数学知识点-学年八年级数学上学期第三次月考试卷 (新人教版 第26套)-总结
- 格式:doc
- 大小:578.90 KB
- 文档页数:5
人教版八年级数学上册第三次月考试题一、选择(每题3分,共30 分)1、在中,分式的个数是()A. 2 B. 3 C. 4 D. 52、若表示一个整数,则整数可以取的值有( )A.0个 B.2个C.4个D.无数个3、如果把分式中的和都扩大2倍,则分式的值( )A.扩大4倍B.扩大2倍 C.不变D.缩小2倍4、如果有个人完成一项工作需要天,则个人完成这项工作需要的天数( )A、B、C、D、5、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或76、已知则( )A.B.C.D.527、如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm8、如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取最小值时,则∠ECF的度数为A. 30°B. 22.5°C. 15°D. 45°9、等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标10、如图,两个正方形的边长分别为和,如果,,那么阴影部分的面积是()A. B. C. D.二、填空题(每空3 分,共30 分)11、如果二次三项式x2-2(m+1)x+16是一个完全平方式,那么m的值是 .12、一个矩形的面积是,若它的一边长为,则它的周长是.13、若|a-2|+b2-2b+1=0,则a=__________,b=__________.14、当x =__________时,分式的值等于0.15、计算:=_______. 16、若,则的值是17、如图,∠AOE=∠BOE=15°,EF ∥OB ,EC ⊥OB ,若EC=1,则EF= _________ .18、如图,△ABD 与△AEC 都是等边三角形,AB ≠AC .下列结论中,正确的是 _________ .(填序号)①BE=CD ;②∠BOD=60°;③∠BDO=∠CEO .19、已知===x x x n m n m 1453,,,的代数式表示用含 .20、一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时. 三、简答题(共60 分)21 .计算(每题4分)112---x x x22、(5分)已知:21=+x x请分别求出下列式子的值 (1)(2)xx 1-23.分解因式:(每题4分,共16分)(1)(2)(3)a a a n n n 312-+++ (4)122)(2++++y x y x24.(5分) 如图,A 、B 、C 三点在同一条直线上,AB=2BC ,分别以AB ,BC 为边做正方形ABEF 和正方形BCMN 连接FN ,EC .求证:FN=EC .25、(1)先因式分解在求值(6分)(2)先化简,再求值(7分),其中是整数,且26.(9分 )如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=a .将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当a=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当a 为多少度时,△AOD 是等腰三角形?(直接写出结论).23-,4)2222==-+n m n m n m ,其中(参考答案一、选择题二、填空题__________________ 三、计算题四、简答题29、解:(4分)(8分)30、③要使,需...综上所述:当的度数为,或,或时,是等腰三角形.31、32、。
八年级数学上册第三次月考试卷及答案(试卷满分:150分;考试时间:120分钟)一.单选题。
(每小题4分,共40分)1.给出四个实数√6,3.14,0,﹣13,其中无理数是()A .√6B .3.14C .0D .﹣132.下列所给出的点中,在第二象限的是()A .(3,2)B .(3,-2)C .(-3,-2) D.(﹣3,2)3.下列命题是真命题的是()A .两直线平行,同旁内角相等B .相等的角是对顶角C.三角形的外角大于任D.直角三角形的两锐角互余4.如图所示,直线a∥b,∠2=28°,∠1=50°,则∠A =()A .32°B .78°C .22D .20°(第4题图)(第7题表)5.一次函数y =-3x+4过点4(-1,y1)和点B (-3,y2),则y1和y2关系是( )A .y1>y2B .y1<y2C . y1=y2 D.不能确定6.若{x=1y=2是关于x 、y 的二元一次方程ax﹣2y=1的解,则 a 的值为()A .3B .5 C.﹣3 D .﹣57.某校举行"喜迎中国共产党建党100周年"党史知识竞赛,如表是10名决赛选手的成绩。
这10名决赛选手成绩的众数是()A .85B .90C .95D .1008.已知一次函数y= kx + b ,y 随x 的增大而增大,且kb <0,则在直角坐标系中的大致图象是()9.已知平面直角坐标系内的不同点A (3,a﹣1),B(b+1,﹣2).则下列说法中正确的是()A.若点A 在第一、三象限的角平分线上,则a =3B.若点B 在第二、四象限的角平分线上,则b =-4C.若直线AB 平行于x 轴,则a =-1且b ≠2D.若直线AB 平行于y 轴,且AB =3,则b =2, a =2x + b 上,点B1,B2, B3…都在x 轴10.如图,在平面直角坐标系中,点A1, A2,A3…都在直线y =12上,△OA1B1,△B1A2B2,△B2A3B3…都是等腰直角三角形,其中∠OA1B1,∠B1A2B2,∠B2A3B3…都是直角,如果点A1的坐标为(1,1),那么点A2024的纵坐标是()A .2025 B.22024 C.32023 D .32024二.填空题。
____________________ _______年_______班 姓名:____________________ 学号:________ - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -八年级第一学期人教版八年级数学上册第三次月考试卷一、选择题(每小题2分,共12分)1.下列“表情”中属于轴对称图形的是( )A .B .C .D .2.下列各式中,计算结果正确的是( )A .(x ﹣2)(x ﹣2)=x 2﹣2B .(﹣ab ﹣c )(c ﹣ab )=a 2b 2﹣c 2C .()(b )=a 22D .(x+y )(﹣x ﹣y )=x 2﹣y 23.已知一个等腰三角形两边长分别为5,6,则它的周长为( ) A .16B .17C .16或17D .10或124.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( ) A .∠BAD=∠ABC ,∠ABD=∠BAC B .AD=BC ,BD=ACC .BD=AC ,∠BAD=∠ABCD .∠D=∠C ,∠BAD=∠ABC人教版八年级数学上册第三次月考试卷(附答案)A .a=0B .a=1C .a ≠﹣1D .a ≠06.如图,△ABC 中,已知∠B 和∠C 的平分线相交于点F ,经过点F 作DE ∥BC ,交AB 于D ,交AC 于点E ,若BD+CE=9,则线段DE 的长A .9B .8C .7D. 6二.填空题(每小题3分,共24分)7.在实数范围内把多项式x 2y ﹣2xy ﹣y 分解因式所得的结果是 .8.已知a 、b 、c 是三角形的三边长,化简:|a ﹣b+c|+|a ﹣b ﹣c|= . 9.已知a ﹣b=1,则a 2﹣b 2﹣2b 的值是 . 10.如图,已知∠AOB=60°,点P 在边OA 上,OP=12,点M 、N 在边OB 上,PM=PN ,若MN=2,则OM 的长为 .第10题图11.已知4y 2+my+1是完全平方式,则常数m 的值是 .12.计算(﹣3a3)2•(﹣2a2)3= .13.一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为.14.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.第14题图三.解答题(每小题5分,共20分)15.一个多边形的内角和是外角和的3倍,求这个多边形的边数.16.17. 计算:(25m2+15m3n﹣20m4)÷(﹣5m2)18. 计算:(2a+3b)(2a﹣3b)﹣(a﹣3b)2四.解答题(19-22每小题各7分,23-24每小题各8分,共44分)19. 化简求值(x+2y)2﹣(x+y)(x﹣y)20.分解因式:①6xy2﹣9x2y﹣y3②(a2+b2﹣c2)2﹣4a2b2.21.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.22.如图,△ABC中,AB=AC,AM是BC边上的中线,点N在AM上,求证:NB=NC.23.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.24.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.五、解答题.(每小题10分,共20分)25.(1)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求x2+4x+5的最小值.解:原式=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0 ∴(x+2)2+1≥1∴当x=﹣2时,原式取得最小值是1请求出x2+6x﹣4的最小值.(2)非负性的含义是指大于或等于零.在现初中阶段,我们主要学习了绝对值的非负性与平方的非负性,几个非负算式的和等于0,只能是这几个式子的值均为0.请根据非负算式的性质解答下题:已知△ABC的三边a,b,c满足a2﹣6a+b2﹣8b+25+|c﹣5|=0,求△ABC的周长.(3)已知△ABC的三边a,b,c满足a2+b2+c2=ab+bc+ac.试判断△ABC的形状.26.如图,已知△ABC中,AB=AC=18cm,∠B=∠C,BC=12cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度与运动时间t.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)参考答案:一.选择题(共6小题)1. D.2. B.3. C.4. C.5. C.6. A.二.填空题(共8小题)7. y(x﹣x﹣18. 2c.9. 1.10.11.±4 12.﹣72a12.13 .70°,55°,55°或70°,70°,40°.14.③.三.解答题(共10小题)15.解:设这个多边形是n边形,由题意得:(n﹣2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.16.2a6b5c5;17. ﹣5﹣3mn+4m2;18. 3a2﹣18b2+6ab19. (x+2y)2﹣(x+y)(x﹣y),=x2+4y2+4xy﹣(x2﹣y2)=5y2+4xy原式(﹣2)=20.分解因式:①原式=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2,②原式=(a2+b2﹣c2+2ab)(a2+b2+c2﹣2ab),=[(a+b)2﹣c2][(a﹣b)2﹣c2],=(a+b+c)(a+b﹣c)(a﹣b+c)(a﹣b﹣c).21如图所示,答案不唯一,参见下图.22证明:∵AB=AC,AM是BC边上的中线,∴AM⊥BC.…(2分)∴AM垂直平分BC.∵点N在AM上,∴NB=NC.…(4分)23解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.24证明:(1)在AB上取一点M,使得AM=AH,连接DM,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.25解:(1)x2+6x﹣4=x2+6x+9﹣9﹣4=(x+3)2﹣13,∵(x+3)2≥0∴(x+3)2﹣13≥﹣13∴当x=﹣3时,原式取得最小值是﹣13.(2)∵a2﹣6a+b2﹣8b+25+|c﹣5|=0,∴(a﹣3)2+(b﹣4)2+|c﹣5|=0,∴a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4.c=5,∴△ABC的周长=3+4+5=12.(3)△ABC为等边三角形.理由如下:∵a2+b2+c2=ab+bc+ac,∴a2+b2+c2﹣ac﹣ab﹣bc=0,∴2a2+2b2+2c2﹣2ac﹣2ab﹣2bc=0,即a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,∴△ABC为等边三角形.26解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=6cm,BD=CQ=9cm,∴点P,点Q运动的时间秒,∴v Q;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24=2×12,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.故答案为:24,AC.。
试卷第1页,总2页学校:____________ 班级:__________ 考号:____________ 姓名:____________------------请-------------------不-------------------要-------------------在-------------------密----------------封---------------线--------------内------------------答-------------------题---------2020-2021学年度第一学期 第三次月考八年级数学试卷考试时间:120分钟 总分:150第I 卷(选择题)一、单选题(40分) 1.下列计算,正确的是( ) A .236a a a •=B .236a a =()C .623a a a ÷=D .22a a a -=2.下列银行图标中,是轴对称图形的是( ) A .B .C .D .3.以下列各组长度的线段为边能组成一个三角形的是( ) A .2,3,4 B .8,8,18 C .3,4,8D .3,5,84.下列判断正确的是( ).A .有一直角边相等的两个直角三角形全等B .斜边相等的两个等腰直角三角形全等C .腰相等的两个等腰三角形全等D .两个锐角对应相等的两个直角三角形全等 5.如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定 6.已知 ()2x 2m 1x 9+-+ 是一个完全平方式,则m 的值为( )A .-4B .4或−2C .4D .−27.如图,直线l 表示一条河,点A ,B 表示两个村庄,想在直线l 上的某点P 处修建一个水泵站向A ,B 两村庄供水.现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设的管道最短的是( )8.已知13a a +=,则221a a+的值是( ) A .1B .5C .7D .99.如图,直线m ∥n ,Rt △ABC 的顶点A 在直线n 上,∠C =90°,AB ,CB 分别交直线m 于点D 和点E ,且DB =DE ,若∠1=65°,则∠BDE的度数为( )A .120°B .130°C .135°D .145°10.如图,用四个完全一样的长、宽分别为x 、y 的长方形纸片围成一个大正方形ABCD ,中间是空的小正方形EFGH .若AB =a ,EF =b ,判断以下关系式:① x + y =a ;② x -y =b ;③ a 2-b 2=2xy ④ x 2-y 2=ab ;⑤ x 2+ y 2=222a b +,其中正确的个数有( )A .2个B .3个C .4个D .5个第II 卷(非选择题)二、填空题(40分)11.计算3231a b 3⎛⎫- ⎪⎝⎭= .12.如图∠AOP=∠BOP=15°,PC ∥OA , PD ⊥OA , 若PC=6,则PD 等于________.13.已知实数a ,b 满足ab =1,a +b =3,则代数式a 3b +ab 3的值为______. 14.点P (-3,2)关于y 轴的对称点Q 的坐标为_________. 15.如图,AB ∥CD ,∠A +∠E =75°,则∠C 为_______.ABCD试卷第2页,总2页-----------请------------------不-----------------要-----------------在-----------------密-------------------封---------------线----------------内---------------答-------------------题------------------16.已知等腰三角形的两边长分别为4cm和6cm,则这个等腰三角形的周长为_________cm17.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30,AB=18,BC=12,则DE= ________.18.如图,若∠AOC=∠BOC,加上条件_____ (只要求写出一种情况),则有△AOC≌△BOC.19如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AC=8cm,则DE+BD的长为___________.20.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF 和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)三、解答题21.因式分解(12分):(1)(2)22.(10分)先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1),其中a=4.23.(12分)如图,已知△ABC.(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△A1B1C1的面积.24.(10分)如图, 已知:BF=DE,∠1=2,∠3=∠4,求证:AE=CF.25.(12分)已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC.求证:AD=BE.26.(14分)如图所示,在Rt ABC∆中,90ACB∠=,AC BC=,D为BC边上的中点,CE AD⊥于点E,//BF AC交CE的延长线于点F.(1)求证:ACD CBF∆∆≌;(2)求证:AB垂直平分DF.第15题第17题第18题。
2024-2025学年八年级数学上学期第三次月考卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章10%,第十二章20%,第十三章30%,第十四章40%。
5.难度系数:0.8。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2、2、4B.2、6、3C.8、6、3D.11、4、6【答案】C【详解】根据三角形的三边关系,知A、2+2=4,不能组成三角形;B、3+2=5<6,不能组成三角形;C、3+6>8,能够组成三角形;D、4+6<11,不能组成三角形.故选C.3.下列运算正确的是()A.a2⋅a=a2B.a8÷a2=a4C.(a2)3=a5D.(a3b)2=a6b2【答案】D【详解】解:A、a2⋅a=a3≠a2,本选项不合题意;B、a8÷a2=a6≠a4,本选项不合题意;C、(a2)3=a6≠a5,本选项不合题意;D、(a3b)2=a6b2,本选项符合题意;故选:D.4.如图,在△ABC中,AD⊥BC,交BC的延长线于点D,BE⊥AC交AC的延长线于点E ,CF⊥BD交AB 于点F.下列线段是△ABC的高的是()A.BD B.BE C.CE D.CF5.如果一个多边形的每个内角都相等,且内角和为1440°,那么该多边形的一个外角是()A.30°B.36°C.60°D.72°6.下列等式从左到右变形,属于因式分解的是( )A.2a﹣2=2(a+1)B.(a﹣b)(a﹣b)=a2﹣b2C.x2﹣2x+1=(x﹣1)2D.x2+6x+8=x(x+6)+8【答案】C【详解】解:A.2a-2=2(a-1),故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C.7.如图,在△DEF中,点C在DF的延长线上,点B在EF上,且AB∥CD,∠EBA=60°,则∠E+∠D的度数为( )A.60°B.30°C.90°D.80°8.如图,在△ABC中,DE垂直平分BC,若AB=8,AC=6,则△ADC的周长等于()A.11B.13C.14D.16【答案】C【详解】解:∵DE垂直平分BC,∴DB=DC,∵AB=8,AC=6,∴△ADC的周长等于AC+DA+CD=AC+DA+BD=AC+AB=8+6=14,故选:C.9.若x2+2ax+16是完全平方式,则a的值是()A.4B.±4C.8D.±8【答案】B【详解】解:由题意得:x2+2ax+16是完全平方式,∴x2±2×4x+16=(x±4)2,即2ax=±2×4x,∴a=±4.故选:B.10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.a2―b2=(a+b)(a―b)B.(a―b)2=a2―2ab+b2C.(a+b)2=a2+2ab+b2D.(a+2b)(a―b)=a2+ab―2b2【答案】A【详解】解:图甲中阴影部分面积为边长为a的正方形面积减去边长为b的正方形面积,即a2―b2;图乙中阴影部分面积等于长为(a+b)、宽为(a―b)的长方形面积,即(a+b)(a―b),根据这两部分面积相等有:a2―b2=(a+b)(a―b);故选:A.11.如图,在△ABC中,已知点D,E,F分别为BC,AD,CE的中点,且S△ABC=16cm2,则阴影部分面积为()A.2cm2B.4cm2C.6cm2D.8cm212.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n (n=1,2,3,4,…a的次数由大到小的顺序):请根据上述规律,则(x+1)2023展开式中含x2022项的系数是()A.2021B.2022C.2023D.2024【答案】C【详解】解:由图中规律可知:含x2022的项是(x+1)2023的展开式中的第二项,∵(a+b)1展开式中的第二项系数为1,(a+b)2展开式中的第二项系数为2,(a+b)3展开式中的第二项系数为3,(a+b)4展开式中的第二项系数为4,……,∴以此类推,可知(a+b)n展开式中的第二项系数为n,∴(x+1)2023的展开式中的第二项系数为2023,故选:C.二、填空题(本题共6小题,每小题2分,共12分.)13.在平面直角坐标系中,点(―2,―4)在第象限.【答案】三【详解】解:由题意知,―2,―4在第三象限,故答案为:三.14.因式分解:xy2―x3=.【答案】x(y―x)(y+x)【详解】解:xy2―x3=x(y2―x2)=x(y―x)(y+x),故答案为:x(y―x)(y+x).15.等腰三角形的一个底角为50°,则它的顶角的度数为.)2018×(―1.5)2019= .16.(2317.已知a―b=2, a―c=1,则(2a―b―c)2+(c―a)2=.【答案】10【详解】解:由a-b=2,a-c=1,可得:2a-b-c=3,c-a=-1,∴原式=32+(-1)2=10,故答案为:10.18.如图,在∠AOB的边OA、OB上取点M、N,连接MN,PM平分∠AMN,PN平分∠MNB,若MN=2,△PMN 的面积是2,△OMN的面积是6,则OM+ON的长是.∵PM平分∠AMN,PF⊥MN∴PG=PF,同理可得:PF=PE,三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算:(1)(y+2)(y―2)―(y―1)(y+5);(2)(12a3―6a2+3a)÷3a.【详解】(1)(y+2)(y―2)―(y―1)(y+5)=y2―4―y2―4y+5(2分)=―4y+1;(4分)(2)(12a3―6a2+3a)÷3a=4a2―2a+1(8分)20.(6分)先化简,再求值:1―÷x2―2x+1,请从―3,0,1,2中选一个你认为合适的x值,代入求x2―x值.21.(8分)在如图所示的平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点在格点上.(1)画出△ABC关于y轴对称的△A′B′C′;(2)求△ABC的面积.(3)在y轴上找出点Q,使△QAC的周长最小.AE=AD+BE.23.(10分)如图,在△ABC中,D是BC上一点,AC=AE,E是△ABC外一点,∠C=∠E,∠BAD=∠CAE.(1)求证:BC=DE;(2)若∠BAD =30°,求∠B 的度数.【详解】(1)证明:∵∠BAD =∠CAE ,∴∠BAC =∠DAE ,在△BAC 和Rt △DAE ∠BAC =∠DAE AC =AE ∠C =∠E,∴△BAC≌△DAE (ASA ),(4分)∴BC =DE ;(5分)(2)解:∵△BAC≌△DAE ,∴AB =AD ,∴∠B =∠BDA ,(8分)∵∠BAD =30°,∠BAD +∠B +∠BDA =180°,∴∠B +∠BDA =150°,∴∠B =75°.(10分)24.(10分)如图,在等腰△ABC 中,AB =AC =3,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =105°时,∠BAD = °;点D 从点B 向点C 运动时,∠BDA 逐渐变 (填“大”或“小”);(2)当DC 等于多少时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 的形状也在改变,判断当∠BDA 等于多少度时,△ADE 是等腰三角形.【详解】(1)解:∵∠B =40°,∠BDA =105°,∴∠BAD =180°―∠B ―∠BDA=180°―105°―40°=35°;∠BDA =180°―40°―∠BAD=140°―∠BAD∵点D 从点B 向点C 运动时,∠BAD 越来越大,∴∠BDA越来越小;故答案:35°;小;(2分)(2)解:当DC=3时,△ABD≌△DCE,理由如下:∵AB=3,∴AB=DC,∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,∠ADB=∠DEC∠B=∠CAB=DC,∴△ABD≌△DCE(AAS);(6分)(3)解:当∠BDA为110°或80°时,△ADE是等腰三角形,①当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;(8分)②当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=40°,∴∠AED=100°,∴∠EDC=∠AED―∠C=100°―40°=60°,∴∠BDA=180°―40°―60°=80°.综上所述:当∠BDA为110°或80°时,△ADE是等腰三角形.(10分)25.(10分)阅读理解:若x满足(60―x)(x―40)=20,求(60―x)2+(x―40)2的值.解:设60―x=a,x―40=b,则(60―x)(x―40)=ab=20,a+b=(60―x)+(x―40)=20,所以(60―x)2+(x―40)2=a2+b2=(a+b)2―2ab=202―2×20=360.解决问题:(1)若x满足(20―x)(x―10)=―5,求(20―x)2+(x―10)2的值;(2)如图,正方形ABCD的边长为x,AE=1,CG=2,长方形EFGD的面积是7,四边形NGDH和四边形MEDQ都是正方形,四边形PQDH是长方形,求图中阴影部分的面积.S长方形PQDH=(x―1)(x―2)=7,设x―1=a,x―2=b,则a―b=(x―1)―(x―2)=1,ab=(x―1)(x―2)=7,(8分)∴阴影部分的面积=S长方形DEFG+S正方形MEDQ+S正方形NGDH+S长方形PQDH=7+(x―1)2+(x―2)2+7=a2+b2+14,∵(a―b)2=a2+b2―2ab,即12=a2+b2―14,解得:a2+b2=15,∴a2+b2+14=29,即阴影部分的面积为29.(10分)26.(12分)在平面直角坐标系中,点A(―3,0),B(0,3),点C为x轴正半轴上一动点,过点A作AD⊥BC 交y轴于点E.(1)如图①,求证:△AEO≌△BCO;(2)如图②,若点C在x轴正半轴上运动,且OC<3,连接DO.①若∠BAD=∠BOD,求证:∠ABC=∠DOC.②当AD―CD=OC时,求∠BCO的值.∠DAO【详解】(1)证明:由题意知,OA=3=OB,∵AD⊥BC,∴∠ADB=90°=∠AOE,∵∠AOE+∠AEO+∠EAO=180°=∠BDE+∠BED+∠EBD,∠AEO=∠BED,∴∠EAO=∠EBD,∵∠EAO=∠CBO,∠AOE=90°=∠BOC,OA=OB,∴△AEO≌△BCO(ASA);(3分)(2)①证明:∵OA=OB,∴∠BAO=∠ABO=45°,ON,OD,。
八年级上学期数学10月月考试卷一、单选题。
1. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是A . 1,2,6B . 2,2,4C . 1,2,3D . 2,3,42. 如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不一定正确的是()A . AB=ACB . ∠BAD=∠CAEC . BE=CDD . AD=DE3. 如图,AD是的中线,已知的周长为25cm,AB比AC长6cm,则的周长为A . 19cmB . 22cmC . 25cmD . 31cm4. 如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 不能确定5. 如图,直线a∥b,则∠A的度数是()A . 28°B . 31°C . 39°D . 42°6. 在△ABC中,已知∠A:∠B:∠C=2:3:4,则这个三角形是()A . 钝角三角形B . 直角三角形C . 锐角三角形D . 等腰三角形7. 如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A . 59°B . 60°C . 56°D . 22°8. 装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A . ①B . ②C . ③D . ④9. 有下列条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.其中能判定两直角三角形全等的有()A . 1个B . 2个C . 3个D . 4个10. 用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是().A . SASB . AASC . ASAD .SSS11. 已知等腰三角形一腰上的中线将它的周长分成9cm和12cm两部分,则等腰三角形的底边长为()A . 9cmB . 5cmC . 6cm或5cmD . 5cm或9cm12. 如图所示,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且=4,则的值是()A . 1B . 1.5C . 2D . 2.5二、填空题。
2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题;共60分1.江西景德镇的青花瓷是中华陶瓷工艺的珍品,下列青花瓷上的青花图案既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列计算中正确的是()A.3a2+2a2=5a4B.(﹣2a)2÷a2=4C.(2a2)3=2a6D.a(a﹣b+1)=a2﹣ab3.一个等腰三角形的两条边长分别是方程2x2﹣13x+15=0的两根,则该等腰三角形的周长是()A.8B.11.5C.10D.8或11.54.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC5.下列等式恒成立的是()A.B.C.=D.6.如图所示,AC和BD相交于O,AO=DO,AB⊥AC,CD⊥BD,那么AB与CD的关系是()A.一定相等B.可能相等也可能不相等C.一定不相等D.增加条件后,它们相等7.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=43°,则∠B的度数是()A.43°B.45°C.47°D.57°8.如图,已知MN是△ABC边AB的垂直平分线,垂足为F,AD是∠CAB的平分线,且MN与AD交于O.连接BO并延长AC于E,则下列结论中,不一定成立的是()A.∠CAD=∠BAD B.OE=OF C.AF=BF D.OA=OB9.若x+y=2,x2﹣y2=4,则2x﹣2y的值为()A.2B.3C.4D.510.把一个铁丝围成的长为8、宽为6的长方形改成一个正方形,则这个正方形与原来的长方形相比()A.面积与周长都不变B.面积相等但周长发生变化C.周长相等但面积发生变化D.面积与周长都发生变化11.如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°12.若关于x的分式方程无解,则a的值为()A.﹣2或1B.1C.0或1D.3二、填空题;共30分13.若分式有意义,则x的取值范围是.14.若一个六边形六个外角的度数比是1:2:2:4:5:6,则这个六边形中,最大内角的度数为.15.如图,AB=AD,CB=CD,∠B=35°,∠BAD=46°,则∠ACD的度数是.16.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是边BC、AB上的任意一点,把△ABC沿着直线DE折叠,顶点B的对应点是B′,如果点B′和顶点A 重合,则CD=cm.17.如图,已知在△ABC中,AB=6,AC=8,BC=10,P为BC边上一个动点,连接AP,DE⊥AP,分别交AB、AC于点D、E,垂足为M,点N为DE的中点,若四边形ADPE 的面积为18,则AN的最大值为.18.如图,在等腰三角形ABC中,BE平分∠ABC,DE⊥AB于点D,腰AB的长比底BC 多3,△ABC的周长和面积都是24,则DE=.三、解答题;共60分19.分解因式:(1)9(m+n)2﹣(m﹣n)2.(2)(x2﹣6x)2+18(x2﹣6x)+81.(3)﹣4m3+16m2﹣26m.(4)(a2+4)2﹣16a2.20.计算:(1)(﹣x2)3•(x4)2;(2)(﹣m4)3+(﹣m3)4﹣2m5•m7;(3)(6a2b﹣5a2c2)÷(﹣3a2);(4).21.如图,数轴上点A、B对应的数分别是a和3,点A在点B的左边,AB=5.点P从A 点出发,以2个单位长度/秒的速度向右运动.同时,点Q从B点出发,以1个单位长度/秒的速度向左运动.(1)求a的值;(2)求经过多长时间PQ=1.22.如图,∠BAC=90°,AB=AC,D,E,A在一条直线上,BD⊥DE于点D,CE⊥DE 于点E,(1)若BC在DE的同侧(如图①)求证:DE=BD+CE.(2)若BC在DE的两侧(如图②),探究DE,BD,CE三条线段之间的关系,并说明理由.23.为了改善我县的交通现状,县政府决定扩建某段公路,甲、乙两工程队承包该段公路的修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的1.5倍;若由甲队先修建90天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为40万元,乙队每天的施工费用为52万元,工程预算的施工费用为6000万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?24.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)25.如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=3,AB=8,当BC为多少时,点B在线段AF的垂直平分线上,为什么?26.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.参考答案一、选择题;共60分1.解:A、既是轴对称图形又是中心对称图形,故A正确;B、是轴对称图形,不是中心对称图形,故B错误;C、既不是轴对称图形,也不是中心对称图形,故C错误;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:A.2.解:A、原式=5a2,不符合题意;B、原式=4,符合题意;C、原式=8a6,不符合题意;D、原式=a2﹣ab+a,不符合题意,故选:B.3.解:解方程2x2﹣13x+15=0得:x=5或1.5,①当等腰三角形的三边为5,5,1.5时,能组成三角形,三角形的周长是5+5+1.5=11.5,②当等腰三角形的三边为1.5,1.5,5时,,1.5+1.5<5,不符合三角形的三边关系定理,不能组成三角形,舍去,∴该等腰三角形的周长是11.5.故选:B.4.解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.5.解:A.+=,故A不符合题意;B.=,故B符合题意;C.=,故C不符合题意;D.=﹣,故D不符合题意;故选:B.6.解:∵AB⊥AC,CD⊥BD,∴∠A=∠D=90°,在△OAB和△ODC中,,∴△OAB≌△ODC(ASA),∴AB=CD,故选:A.7.解:∵CD∥AB,∠ECD=43°,∴∠A=∠ECD=43°,∵BC⊥AE,∴∠ACB=90°,∴∠B=90°﹣∠A=90°﹣43°=47°.故选:C.8.解:∵AD是∠CAB的平分线,∴∠CAD=∠BAD,∴A正确;∵BE不一定垂直AC,∴无法判断OE、OF是否相等,∴B错误;∵MN是边AB的垂直平分线,∴AF=BF,OA=OB,∴C、D正确.故选:B.9.解:∵x+y=2,x2﹣y2=4,∴(x+y)(x﹣y)=4,∴x﹣y=2,∴2x﹣2y=2(x﹣y)=2×2=4,故选:C.10.解:设正方形的边长x,根据题意得:2×(8+6)=4x,解得:x=7,∴长方形的面积为8×6=48,正方形的面积为7×7=49,48≠49,∴这个正方形与原来的长方形相比周长相等但面积发生变化.故选:C.11.解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.12.解:去分母得:x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理,得(a+2)x=3,1°由分式方程无解,得到x﹣1=0或x=0,即x=1或x=0,把x=1代入整式方程①得:a=1,把x=0代入整式方程①得:3=0(舍去),综上,a=1,2°(a+2)x=3,当a+2=0时,0×x=3,x无解,即a=﹣2时,整式方程无解,综上所述,当a=1或a=﹣2时,原方程无解,故选:A.二、填空题;共30分13.解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.14.解:六边形的内角和为:(6﹣2)×180°=720°,∴最大的内角为720°×=720°×=216°.故答案为:216°.15.解:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D=35°,∠BAC=∠DAC=∠BAD=×46°=23°,∴∠ACD=180°﹣∠D﹣∠DAC=180°﹣35°﹣23°=122°,故答案为:122°.16.解:设CD=xcm,则BD=(16﹣x)cm,由折叠得:AD=BD=16﹣x,在Rt△ACD中,由勾股定理得:CD2+AC2=AD2,∴x2+122=(16﹣x)2,解得:x=,即CD=(cm).故答案为:.17.解:∵△ABC中,AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵N为DE的中点,∴AN=DE,∵四边形ADPE的面积为18,DE⊥AP,∴DE•AP=18,即AN•AP=18,当AP取最小值时,AN有最大值,故当AP⊥BC时,AP值最小,最小值为=,此时AN=18÷=.故答案为:.18.解:如图,作EH⊥BC于H.∵EB平分∠ABC,ED⊥AB,EH⊥BC,∴ED=EH,设ED=EH=x,BC=y则AB=AC=y+3,由题意:,解得,∴DE=,故答案为.三、解答题;共60分19.解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=(3m+3n+m﹣n)(3m+3n﹣m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).(2)(x2﹣6x)2+18(x2﹣6x)+81=(x2﹣6x+9)2=[(x﹣3)2]2=(x﹣3)4.(3)﹣4m3+16m2﹣26m=﹣2m(2m2﹣8m+13).(4)(a2+4)2﹣16a2=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)2.20.解:(1)(﹣x2)3⋅(x4)2=﹣x6⋅x8=﹣x14;(2)(﹣m4)3+(﹣m3)4﹣2m5•m7=﹣m12+m12﹣2m12=﹣2m12;(3)(6a2b﹣5a2c2)÷(﹣3a2)=;(4)===.21.解:(1)∵B对应的数是3,点A在点B的左边,AB=5,∴a=3﹣5=﹣2,∴a的值是﹣2;(2)设运动时间为t秒,则P表示的数是﹣2+2t,Q表示的数是3﹣t,根据题意得:|﹣2+2t﹣(3﹣t)|=1,解得t=或t=2,∴经过秒或2秒,PQ=1.22.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB+∠AEC=90°,∴∠DAB+∠ABD=90°,∵∠BAC=90°,∴∠DAB+∠EAC=90°,∴∠EAC=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∴DE=BD+CE;(2)解:DE=CE﹣DB,理由如下:由(1)同理可得△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=CE﹣DB.23.解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程所需天数是1.5x天,依题意得:,解得x=110,检验,当x=110时,1.5x=165≠0,所以原方程的解为x=110.所以1.5x=1.5×110=165(天).答:乙队单独完成这项工程需110天,甲队单独完成这项工程需165天.(2)设甲、乙两队合作完成这项工程需要y天,则有,解得y=66,需要施工的费用:66×(40+52)=6072(万元),∵6072>6000,6072﹣6000=72(万元),∴工程预算的费用不够用,需要追加预算72万元.24.解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)如图,(3)设DG长为x.∵S1=a[x﹣(a+2b)]=ax﹣a2﹣2ab,S2=2b(x﹣a)=2bx﹣2ab,∴S=S2﹣S1=(2bx﹣2ab)﹣(ax﹣a2﹣2ab)=(2b﹣a)x+a2,由题意得,若S为定值,则S将不随x的变化而变化,可知当2b﹣a=0时,即a=2b时,S=a2为定值,故答案为:a=2b,a2.25.解:(1)∵AD∥BC,∴∠F=∠DAE.又∵∠FEC=∠AED,∴∠ECF=∠ADE,∵E为CD中点,∴CE=DE,在△FEC与△AED中,,∴△FEC≌△AED(ASA),∴CF=AD.(2)当BC=5时,点B在线段AF的垂直平分线上,理由:∵BC=5,AD=3,AB=8,∴AB=BC+AD,又∵CF=AD,BC+CF=BF,∴AB=BF,∴△ABF是等腰三角形,∴点B在AF的垂直平分线上.26.(1)①证明:∵△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,∴∠DCE=45°=∠A,CD=AB=AD,CD⊥AB,∴∠ADC=90°,∵DF⊥DE,∴∠FDE=90°,∴∠ADC=∠FDE,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA),∴AF=CE;②解:AF2+EB2=EF2,理由如下:由①得:△ADF≌△CDE(ASA),∴AF=CE;同理:△CDF≌△BDE(ASA),∴CF=BE,在Rt△CEF中,由勾股定理得:CE2+CF2=EF2,∴AF2+EB2=EF2;(2)解:分两种情况:①点E在线段CB上时,∵BE=3,BC=4,∴CE=BC﹣BE=1,由(1)得:AF=CE=1,AF2+EB2=EF2,∴EF==;②点E在线段CB延长线上时,如图2所示:∵BE=3,BC=4,∴CE=BC+BE=7,同(1)得:△ADF≌△CDE(ASA),∴AF=CE,∴CF=BE=3,在Rt△EF中,由勾股定理得:CF2+CE2=EF2,∴EF==;综上所述,当EB=3时,EF的长为或.。
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、单选题(满分48分)1.下列倡导节约的图案中是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.4a2+3a2=7a4B.5a2﹣2a2=3C.a3•2a2=2a6D.5a6÷a2=5a43.若分式=0,x则等于()A.0B.﹣2C.﹣1D.24.下列计算正确的是()A.=x B.=C.2÷2﹣1=﹣1D.a﹣3=(a3)﹣1 5.若三角形两边长分别是6、5,则第三条边c的范围是()A.2<c<9B.3<c<10C.10<c<18D.1<c<116.方程的解是()A.0B.1C.2D.37.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是()A.11B.12C.13D.148.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个B.6个C.4个D.3个9.如图,△ABC中,AB=4,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为()A.9B.11C.15D.1810.下列计算正确的有()①(a+b)2=a2+b2;②(a﹣b)2=a2﹣2ab﹣b2③(a﹣b)2=a2﹣b2;④(a﹣1)(a+2)=a2﹣a﹣2A.0个B.1个C.2个D.3个11.如图所示,在△ABC中,AB=AC,OA=OB=OC,且∠OBC=2∠OBA,则∠BAC的度数为()A.22.5°B.45°C.36°D.25°12.若关于x的不等式组无解,且关于y的方程+=1的解为正数,则符合题意的整数a有()个.A.1个B.2个C.3个D.4个二、填空题(满分24分)13.分解因式:ma﹣bm+m=.14.(﹣1)2005+(6﹣π)0﹣(﹣)﹣2=.15.如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD=cm.16.如图,BD与CE分别是∠ABC和∠ACB的平分线,如果∠DBC=∠ECB,那么∠ABC ∠ACB(选填“>”、“=”、“<”).17.如果a、b、m均为整数,且(x+a)•(x+b)=x2+mx+15,则所有的m的和为.18.《九章算术》中有这样一个问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只燕、雀的重量各为多少?”译文如下:有5只麻雀和6只燕子,一共重16两;5只麻雀的重量超过了6只燕子的重量,如果互换其中的一只,重量恰好相等,则每只麻雀、燕子的平均重量分别为多少两?设每只麻雀的平均重量为x两,每只燕子的平均重量为y两,根据题意列出的方程组是.三、解答题(满分78分)19.(1)计算:(15x3y+10x2y﹣5xy2)÷5xy;(2)计算:(3x+y)(x+2y)﹣3x(x+2y).20.解下列分式方程:(1);(2).21.如图所示,分别以已知△ABC的两边AB,AC为边向外作等边三角形ABD和等边三角形ACE,线段DC与线段BE相交于点O.(1)请说明DC=BE;(2)求∠BOC的度数.22.先化简,再求值:,其中m=.23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标;(4)求△ABC的面积.24.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m﹣n)2=0,(n﹣4)2=0∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0∴n=4,m=4根据你的观察,探究下面的问题:(1)已知x2﹣4xy+5y2+6y+9=0,求x、y的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣14b+58=0,求△ABC的最大边c的值.25.六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,要使总的获利不低于1200元,则最少购进A品牌的服装多少套?26.如图1,等边△ABC边长为6,AD是△ABC的中线,P为线段AD(不包括端点A、D)上一动点,以CP为一边且在CP左下方作如图所示的等边△CPE,连接BE.(1)点P在运动过程中,线段BE与AP始终相等吗?说说你的理由;(2)若延长BE至F,使得CF=CE=5,如图2,问:①求出此时AP的长;②当点P在线段AD的延长线上时,判断EF的长是否为定值,若是请直接写出EF的长;若不是请简单说明理由.参考答案一、单选题(满分48分)1.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.解:4a2+3a2=7a2,故选项A错误;5a2﹣2a2=3a2,故选项B错误;a3•2a2=2a5,故选项C错误;5a6÷a2=5a4,故选项D正确;故选:D.3.解:根据题意得,x﹣2=0且x+1≠0,解得x=2.故选:D.4.解:A、,错误;B、,错误;C、2÷2﹣1=4,错误;D、a﹣3=(a3)﹣1,正确;故选:D.5.解:∵6﹣5<c<6+5,∴1<c<11.故选:D.6.解:方程两边同乘x(x﹣1),得x=2(x﹣1),解得x=2.检验:x=2时,x(x﹣1)≠0.故选C.7.解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),故选:B.8.解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过网格中的格点.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选:A.9.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=4,AC=7,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=4+7=11.故选:B.10.解:①(a+b)2=a2+b2计算错误,正确的计算是(a+b)2=a2+2ab+b2;②(a﹣b)2=a2﹣2ab﹣b2计算错误,正确的计算是(a﹣b)2=a2﹣2ab+b2;③(a﹣b)2=a2﹣b2计算错误,正确的计算是(a﹣b)2=a2﹣2ab+b2;④(a﹣1)(a+2)=a2﹣a﹣2计算错误,正确的计算是(a﹣1)(a+2)=a2+a﹣2所以计算正确的有0个,故选:A.11.解:∵OA=OB=OC,∴∠OBC=∠OCB,∠OBA=∠OAB,∠OCA=∠OAC,设∠OBA=x,则∠OBC=2x,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴2x+x+2x+x+x+x=180°,解得x=22.5°,∴∠BAC=45°,故选:B.12.解:不等式整理得:,由不等式组无解,得到a+3>1,解得:a>﹣2,分式方程去分母得:2﹣y﹣a=y﹣2,解得:y=,由分式方程的解为正数,得到>0且≠2,解得:a<4,且a≠0,∴﹣2<a<4,且a≠0,a为整数,则符合题意整数a的值为﹣1,1,2,3,共4个,故选:D.二、填空题(满分24分)13.解:ma﹣bm+m=m(a﹣b+1).故答案为:m(a﹣b+1).14.解:原式=﹣1++1﹣(﹣2)2,=﹣1+2+1﹣4,=﹣2.故答案为:﹣2.15.解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵CD∥OB,∴∠BOC=∠DCO,∴∠AOC=∠DCO,∴CD=OD=3cm.故答案为:3.16.解:由BD与CE分别是∠ABC和∠ACB的平分线,可得∠ABD=∠DBC=∠ABC,∠ACE=∠ECB=∠ACB;由∠DBC=∠ECB,可得∠ABC=∠ACB.故答案为=.17.解:∵(x+a)•(x+b)=x2+(a+b)x+ab,又∵(x+a)•(x+b)=x2+mx+15,∴m=a+b,ab=15.∵a、b、m均为整数,∴或或或或或或或,∴m=1+15=16或m=﹣1﹣15=﹣16或m=3+5=8或m=﹣3+(﹣5)=﹣8,∴所有的m的和为16+(﹣16)+8+(﹣8)=0.故答案为:0.18.解:依题意,得:.故答案为:.三、解答题(满分78分)19.解:(1)(15x3y+10x2y﹣5xy2)÷5xy=15x3y÷5xy+10x2y÷5xy﹣5xy2÷5xy=3x2+2x﹣y;(2)(3x+y)(x+2y)﹣3x(x+2y)=3x2+6xy+xy+2y2﹣3x2﹣6xy=xy+2y2.20.解:(1)去分母得:x﹣1=1,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x2﹣3x﹣3=0,解得:x=,经检验x=是分式方程的解.21.解:(1)∵△ABD,△ACE均为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAE=∠DAC,∴△BAE≌△DAC(SAS),∴DC=BE.(2)∵△BAE≌△DAC.∴∠DCA=∠BEA,∵∠BEA+∠OEC=60°,∴∠DCA+∠OEC=60°,∴∠OEC+∠OCE=∠OEC+∠DCA+∠ACE=60°+60°=120°,∴∠EOC=180°﹣(∠OEC+∠OCE)=60°,∴∠BOC=180°﹣∠EOC=120°.22.解:原式=.当时,原式=.23.解:(1)根据题意可作出如图所示的坐标系;(2)如图,△A1B1C1即为所求;(3)由图可知,B1(2,1);(4)S△ABC=3×4﹣×2×4﹣×2×1﹣×2×3=12﹣4﹣1﹣3=4.24.解:(1)∵x2﹣4xy+5y2+6y+9=0,∴x2﹣4xy+4y2+y2+6y+9=0,∴(x﹣2y)2+(y+3)2=0,∴x﹣2y=0,y+3=0,∴x=﹣6,y=﹣3;(2)∵a2+b2﹣6a﹣14b+58=0,∴a2﹣6a+9+b2﹣14b+49=0,∴(a﹣3)2+(b﹣7)2=0,∴a﹣3=0,b﹣7=0,∴a=3,b=7,∴4<c<10,∵c是正整数,∴c为△ABC的最大边,∴c为7、8、9.25.解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为(x﹣25)元,由题意得:解得:x=100,经检验:x=100是原分式方程的解,x﹣25=100﹣25=75,答:A、B两种品牌服装每套进价分别为100元、75元;(2)设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,由题意得:(130﹣100)a+(95﹣75)(2a+4)≥1200,解得:a≥16,答:至少购进A品牌服装的数量是16套.26.解:(1)BE=AP.理由:∵△ABC和△CPE均为等边三角形,∴∠ACB=∠PCE=60°,AC=BC,CP=CE.∵∠ACP+∠DCP=∠DCE+∠PCD=60°,∴∠ACP=∠BCE.∵在△ACP和△BCE中,,∴△ACP≌△BCE.∴BE=AP.(2)如图2所示:过点C作CH⊥BE,垂足为H.∵AB=AC,AD是BC的中点,∴∠CAD=∠BAD=∠BAC=30°.∵由(1)可知:△ACP≌△BCE,∴∠CBE=∠CAD=30°,AP=BE.∵在Rt△BCH中,∠HBC=30°,∴HC=BC=3,BH=BC=3.∵在Rt△CEH中,EC=5,CH=3,∴EH==4.∴BE=HB﹣EH=3﹣4.∴AP=3﹣4.(3)如图3所示:过点C作CH⊥BE,垂足为H.∵△ABC和△CEP均为等边三角形,∴AC=BC,CE=PC,∠ACB=∠ECP.∴∠ACB+∠BCP=∠ECP+BCP,即∠BCE=∠ACP.∵在△ACP和△BCE中,,∴△ACP≌△BCE.∴∠CBH=∠CAP=30°.∵在Rt△BCH中,∠CBH=30°,∴HC=BC=3.∵FC=CE,CH⊥FE,∴FH=EH.∴FH=EH==4.∴EF=FH+EH=4+4=8.。
温州地区2013-2014学年上学期第三次月考
八年级数学试卷
一、精心选一选(每小题3分,共30分).
1、如图,直线a ∥b ,如果∠1=45°,那么∠2等于 ( )
A 、 150°
B 、 140°
C 、 135°
D 、 120°
2、下列物体给人以直棱柱的感觉的是( )
A 、金字塔
B 、易拉罐
C 、冰箱
D 、篮球
3、点M (-2,3)关于y 轴的对称点的坐标是( )
A 、(2,-3)
B 、(-2,-3)
C 、(3,-2)
D 、(2,3) 4下列判断正确的是( )
A 有一直角边相等的两个直角三角形全等
B 腰相等的两个等腰三角形全等
C 斜边相等的两个等腰直角三角形全等
D 两个锐角对应相等的两个直角三角形全等 5、右图中几何体的左视图是( )
第6题
6、八年级(1)班50名学生的年龄统计结果如上表所示:则此班学生年龄的众数、中位数分别为 ( )
A .14,14
B .15,14
C .14,15
D .15,16
7、直角三角形的两直角边的长分别为3和4,则此直角三角形斜边上的中线长为:( ) A.1.5 B.2 C.2.5 D.5
8、不等式组⎩
⎨⎧≥111-,<-
x x 的解集在数轴上表示正确的是( )。
9、如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列
结论:
①△BDF 和△CEF 都是等腰三角形 ; ②DE=BD+CE ; ③△ADE 的周长等于AB 与AC 的和; ④BF=CF . 其中有 ( ) A .①②③ B .①②③④ C .①② D .①
10、在直角坐标系中,O 为坐标原点,已知A (1,1),在坐标轴上确定点P ,使△AOP 为等三角
形,则符合条件的点P 的个数共有( )
A 、10个
B 、8个
C 、4个
D 、6个 二、细心填一填:(每题3分,共30分)
11、用不等式表示:x 与3的和不大于1,则这个不等式是: 12、在Rt △ABC 中, 锐角∠A =35°,则另一个锐角∠B =__
学校_________________ 班级___________________ 姓名__________________ 座号_________________
………………………………密……………………………………封…………………………………线………………………………………
a b 1 2 c
A B C D
正面第5题 E
D A
B
F
13、分析下列四种调查:①了解我们学校所有八年级学生的视力状况;②估计小明家一年总用电量;③登飞机前,对所有旅客进行安全检查;④了解中小学生的主要娱乐方式;其中应作普查的是: (填序号)
14、已知两条线段的长为3cm 和4cm ,当第三条线段的长为 时,这三条线段能组成一
个直角三角形。
15、不等式2x -1≤3的非负整数解是 。
16、如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则
“炮”所在的点的坐标是 。
17、如图,已知D,E 是ΔABC 中BC 边上的两点,且AD=AE ,请你再添加一个条件: ,使ΔABD ≌ΔACE
第16题 第17题
第18题
18、如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,
若∠A=18°,则∠GEF 的度数是________
19、小明帮助父母预算12月份电费情况,下表是12月初连续8天每天早上电表的显示读数:
天)的电费是 元.
20、如图所示,用一根长度足够的长方形纸带,
先对折长方形得折痕l ,再折纸使折线过点B ,
且使得A 在折痕l 上,这时折线CB 与DB 所成的角为: 。
三、解答题(共40分) 21、(5分)解不等式组()4321213
x x x x -<-⎧⎪
⎨++>⎪
⎩,并在数轴上表示解集。
22、(6分)画出右图几何体的三种视图。
E D C A B H
F
G B D E A
A B l D A /
B
A
l C D
23、(8分)某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车情况如图所示:
(1) 请你根据上图填写下表:
(
2)请你从以下两个不同的方面对甲、乙两个
汽车
销售公司去年一至十月份的销售情况进行分析: ①从平均数和方差结合看;
②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).
24、(5分)在一次“人与自然”知识竞赛中,共有25道选择题,要求学生把正确答案选出,每道选对得10分,选错或不选倒扣5分.如果一个学生在本次竞赛中的得分不低于200分,那么他至少要选对多少道题?
25、(8分)如图,已知:AC=BC ,AC⊥BC,AE⊥CF,BF⊥CF,C 、E 、F 分别为垂足, 且∠BCF=∠ABF,CF 交AB 于D.
(1)判断△BCF≌△CAE,并说明理由.
(2)判断△ADC 是不是等腰三角形?并说明理由.
26、(8分)在ΔABC 中,AB=AC
(1)如图1,如果∠BAD=30°,AD 是BC 上的高,AD=AE ,则∠EDC=__________ (2)如图2,如果∠BAD=40°,AD 是BC 上的高,AD=AE ,则∠EDC=__________ (3)思考:通过以上两题,你发现∠BAD 与∠EDC 之间有什么关系?
请用式子表示:____________________
(4)如图3,如果AD 不是BC 上的高,AD=AE ,是否仍有上述关系?如有,请你写出来,并说明理由
参考答案以及评分标准
一、选择题(本题有10小题,每小题3分,共30分).
二、填空题(本题有10小题,每小题3分,共30分)
11、x+3≤1: 1 2、55°; 1 3、③; 1 4、5或√7; 15、0,1,2 ;16、(-1,2) ; 17、BD =CE或AB=AC或∠B=∠C或∠BAD=∠CAE或∠BAE=∠CAD; 1 8、 90°;19、15.9;
20、60°。
三.解答题(本题有6小题,共40分)
21.由①得-2x<-2
x>1 (1分)
由②得-x>-4
x<4 (2分)
1<x<4 (1分)
正确把不等式的解表示在数轴上(1分)
22、解答略(6分)
23、解答略(8分)
24.(1)
25.解,设他答对x道题,
由题意得,10x-5(25-x) ≥200
解得x≥65/3
因此x的最小整数为21 答:他至少答对21道题
26.(8分)(每空1分)
(1)∠EDC= 15O
(2)∠EDC= 20O
(3)∠BAD=2∠EDC(或
1
EDC=
2
BAD ∠∠)
(4)解:仍成立,理由如下
∵AD=AE,∴∠ADE=∠AED,(1分)
∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C (2分)
又∵BA=BC,∴∠B=∠C (1分)
∴∠BAD=2∠EDC。
(1分)。