码、量化和熵编码,对信号进行压缩。
在解码端,压缩的信号经过解码器进行解压缩和重构,最终恢复为原始的语音信号。
Codec 2算法的关键特点是在保持较低比特率的同时,尽可能地保留语音信号的质量和清晰度。
通过有效地利用信号处理技术和声学特性,该算法能够实现在不同网络和通信环境下的高效语音通信。
除了在传统的语音通信领域应用外,Codec 2算法还被广泛应
用于数字语音广播、远程通信和无线通信系统中。
其高效的压缩性
能和良好的语音质量使其成为许多应用场景中的首选算法。
总的来说,Codec 2算法基于声学特性和信号处理理论,通过
一系列的压缩和解压缩技术实现高质量的语音通信。
其在无线通信、语音传输和数字语音广播等领域的广泛应用,为人们提供了高效、
清晰的语音通信体验。
语音信号处理中的语音增强与噪声消除算法随着通信技术与智能设备的不断发展,语音信号处理在人机交互、智能语音助手以及语音识别等领域扮演着重要的角色。
然而,由于环境噪声的存在以及语音信号本身的特点,语音信号处理中的语音增强与噪声消除算法显得尤为重要。
本文将介绍语音增强和噪声消除算法的定义、应用场景、常见方法以及存在的问题和挑战。
语音增强是指通过处理技术提升语音信号的可听性和可理解性。
在噪声环境中,语音信号可能淹没在环境噪声中,导致对话的失真以及语音识别的误差。
语音增强可以从多个方面进行处理,比如减少噪声、增加信号的信噪比、提高语音的清晰度等。
语音增强技术被广泛应用于语音通信、语音识别、语音合成以及听力辅助等领域。
在语音通信中,比如手机通话,由于环境噪声的存在影响了语音的清晰度,语音增强技术能够帮助用户更好地进行通信。
在语音识别中,语音增强技术能够提高语音识别的准确性和鲁棒性。
在听力辅助中,语音增强技术可以帮助听力受损者更好地理解语音内容。
在语音增强算法中,常见的处理方法有频域滤波、时域滤波、自适应滤波等。
其中,频域滤波是通过将语音信号转换到频域进行处理,常用的算法有快速傅里叶变换(FFT)和谱减法等。
时域滤波是直接在时域对语音信号进行处理,常用的算法有线性预测编码(LPC)和短时幅度谱(STFT)等。
自适应滤波是通过估计噪声的统计特性进行自适应调整,常用的算法有最小均方误差(MMSE)和谱减法等。
然而,在语音增强算法中仍存在一些问题和挑战。
首先,语音增强会引入额外的失真和噪声,在提升语音清晰度的同时可能引发不良效果。
其次,在复杂的噪声环境中,很难准确估计语音信号和噪声信号之间的关系,导致增强效果不佳。
此外,语音增强算法在实时性、鲁棒性和计算复杂度等方面也存在挑战。
与语音增强算法相对应,噪声消除算法着重于降低环境噪声对语音信号的影响,使得语音信号更加清晰可听。
噪声消除广泛应用于语音通信、音频处理、语音识别以及语音合成等领域。
语音信号盲分离—ICA算法ICA算法的基本原理是假设混合语音信号是由若干相互独立的语音信号混合而成的,通过迭代求解的方法,将混合信号分离为独立的语音信号。
具体的算法步骤如下:1.提取混合语音信号的特征。
通常可以使用时频分析方法,比如短时傅里叶变换(STFT),将时域信号转换为频域信号。
2.进行ICA分解。
将混合语音信号表示为一个矩阵形式:X=AS,其中X是混合信号矩阵,A是混合矩阵,S是独立源信号矩阵。
ICA算法的目标是找到矩阵A的逆矩阵A^-1,使得S=A^-1X。
3.估计独立源信号。
ICA算法通过最大化源信号的非高斯性来估计独立源信号。
在每次迭代中,通过计算源信号的高斯性度量,找到使得源信号更加非高斯的分离矩阵W,将X进行线性变换得到分离信号Y。
4.重构分离语音信号。
对分离信号Y进行反变换,得到分离后的语音信号,恢复语音的时域特征。
ICA算法在语音信号盲分离中具有很好的效果,主要有以下几个优点:1.不需要先验知识。
ICA算法是一种无监督学习方法,不需要对语音信号的统计特性或源信号的分布进行先验假设,所以具有更广泛的应用场景。
2.高分离性能。
相比于其他语音分离算法,ICA算法能够更有效地实现语音信号的盲分离,因为它能够利用语音信号的非高斯性质。
然而,ICA算法也存在一些限制和挑战:1.需要满足特定条件。
ICA算法基于独立源的假设,要求混合信号中的源信号应该是相互独立的,但在实际应用中,由于语音信号之间存在相关性和噪声干扰,这个假设往往不能完全满足。
2.对初始估计值敏感。
ICA算法的结果可能会受到初始估计值的影响,如果初始估计不准确,可能导致分离结果不理想。
3.计算复杂度较高。
ICA算法的计算复杂度较高,尤其是在需要分离大量信号源时,可能需要较长的计算时间。
综上所述,语音信号盲分离是一项重要的研究内容,ICA算法作为其中的一种经典方法,在语音信号处理领域得到了广泛的应用。
将来,随着研究的深入,ICA算法有望在更多领域发挥其优势,提高语音信号处理的效果和质量。
1 绪论1.1 课题的背景与意义通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。
语言是人类持有的功能.声音是人类常用的工具,是相互传递信息的最主要的手段。
因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。
并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。
现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。
让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。
随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。
作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。
它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。
可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。
我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。
语音信号采集与分析之所以能够那样长期地、深深地吸引广大科学工作者去不断地对其进行研究和探讨,除了它的实用性之外,另一个重要原因是,它始终与当时信息科学中最活跃的前沿学科保持密切的联系.并且一起发展。
语音信号采集与分析是以语音语言学和数字信号处理为基础而形成的一门涉及面很广的综合性学科,与心理、生理学、计算机科学、通信与信息科学以及模式识别和人工智能等学科都有着非常密切的关系。
对语音信号采集与分析的研究一直是数字信号处理技术发展的重要推动力量。
因为许多处理的新方法的提出,首先是在语音信号处理中获得成功,然后再推广到其他领域。
1.2 国内外研究现状语音信号的采集与分析作为一个重要的研究领域,已经有很长的研究历史[1]。
但是它的快速发展可以说是从1940年前后Dudley的声码器(vocoder)和potter等人的可见语音Visible Speech)开始的。
1952年贝尔(Bell)实验室的Davis等人首次研制成功能识别十个英语数字的实验装置。
1956年Olson和Belar等人采用8个带通滤波器组提取频谱参数作为语音的特征,研制成功一台简单的语音打字机。
20世纪60年代初由于Faut和Steven的努力,奠定了语音生成理论的基础,在此基础上语音合成的研究得到了扎实的进展。
20世纪60年代中期形成的一系列数字信号处理方法和技术,如数字滤波器、快速博里叶变换(FFT)等成为语音信号数字处理的理论和技术基础。
在方法上,随着电子计算机的发展,以往的以硬件为中心的研究逐渐转化为以软件为主的处理研究。
然而,在语音识别领域内,初期有几种语音打字机的研究也很活跃,但后来已全部停了下来,这说明了当时人们对话音识别难度的认识得到了加深。
所以1969年美国贝尔研究所的Pierce感叹地说“语音识别向何处去?”。
到了1970年,好似反驳Pierce的批评,单词识别装置开始了实用化阶段,其后实用化的进程进一步高涨,实用机的生产销售也上了轨道。
此外社会上所宣传的声纹(V oice Print)识别,即说话人识别的研究也扎扎实实地开展起来,并很快达到了实用化的阶段。
到了1971年,以美国ARPA(American Research Projects Agency)为主导的“语音理解系统”的研究计划也开始起步。
这个研究计划不仅在美国园内,而且对世界各国都产生了很大的影响,它促进了连续语音识别研究的兴起。
历时五年的庞大的ARPA研究计划,虽然在语音理解、语言统计模型等方面的研究积累了一些经验,取得了许多成果,但没能达到巨大投资应得的成果,在1976年停了下来,进入了深刻的反省阶段。
但是,在整个20世纪70年代还是有几项研究成果对语音信号处理技术的进步和发展产生了重大的影响。
这就是20世纪70年代初由板仓(Itakura)提出的动态时间规整(DTW)技术,使语音识别研究在匹配算法方面开辟了新思路;20世纪70年代中期线性预测技术(LPC)被用于语音信号处理,此后隐马尔可夫模型法(HNMM)也获得初步成功,该技术后来在语音信号处理的多个方面获得巨大成功;20世纪70年代未,Linda、Buzo、Gray和Markel等人首次解决了矢量量化(VQ)码书生成的方法,并首先将矢量量化技术用于语音编码获得成功。
从此矢量量化技术不仅在语音识别、语音编码和说话人识别等方面发挥了重要作用,而且很快推广到其他许多领域。
因此,20世纪80年代开始出现的语音信号处理技术产品化的热溯,与上述语音信号处理新技术的推动作用是分不开的。
20世纪80年代,由于矢量量化、隐马尔可夫模型和人工神经网络(ANN)等相继被应用于语音信号处理,并经过不断改进与完善,使得语音信号处理技术产生了突破性的进展。
其中,隐马尔可夫模型作为语音信号的一种统计模型,在语音信号处理的各个领域中获得了广泛的应用。
其理论基础是1970年前后,由Baum等人建立起来的,随后,由美国卡内基梅隆大学(CMU)的Baker和美国IBM公司的Jelinek等人将其应用到语音识别中。
由于美国贝尔实验室的Babiner等人在20世纪80年代中期,对隐马尔可夫模型深人浅出的介绍,才使世界各国从事语音信号处理的研究人员了解和熟悉,进而成为一个公认的研究热点,也是目前语音识别等的主流研究途径。
进入20世纪90年代以来,语音信号采集与分析在实用化方面取得了许多实质性的研究进展。
其中,语音识别逐渐由实验室走向实用化。
一方面,对声学语音学统计模型的研究逐渐深入,鲁棒的语音识别、基于语音段的建模方法及隐马尔可夫模型与人工种经网络的结合成为研究的热点。
另一方面,为了语音识别实用化的需要,讲者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题倍受关注。
1.3 本文主要工作本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。
第2章主要介绍语音信号的特点与采集,仿真主要是验证奈奎斯特定理。
第3章主要是对语音信号进行时域、频域上的分析,如短时功率谱,短时能量,短时平均过零率,语谱图分析等等。
第4章是对语音信号的线性预测分析1.4本文的仿真软件MatlabMATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simul ink两大部分[4]。
MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB 爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。
2 语音信号的特点与采集2.1 语音信号的特点通过对大量语音信号的观察和分析发现,语音信号主要有下面两个特点:错误!未找到引用源。
在频域内,语音信号的频谱分量主要集中在300~3400Hz 的范围内。
利用这个特点,可以用一个防混迭的带通滤波器将此范围内的语音信号频率分量取出,然后按8kHz 的采样率对语音信号进行采样,就可以得到离散的语音信号。
错误!未找到引用源。
在时域内,语音信号具有“短时性”的特点,即在总体上,语音信号的特征是随着时间而变化的,但在一段较短的时间间隔内,语音信号保持平稳。
在浊音段表现出周期信号的特征,在清音段表现出随机噪声的特征。
下面是一段语音信号的时域波形图(图2-1)和频域图(图2-2),由这两个图可以看出语音信号的两个特点。
00.51 1.522.533.544.55-0.8-0.6-0.4-0.20.20.40.6Time(s)00.51 1.52 2.5x 1040.050.10.150.20.250.30.350.40.45Frequency(Hz)图2.1语音信号时域波形图 图2.2语音信号频域波形图2.2语音信号的采集在将语音信号进行数字化前,必须先进行防混叠预滤波,预滤波的目的有两个:错误!未找到引用源。
抑制输入信导各领域分量中频率超出fs/2的所有分量(fs 为采样频率),以防止混叠干扰。
错误!未找到引用源。
抑制50Hz 的电源工频干扰。
这样,预滤波器必须是一个带通滤波器,设其上、下截止颜率分别是fH 和fL ,则对于绝大多数语音编译码器,fH=3400Hz 、fL =60~100Hz 、采样率为fs =8kHz ;而对丁语音识别而言,当用于电话用户时,指标与语音编译码器相同。
当使用要求较高或很高的场合时fH =4500Hz 或8000Hz 、fL =60Hz 、fs =10kHz 或20kHz 。
为了将原始模拟语音信号变为数字信号,必须经过采样和量化两个步骤,从而得到时间和幅度上均为离散的数字语音信号。
采样也称抽样,是信号在时间上的离散化,即按照一定时间间隔△t 在模拟信号x(t)上逐点采取其瞬时值。
采样时必须要注意满足奈奎斯特定理,即采样频率fs 必须以高于受测信号的最高频率两倍以上的速度进行取样,才能正确地重建波它是通过采样脉冲和模拟信号相乘来实现的。
下图时一段语音信号在采样频率44.1KHz 情况下的频谱图。
123456x 104-0.4-0.200.20.4原始信号00.51 1.52 2.5x 10450100150200图2.3 采样频率44.1KHz 情况下的频谱图由图可知,这段语音信号的频率主要集中在1KHz 左右,当采样频率为44.1KHz 时,由于采样频率比较大,所以采样点数就越密,所得离散信号就越逼近于原信号,频谱也没有发生混叠。