中考专项——方程(组)与不等式(组)1一次方程组
- 格式:doc
- 大小:120.00 KB
- 文档页数:5
中考复习三 方程(组)与不等式(组)【一次方程及方程】一、等式与方程的有关概念1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程 的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系 数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 二、二元一次方程(组)及解法1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 5. 解二元一次方程的方法步骤: 二元一次方程组方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种. 6.易错知识辨析:(1)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘 以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏 乘没有分母的项;③解方程时一定要注意“移项”要变号.(2)二元一次方程有无数个解,它的解是一组未知数的值;(3)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值; (4)利用加减法消元时,一定注意要各项系数的符号.1.(2009年,3分)如图9加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm .2.(2010年,2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x 【一元二次方程及其应用】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用 直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项, 右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)x b ac =-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
方程(组)和不等式的实际应用一、一元一次方程的应用1.(2019∙安徽)为实施乡村振兴战略,解决某山区老百姓出行难问题,当地政府决定修建一条高速公路。
其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工。
甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米。
已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?2.(2019∙岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积600多亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的1,求休闲小广场总面积最3多为多少亩?3.(2019∙甘肃)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?二、二元一次方程组的应用1.(2019∙淄博)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A、B两种产品在欧洲市场热销,今年第一季度这两种产品的销售额为2060万元,总利润为1020万元(利润=售价-成本),其每件产品的成本和售价信息如问该公司这两种产品的销售件数分别是多少?2.(2019∙百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时。
(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?3.(2019∙广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同。
热点02 方程(组)与不等式(组)中考数学中《方程(组)与不等式(组)》部分主要考向分为四类:一、一元一次方程与二元一次方程(组)(每年2~4道,8~14分)二、一元二次方程(每年1~2道,3~8分)三、分式方程(每年1~3题,3~12分)四、不等式(组)(每年2~4题,8~18分)方程(组)与不等式(组)在数学中考中的难度中等,题型比较多,选择题、填空题、解答题都可以考察。
其中,一元一次方程与二元一次方程(组)是比较接近的两个考点,出题一般都只有1题,一元一次方程多考察其在实际问题中的应用,多为选择题;二元一次方程组则以计算和应用题为主占分较多。
一元二次方程单独出题时多考察其根的判别式、根与系数的关系以及在实际问题中提炼出一元二次方程;一元二次方程的计算则主要出现在几何大题中,辅助解压轴题。
分式方程的考察内容不多,但基本属于必考考点,可以是一道小题考察其解法,也可以是应用题。
不等式组是这四个考点中占分最多的一个,考察难度也是可大可小,其解法、含参数的不等式组问题、和方程结合的应用题都经常考到。
虽然该热点难度中等,一般不会失分,但是组合出题时,难度也可以变大,复习时需要特别注意。
考向一:一元一次方程与二元一次方程组【题型1 实际问题抽象出一元一次方程】行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.12240150x x+=B.12240150x x=-C.240(12)150x x-=D.240150(12)x x=+2.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为斤.3.(2023•陕西)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【题型2 二元一次方程组的解法相关】满分技巧解二元一次方程组有2种方法——带入消元法和加减消元法不管是带入法还是加减法,目的都在于利用等式的基本性质将二元一次方程组转化为一元一次方程,所以做题中也必须注意一元一次方程解法的易错点。
中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式.2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a 。
b 。
c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1。
一次方程(组)
真题解析
1.[2015·北京] 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”
设每头牛值金x 两,每只羊值金y 两,可列方程组为______________.
2.[2009·北京] 北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?
3.[2010·北京] 2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?
专项练习
1.[2014·密云二模] 若⎩⎪⎨⎪
⎧x =1,y =2是关于x ,y 的二元一次方程ax -3=y 的解,则a 的值为
________.
2.[2014·东城一模] 列方程或方程组解应用题:
某商店需要购进甲、(注:利润=售价-进价)
若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?
3.[2015·丰台一模] 中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.
检测:
一、选择题
1.若代数式x +4的值是2,则x 等于( )
A .2
B .-2
C .6
D .-6
2.若12
a 3x
b y 与-a 2y b x +1是同类项,则( ) A.⎩⎪⎨⎪⎧x =-2,y =3 B.⎩⎪⎨⎪⎧x =2,y =-3 C.⎩⎪⎨⎪⎧x =-2,y =-3 D.⎩
⎪⎨⎪⎧x =2,y =3 3.[2015·海淀二模] 小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱( )
A .45元
B .50元
C .55元
D .60元
4.[2015·北京] 一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:
例如,购买A 类会员卡,一年内游泳20次,消费50+25×20=550(元),若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )
A .购买A 类会员年卡
B .购买B 类会员年卡
C .购买C 类会员年卡
D .不购买会员年卡
二、填空题
5.方程组⎩
⎪⎨⎪⎧x -y =0,2x +y =6的解是________.
6.[2012·西城二模] 以方程组⎩
⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在第________象限. 7.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售价成人票________张.
三、解答题
8.[2012·海淀一模] 已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩
⎪⎨⎪⎧2x +y =3,2x -y =1 的解, 求4a (a -b )+b (4a -b )+5的值.
9.[2014·西城二模] 一列“和谐号”动车组,有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设有座位64个,每节二等车厢设有座位92个.问该列车一等车厢和二等车厢各有多少节?
10.[2015·海淀二模] 列方程或方程组解应用题:
小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.
参考答案
真题演练
1.⎩
⎪⎨⎪⎧5x +2y =10,2x +5y =8 2.解:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(4x -69)万人次. 依题意得x +(4x -69)=1696,
解得x =353,4x -69=1343.
答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.
3.解:解法一:设生产运营用水x 亿立方米,则居民家庭用水(5.8-x )亿立方米. 依题意,得5.8-x =3x +0.6,
解得x =1.3,
5.8-x =5.8-1.3=4.5.
答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.
解法二:设生产运营用水x 亿立方米,居民家庭用水y 亿立方米.
依题意,得⎩⎪⎨⎪
⎧x +y =5.8,y =3x +0.6.
解这个方程组,得⎩
⎪⎨⎪⎧x =1.3,y =4.5. 答:生产运营用水1.3亿平方米,居民家庭用水4.5亿立方米.
北京模拟训练
1.5
2.解:设甲种商品应购进x 件,乙种商品应购进y 件.
根据题意,得⎩
⎪⎨⎪⎧x +y =160,5x +10y =1100. 解得⎩⎪⎨⎪
⎧x =100,y =60.
答:甲种商品购进100件,乙种商品购进60件.
3.解:设新馆的展厅总面积为x 万平方米,原两馆大楼的展览面积为y 万平方米,根据题意列方程组得
⎩
⎪⎨⎪⎧x =y +4.2,x =3y -0.4. 解得⎩
⎪⎨⎪⎧x =6.5,y =2.3. 答:新馆的展厅总面积为6.5万平方米,原两馆大楼的展览面积为2.3万平方米.
自测训练
1.B [解析] 依题意,得x +4=2,移项,得x =-2.
2.D 3.C 4.C
5.⎩⎪⎨⎪⎧x =2,
y =2
6.一
7.50 [解析] 设当日售出成人票x 张,儿童票(100-x )张,
可得50x +30(100-x )=4000,
解得x =50.
8.解:解法一:∵⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧2x +y =3,2x -y =1
的解, ∴⎩⎪⎨⎪⎧2a +b =3,2a -b =1, 解得⎩
⎪⎨⎪⎧a =1,b =1, ∴原式=4×1×(1-1)+1×(4×1-1)+5=8.
解法二:∵⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩
⎪⎨⎪⎧2x +y =3,2x -y =1 的解, ∴⎩
⎪⎨⎪⎧2a +b =3,2a -b =1. 原式=4a (a -b )+b (4a -b )+5=4a 2-4ab +4ab -b 2+5=4a 2-b 2+5=(2a +b )(2a -b )+5. 将2a +b =3,2a -b =1代入上式,
得原式=(2a +b )(2a -b )+5=3×1+5=8.
9.解:设该列车一等车厢有x 节,二等车厢有y 节.
由题意,得⎩
⎪⎨⎪⎧x +y =6,64x +92y =496, 解得⎩⎪⎨⎪
⎧x =2,y =4.
答:该列车一等车厢有2节,二等车厢有4节.
10.解:设小明家到学校的距离为x 米.
由题意,得x 30+40=x 25
. 解得x =6000.
答:小明家到学校的距离为6000米.。