《小学奥数解题方法大全》
- 格式:doc
- 大小:701.50 KB
- 文档页数:165
四年级奥数巧算一、加法巧算。
1. 凑整法。
- 原理:把两个或多个数结合在一起,使它们的和为整十、整百、整千等,这样计算起来更加简便。
- 例如:计算23 + 49 + 77。
- 我们可以先把23和77凑整,因为23+77 = 100。
- 然后再加上49,即100+49 = 149。
2. 带符号搬家。
- 原理:在没有括号的加法运算中,数和它前面的符号是一个整体,可以改变数的位置,结果不变。
- 例如:计算34+78 - 34。
- 我们可以把-34搬到前面和34先计算,即34 - 34+78。
- 34 - 34 = 0,0+78 = 78。
二、减法巧算。
1. 凑整法。
- 原理:与加法凑整类似,把被减数或减数凑成整十、整百等方便计算的数。
- 例如:计算182 - 98。
- 把98看作100 - 2。
- 则原式变为182-(100 - 2)=182 - 100+2。
- 182 - 100 = 82,82+2 = 84。
2. 减法的性质。
- 原理:a - b - c=a-(b + c),一个数连续减去两个数等于这个数减去这两个数的和。
- 例如:计算256 - 47 - 53。
- 根据减法的性质,原式可变为256-(47 + 53)。
- 47+53 = 100,256 - 100 = 156。
三、乘法巧算。
1. 乘法交换律和结合律。
- 原理。
- 乘法交换律:a×b = b×a,两个数相乘,交换因数的位置,积不变。
- 乘法结合律:(a×b)×c=a×(b×c),三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
- 例如:计算25×3×4。
- 根据乘法交换律,把3和4交换位置,得到25×4×3。
- 25×4 = 100,100×3 = 300。
2. 乘法分配律。
奥数解题方法总结
1、形象化画图法:解奥数题时,如果可以科学合理的、科学合理的、巧妙地依靠点、线、面、图、表将小学奥数难题形象化形象的展示出来,将抽象的数量关系具象化,可让学生们非常容易弄清数量关系,沟通交流“”与“”的联系,把握住问题的本质,快速答题
2、倒推法:从题目上述的最后结果考虑,运用标准一步一步向前反推,直至题目中难题及时解决。
3、枚举法:奥数题中常常出现一些数量关系十分特殊题目,用普通的办法难以列式解释,有时候压根列出不来对应的式子来。
人们用枚举法,依据题目的需求,一一列举压根符合要求的数据信息,随后从这当中筛出符合要求的回答。
4、正难那样反:有一些数学题目假如你从标准正脸考虑考虑到有困难,那么你可以更改思考的方位,从结论或问题的背面考虑来考虑事情,使难题及时解决。
5、恰当转化:在解奥数题时,经常要提醒自己,碰到的新问题能不能转化成旧解决问题,化新为旧,通过表面,把握住难题的实质,把问题转化成自身熟悉的难题去解释。
转化的种类有条件转化、难题转化、关联转化、图形转化等。
整体掌握:有一些奥数题,从细节上考虑到,很复杂,也没有必要,如果可以从整体上掌握,宏观上考虑到,根据研究问题的整体方式、整体结构、一部分与整体的相互关系,“只看见山林,看不到花草树木”,来求取问题的解决。
三年级奥数解题方法大全摘要:一、引言:奥数的意义和重要性二、三年级奥数的基本特点和教学目标三、解题方法:1.加减乘除法的巧用2.数字推理技巧3.几何图形的认识和应用4.逻辑思维与问题解决5.应用题解题策略四、案例分析:典型题目的解题过程展示五、提高奥数学业成绩的建议六、结语:鼓励持续学习和探索正文:一、引言:奥数,即奥林匹克数学,起源于古希腊,旨在培养和选拔数学人才。
在我国,奥数教育逐渐成为一种热门现象,许多家长和孩子们都对它充满热情。
三年级是孩子们学习奥数的起步阶段,如何掌握解题方法至关重要。
二、三年级奥数的基本特点和教学目标:三年级奥数主要以加减乘除为基础,引入了一些简单的几何图形和逻辑思维。
教学目标包括:1.熟练掌握四则运算,提高计算速度和准确性;2.培养学生的观察能力、逻辑思维能力和创新能力;3.培养学生解决实际问题的能力。
三、解题方法:1.加减乘除法的巧用:熟练掌握加减乘除的运算规律,如乘法分配律、乘法结合律等,简化运算过程。
2.数字推理技巧:通过观察数字间的规律,如数列、数图等,进行推理和预测。
3.几何图形的认识和应用:学习基本几何图形的性质和判定,如三角形、四边形等,并运用到解题中。
4.逻辑思维与问题解决:运用逻辑推理方法,如排列组合、最大最小值原理等,解决复杂问题。
5.应用题解题策略:掌握常见应用题的解题思路,如行程问题、工程问题、浓度问题等。
四、案例分析:本部分将通过典型题目的解题过程展示,让学生了解如何运用解题方法解决问题。
如:题目:小明和小红分别拿了3个和2个苹果,他们一共拿了几个苹果?解:利用加法运算,3+2=5,所以一共拿了5个苹果。
五、提高奥数学业成绩的建议:1.培养兴趣,保持学习热情;2.加强基础,熟练掌握基本运算和概念;3.多做练习,积累经验,提高解题速度和准确率;4.参加培训班或请教专业人士,获取更多指导和建议。
六、结语:奥数学习不仅能够提高学生的数学素养,还能培养学生的综合素质。
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
小学奥数解题方法完整版一、引言小学奥数是培养孩子数学思维和解题能力的重要途径。
在面对各种题型和难度的奥数题目时,学生需要了解正确的解题方法。
本文将介绍小学奥数常见的解题方法,帮助学生更好地应对奥数考试。
二、奥数解题方法1. 四则运算四则运算是小学奥数题目中最基本的类型。
在解题时,需要掌握加法、减法、乘法和除法的运算规则。
此外,学生还需了解运算顺序,即先乘除后加减。
2. 分数运算分数运算在小学奥数中也是常见的题型。
在解决分数运算题时,可以使用找最小公倍数、通分、约分等方法来简化计算过程。
同时,还需要熟练掌握分数的加减乘除规则。
3. 算式变换奥数题目中常会涉及算式的变换。
在解题时,可以通过交换律、结合律、分配律等运算法则,将原始算式转化为更简单的形式。
这样能够加快解题速度,提高解题效率。
4. 排列组合排列组合是奥数中的重要概念。
当遇到排列组合问题时,可以运用阶乘、组合数等数学方法来求解。
同时,可以通过画图、列式等方式辅助理解问题,找到更简洁的解题方法。
5. 逻辑推理逻辑推理题目在小学奥数中也经常出现。
解决这类题目时,学生需要运用逻辑思维和分析能力。
可以通过分情况讨论、排除法等方式来找到正确答案。
6. 图形推理图形推理题是小学奥数中较为复杂的题型之一。
解决这类题目需要运用几何知识和图形分析能力。
学生可以通过观察图形的形状、对称性、旋转等特点,找到规律并推理出正确答案。
三、解题技巧除了上述的解题方法外,还有一些解题技巧可以帮助学生更好地解决奥数题目。
1. 多做题目做更多的奥数题目有助于提高解题能力和熟练度。
通过大量练习,学生可以熟悉各类题型的解题方法,掌握常用的技巧和思路。
2. 学会总结每次做完一道题目后,及时总结解题过程中使用的方法和思路。
这样可以帮助学生记住解题思路并且提高解题能力。
3. 理解题意在解题过程中,要仔细阅读题目,理解其中的条件和要求。
只有正确理解题意,才能有针对性地运用相应的解题方法。
1.3小学奥数解题方法1——分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。
可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。
一共有线段4+3+2+1=10(条)。
还可以把图中的线段按它们所包含基本线段的条数来分类。
(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。
有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。
如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形?提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。
设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。
1、11 一种2、11 2、10 二种3、11 3、10 3、9 三种4、11 4、10 4、9 4、8 四种5、11 5、10 5、9 5、8 5、7 五种6、11 6、10 6、9 6、8 6、7 6、6 六种7、11 7、10 7、9 7、8 7、7 五种8、11 8、10 8、9 8、8 四种9、11 9、10 9、9 三种10、11 10、10 二种11、11 一种1+2+3+4+5+6+5+4+3+2+1=36种2.小学奥数解题方法2——化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是整理的《⼩学⽣奥数解题⽅法⼤全》相关资料,希望帮助到您。
⼩学⽣奥数解题⽅法篇⼀ 尝试法: 解应⽤题时,按照⾃⼰认为可能的想法,通过尝试,探索规律,从⽽获得解题⽅法,叫做尝试法。
尝试法也叫“尝试探索法”。
⼀般来说,在尝试时可以提出假设、猜想,⽆论是假设或猜想,都要⽬的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从⽽减少尝试的次数,提⾼解题的效率。
在9只规格相同的⼿镯中混有1只较重的假⼿镯。
在⼀架没有砝码的天平上,最多只能称两次,你能把假⼿镯找出来吗?(适于三年级程度) 解:先把9只⼿镯分成A、B、C三组,每组3只。
①把A、B两组放在天平左右两边的秤盘上,如果平衡,则假的1只在C组⾥;若不平衡,则哪组较重,假的就在哪组⾥。
②再把有假⼿镯的那组中的两只分别放在天平的左右秤盘上。
如果平衡,余下的1只是假的;若不平衡,较重的那只是假的。
⼩学⽣奥数解题⽅法篇⼆ 观察法: 在解答数学题时,第⼀步是观察。
观察是基础,是发现问题、解决问题的⾸要步骤。
⼩学数学教材,特别重视培养观察⼒,把培养观察⼒作为开发与培养学⽣智⼒的第⼀步。
观察法,是通过观察题⽬中数字的变化规律及位置特点,条件与结论之间的关系,题⽬的结构特点及图形的特征,从⽽发现题⽬中的数量关系,把题⽬解答出来的⼀种解题⽅法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
看每⼀⾏的前三个数,想⼀想接下去应该填什么数。
(适于⼆年级程度)6、16、26、____、____、____、____。
9、18、27、____、____、____、____。
80、73、66、____、____、____、____。
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
下面将介绍一些较常见的小学奥数年龄问题的解题方法和思路。
1.年龄的基本运算
小学奥数年龄问题中,常常会给出几个人的年龄之和或者年龄之差,通过计算可以得到其他人的年龄。
例如,小明比小红大3岁,小红比小亮大5岁,那么小明比小亮大几岁?解决这类问题时,可以先列出各个人的年龄关系,然后通过运算找到答案。
2.年龄的倍数关系
有些小学奥数年龄问题中,会给出一些人的年龄是另一个人年龄的几倍或者几分之一、例如,小明的年龄是小红年龄的3倍,那么当小红年龄增加5岁时,小明的年龄是多少?解决这类问题时,可以通过设定等式或者利用倍数关系求解。
3.年龄的奇偶性
在小学奥数年龄问题中,还会涉及到年龄的奇偶性。
例如,小明比小红大4岁,小明的年龄是奇数,那么小红的年龄是奇数还是偶数?解决这类问题时,可以通过奇偶数的性质进行推理,从而得到答案。
4.年龄的倒推
有些小学奥数年龄问题中,会给出一些人在一些年龄时的情况,然后要求倒推出其他人的年龄。
例如,4年前小明的年龄是小红的2倍,今天小明的年龄是10岁,求小红的年龄。
解决这类问题时,可以通过倒推的方法,逐步确定答案。
5.年龄的逻辑推理
在小学奥数年龄问题中,还会出现一些涉及到逻辑推理的情况。
例如,现在有三个人,他们的年龄之和是25岁,且其中有两个人的年龄之和是
16岁,求他们的年龄。
解决这类问题时,可以利用逻辑关系进行推理,
通过列方程求解。
以上是一些常见的小学奥数年龄问题的解题方法和思路,具体的解题
过程还要根据问题的具体情况而定。
在解题过程中,学生应该注意清晰地
列出各个人的年龄关系,然后运用相应的数学知识和逻辑思维方法解答问题。
小学奥数的十一种解题方法2021年小学奥数的十一种解题方法一1公式法运用定律、公式、规则、法则来解决问题的方法。
它表达的是由一样到专门的演绎思维。
公式法简便、有效,也是小学生学习数学必须学会和把握的一种方法。
但一定要让学生对公式、定律、规则、法则有一个正确而深刻的明白得,并能准确运用。
例3:运算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法分配律=59×50…………运用加法运算法则=(60-1)×50…………运用数的组成规则=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法运算法则=2950…………运用减法运算法则2比较法通过对比数学条件及问题的异同点,研究产生异同点的缘故,从而发觉解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也确实是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的差不多条件。
(4)要抓住要紧内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例4:填空:0.75的最高位是( ),那个数小数部分的最高位是( );十分位的数4与十位上的数4相比,它们的( )相同,( )不同,前者比后者小了( )。
这道题的意图确实是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。
例5:六年级同学种一批树,假如每人种5棵,则剩下75棵树没有种;假如每人种7棵,则缺少15棵树苗。
六年级有多少学生?这是两种方案的比较。