人教版初中七年级上册数学:有理数的混合运算专题复习
- 格式:pptx
- 大小:382.18 KB
- 文档页数:17
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的混合运算大题专练(重难点培优)一、解答题1.(2022·湖北武汉·七年级期末)计算:(1)5+(―6)+3―(―4);(2)79÷(23―15)―13×(―4)2.【答案】(1)6;(2)―113.【解析】【分析】(1)根据有理数的加减运算法则计算即可;(1)根据有理数的混合运算法则计算即可.(1)解:5+(―6)+3―(―4)=5―6+3+4=6.(2)解:79÷―13×(―4)2=79÷715―13×16=79×157―163=53―163=―113.【点睛】本题考查有理数的混合运算法则,解题的关键是掌握混合运算的法则.2.(2022·山东菏泽·七年级期末)计算:(1)15+(-6)-(-7)+(―6)×4―(―21)÷3(2)―32÷23×1―(3)―14+16÷(―2)3×|―3―1|【答案】(1)-1(2)-6(3)-9【解析】【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先算括号中的减法及乘方,再从左到右依次计算即可得到结果;(3)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:15+(-6)-(-7)+(―6)×4―(―21)÷3=15-6+7-24+7=9+7-24+7=16+(-17)= -1;(2)解:―32÷23×(1―13)2=―9×32×49=―6;(3)解:―14+16÷(―2)3×|―3―1|=―1+16×(―18)×4=―1―8=―9.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022·河南南阳·七年级期末)计算:(1)(―1)2019―|―3―7|×(―15)÷(―12);(2)―14―(1―0.5)×13×[1―(―2)2].【答案】(1)-5(2)―12【解析】【分析】(1)先算乘方,绝对值,除法转化为乘法,最后算加减即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.(1)解:(―1)2019―|―3―7|×(―15)÷(―12)=―1―10×(―15)×(―2)=―1―4=―5;(2)解:―14―(1―0.5)×13×[1―(―2)2].=―1―12×13×(1―4)=―1―16×(―3)=―1+12=―12.【点睛】本题主要考查有理数的混合运算,有理数的乘方、绝对值,解题的关键是对相应的运算法则的掌握.4.(2022·重庆梁平·七年级期末)计算(1)―22+3×(―1)2016―9÷(―3)(2)57÷――57×512―53÷4【答案】(1)2(2)―8584【解析】【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)解:―22+3×(―1)2016―9÷(―3)=―4+3×1―9÷(―3)=―4+3―(―3)=―4+3+3=2(2)解:57÷――57×512―53÷4=―57×512―57×512―53×14=―2584―2584―512=―8584【点睛】本题考查带乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.5.(2022·全国·七年级)计算:(―34―16+512)÷136.【答案】―18【解析】【分析】先将除法化为乘法,再利用乘法分配律计算后,最后计算加减即可.【详解】解:(―34―16+512)÷136=(―34―16+512)×36=―34×36―16×36+512×36=﹣27﹣6+15=﹣18.【点睛】本题考查有理数的混合运算.熟练掌握乘法分配律是解题关键.6.(2022·全国·七年级专题练习)计算:(1)(14+38―712)÷124;(2)(―1)2022×|―112|+0.5÷(―13).【答案】(1)1(2)-3【解析】【分析】(1)先化除为乘,再用乘法的分配率计算即可;(2)按照有理数的混合运算顺序,先算乘方,再算乘除,最后算加减即可;(1)38÷12438=14×24+38×24﹣712×24=6+9﹣14=1;(2)(﹣1)2021×|﹣112|+0.5÷(﹣13)=(﹣1)×32+12×(﹣3)=﹣32+(﹣32)=﹣3.【点睛】本题考查了有理数的混合运算,以及有理数的乘法分配率,解题的关键是熟悉有理数的混合运算顺序.7.(2022·全国·七年级专题练习)用简便方法计算:(1)(―8)×(―45)×(―1.25)×54;(2)(﹣93536)×18;(3)(―8)×(―16―512+310)×15.【答案】(1)-10(2)―17912(3)34【解析】【分析】(1)原式结合后,相乘即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式结合后,利用乘法分配律计算即可得到结果.(1)解:原式=﹣(8×1.25)×(45×54)=﹣10×1=﹣10;(2)原式=(﹣10+136)×18=﹣10×18+136×18=﹣180+12 =﹣17912;(3)原式=(﹣8×15)×(﹣16 ﹣512 + 310)=(﹣120)×(﹣16 ﹣512 +310)=﹣120×(﹣16)﹣120×(﹣512)﹣120×310 =20+50﹣36=34.【点睛】此题考查了有理数的混合运算,乘法分配律,熟练掌握运算法则及运算律是解本题的关键.8.(2022·全国·七年级专题练习)计算(1)2×(―3)3―4×(―3)+15;(2)(―2)3+(―3)×(―4)2+2―(―3)2÷(―2).【答案】(1)-27;(2)-57.5.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.(1)解:2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+12+15 =―27.(2)解:(―2)3+(―3)×(―4)2+2―(―3)2÷(―2)=―8+(―3)×18+9 2=―8―54+9 2=―57.5.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数混合运算的法则,正确计算即可.9.(2021·云南·普洱市思茅区第四中学七年级期中)计算:(1)(―21)+(+3)―(―4)―(+9)(2)42×―+―÷(―0.25)(3)―12+(―3―1)2―|―13|×(―3)2【答案】(1)―23(2)―11(3)12【解析】【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据含有乘方的有理数混合运算法则进行计算即可.(1)解:(―21)+(+3)―(―4)―(+9),=(―21)+(―9)+3+4=―23.(2)42×+÷(―0.25)=―14+×(―4)=―14+3=―11(3)―12+(―3―1)2―|―13|×(―3)2=―1+(―4)2―13×9=―1+16―3=12【点睛】本题主要考查了有理数混合运算法则,熟练掌握有理数混合运算法则,是解题的关键.10.(2021·云南·富源县第七中学七年级期中)计算下列各题(1)15+(―8)―(―4)―5(2)(―512+34―16)×(―48)(3)―10+8÷(―22)―(―4)÷(―13)(4)―14―(1―0.5)×13×5―(―3)2【答案】(1)6(2)-8(3)-24(4)―13【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)先算乘方、再有理数的除法和加减法可以解答本题;(4)先算乘方、再有理数的乘法和加减法可以解答本题.(1)解:原式=15+(―8)+4+(―5)=19+(―13)=6 (2)解:原式=512×48+34×(―48)+16×48=20―36+8=28―36=―8(3)解:原式=―10+8÷(―4)―(―4)×(―3)=―10―2―12=―24 (4)解:原式=―1―12×13×(―4)=―1+23=―13【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序和方法.11.(2020·黑龙江·虎林市实验中学七年级期中)计算(1)26―(―15)(2)-3×4+(-28)÷7(3)(23―15+65)×15(4)(―1)3×2+(―2)2÷4【答案】(1)41(2)-16(3)25(4)-1【解析】【分析】(1)去括号,括号内数字变符号,然后进行计算;(2)先算乘除,后算加减;(3)先算括号内,然后与括号外数字相乘;(4)先算乘方,再算乘除,最后算加减.(1)解:26―(―15)=26+15=41;(2)-3×4+(-28)÷7=-12+(-4)=-16;(3)(23―15+65)×15=(23+1)×15=53×15=25;(4)(―1)3×2+(―2)2÷4=(―1)×2+4÷4=-2+1=-1.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则是解题的关键.12.(2022·江苏·七年级)计算:(1)―16―320+45×(―15×4);(2)120×―556+638―(3)(﹣18)÷214×49÷(﹣16);(4)12÷(―14)+(1―0.2÷35)×(―3);(5)312÷(―125)―821×(―134)―(―1+16)2+(―13)2×3.【答案】(1)6(2)―111(3)29(4)―4(5)―7936【解析】【分析】(1)根据乘法分配律拆开括号,进行运算即可;(2)根据乘法分配律拆开括号,进行运算即可;(3)把除法转化为乘法,再进行运算即可;(4)先计算括号内,把除法转化为乘法,再进行运算即可;(5)先把乘方进行计算,把除法转化为乘法,再进行运算即可.(1)原式=(―16―320+45―712)×(―60)=16×60+320×60―45×60+712×60=10+9―48+35=6;(2)原式=―120×356+120×518―120×2215=―700+765―176=―111;(3)原式=18×49×49×116=29;(4)原式=12×(―4)+(1―15×53)×(―3)=―2+(1―13)×(―3)=―2―23×3=―2―2=―4;(5)原式=―72×57+821×74―(―56)2+19×3=―52+23―2536+13=―52―2536+(23+13)=―11536+1=―7936.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.13.(2020·山西晋城·七年级期中)计算:(1)―5+7―(―3)―20(2)―23+6÷(―32)【答案】(1)-15(2)-12【解析】【分析】(1)原式先根据有理数减法法则变形,再进行加减运算即可;(2)原式先计算乘方和除法,然后再进行加减运算即可.(1)―5+7―(―3)―20=―5+7+3―20 =(7+3)+(―5―20) =10―25 =―15;(2)―23+6÷(―32)=―8―6×23 =―8―4 =―12【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)―52×34+25×12―25×14;(4)423+215―0.8+245―(―613).【答案】(1)8(2)-1(3)-12.5(4)15.2【解析】【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=-1 (3)解:―52×34+25×12―25×14=―25×34+25×12―25×14=―25×(34―12+14)=―25×12 =-12.5 (4)解:423+215―0.8+245―(―613)=423+215―45+245+613=(423+613)+(215―45+245)=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.15.(2021·山东省郓城第一中学七年级阶段练习)计算:(1)―30+17;(2)―67―(―29);(3)1.5―8.9;(4)×(5)―5+(―3.75);(6)―5――(7)―17+23+(―16)―(―17);(8)―3+2×|―2―3|―25.【答案】(1)―13;(2)―38;(3)―7.4;(4)76;(5)―9;(6)―2.25;(8)―18.【解析】【分析】(1)根据有理数的加法计算即可;(2)根据有理数的减法计算即可;(3)根据有理数的减法计算即可;(4)根据有理数的乘法计算即可;(5)根据有理数的加法计算即可;(6)根据有理数的减法计算即可;(7)根据有理数的加减计算即可;(8)根据有理数的混合运算法则计算即可.(1)解:―30+17=―13.(2)解:―67―(―29)=―67+29=―38.(3)解:1.5―8.9=―7.4.(4)解:×―=76.(5)解:―+(―3.75)=―5.25+(―3.75)=―9.(6)解:――――5.75+3.5=―2.25.(7)解:―17+23+(―16)―(―17)=―17+23―16+17=7.(8)解:―3+2×|―2―3|―25=―3+10―25=―18.【点睛】本题考查有理数加法,减法,乘法以及混合运算,解题的关键是掌握有理数的运算法则,正确计算.16.(2022·黑龙江·哈尔滨德强学校期中)计算:(1)(―2)2×5―(―2)3÷4(2)23÷×34―34【答案】(1)22(2)54【解析】【分析】(1)原式先计算乘方,再计算乘除法,最后算加减即可;(2)原式先计算小括号内的减法,再计算乘除法,最后算加减即可.(1)(―2)2×5―(―2)3÷4=4×5+8÷4=20+2=22;(2)23÷×34―34=23÷14×34―34=23×4×34―34=2―34=54.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.17.(2022·全国·七年级课时练习)计算:(1)(12―13)×6÷|―15|(2)(―1)2018+(―10)÷12×2―[2―(―3)3]【答案】(1)5(2)﹣68【解析】【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1)解:(12―13)×6÷|―15|=(12―13)×6×5 =(12―13)×30=12×30―13×30=15―10=5(2)(―1)2018+(―10)÷12×2―[2―(―3)3]=1+(―10)×2×2―(2+27)=1―40―29=―68【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.18.(2022·黑龙江·哈尔滨市萧红中学校期中)(1)(―20)+(+3)―(―5)―(+7)(216―×12(3)―2.5÷58×(4)2×(―3)3―4×(―3)+15【答案】(1)-19;(2)-1;(3)1;(4)-27【解析】【分析】(1)先去括号再求解;(2)先去括号再求解;(3)先把除号变成乘号再求解;(4)先计算―3立方,再依次计算即可得到答案.【详解】(1)(―20)+(+3)―(―5)―(+7)=(―20)+3+5―7=―19;(2)+16×12=14×12+16×12―12×12=3+2―6=―1;(3)―2.5÷58×―=―52×85×=4×14=1;(4)2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+27=―27.【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数的运算法则.19.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)计算:(1)13―7―(―7);(2)18×――8÷(―2);(3)―22×(―9)―|―4×5|.【答案】(1)13(2)-2(3)16【解析】(1)解:原式=6+7=13;(2)解:原式=-6+4=-2;(3)解:原式=-4×(-9)-20=36-20=16.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.(2020·江西景德镇·七年级期中)计算:2+÷3(2)―22×1―4÷―1.4【答案】(1)3(2)-9【分析】(1)根据有理数的混合计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)―23÷=―23×(―36)=16×(―36)―23×(―36)+512×(―36)=―6+24―15 =3;(2)解:―22×14―4÷―1=―4×14―4÷49―1=―1―4×94―1=―1―9+1=―9.【点睛】本题主要考查了含乘方的有理数混合计算,有理数的四则混合运算,熟知相关计算法则是解题的关键.21.(2022·黑龙江绥化·期中)计算:(1)―6.5+(―3.3)―(―2.5)―(+4.7);(2)6××(―12)×116;(3)―32+2×4―1÷2(4)492425×(―5)(5)999×11845+999×――999×1835【答案】(1)―12(2)63(3)―9(4)―24945(5)99900【解析】根据有理数的加减乘除运算法则求解即可.(1)解:―6.5+(―3.3)―(―2.5)―(+4.7)=―6.5―3.3+2.5―4.7=―(6.5+3.3+4.7)+2.5=―14.5+2.5=―12;(2)解:6××(―12)×116=6×34×12×76=63;(3)解:―32+2×4―1÷2=―9+2×(4―4)=―9;(4)解:492425×(―5)=49×(―5)=―49×5―2425×5=―245―245=―24945;(5)解:999×11845+999×―999×1835=999×118+45―15―18=999×100=99900.【点睛】本题考查有理数的加减乘除混合运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.22.(2022·全国·七年级课时练习)计算(1)4×(―12―34+2.5)×3―|―6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)―14―(1―0.5)×13―[2―(―3)2](4)(―2)4÷(―4)×―12【答案】(1)9(2)2(3)356(4)―2【解析】(1)解:4×(―12―34+2.5)×3―|―6|=4×54×3―6=15―6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=―1×(―12)÷[16+(―10)]=―1×(―12)÷6=12÷6=2.(3)―14―(1―0.5)×13―[2―(―3)2]=―1―12×13―(2―9)=―1―16+7=6―1 6=356.(4)(―2)4÷(―4)×―12=16÷(―4)×14―1=―4×14―1=―1―1=―2.【点睛】本题考查了有理数的混合运算,正确计算是解题的关键.。
有理数混合运算通关专练(50题)=−1−18×(−8)=−1+1=0【点睛】本题主要考查有理数的混合运算,解答的关键在于对相应的运算法则的掌握.5.(2022秋·七年级课时练习)直接写得数:(1)6-5=(2)-7×(-5)=(3)5+(-3)=(4)-8-8=(5)-3.45×9.98×0=(6)2÷(-12)=(7)-123=(8)-(+3)=(9)3+(-1)2=(10)-24=【答案】(1)1(2)35(3)2(4)-16(5)0(6)-4(7)-4(8)-3(9)4(10)-16【分析】根据有理数的四则混合运算法则和有理数的乘方法则分别计算即可求解.(1)解:6-5=1【分析】(1)按照有理数的加减混合运算法则进行求解即可;(2)按照有理数的混合运算法则进行求解即可;(1)解:17−(−23)−19+(−31)=17+23−19−31=40−50=−10;(2))−|−9|解:−14+(−2)÷(−13=−1+(−2)×(−3)−9=−1+6−9=−4.【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.16.(2023秋·广东广州·七年级广州市天河区汇景实验学校校考期中)计算:(1)(−20)+(+3)−(−5)−(+7).+∣−2∣.(2)−12−(−8)÷22×14【答案】(1)-19;(2)32【分析】(1)先写成省略括号和的形式,再利用同号相加,最后算异号加即可,(2)先计算乘方与绝对值,再计算乘除法,最后计算加减即可.【详解】(1)原式=−20−7+3+5,=−27+8,=-19;+2,(2)原式=−1−(−8)÷4×14=−1+1+2,2.=32【点睛】本题考查有理数的加减乘除乘方混合运算问题,掌握有理数的混合运算法则,和运算顺序是解题关键.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.19.(2023秋·浙江杭州·七年级统考期末)计算−(−2)3;(3);(4)90°-45°58/ ;(5) 38°36/ +72.5°(1)-1+2×3 ;(2)(−3)2÷32(结果用度表示)(4)44°2/ (5)111.1°【答案】(1)5(2)14(3)−12【详解】试题分析:(1)-1+2×3=5 ;−(−2)3=14;(2)(−3)2÷32;(3)=-12(4)90°-45°58/ =44°2/ ;(5) 38°36/ +72.5°=111.1°考点:有理数法则的应用点评:解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数,有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.20.(2023秋·江苏无锡·七年级校联考期末)计算:(1)−1.5+1.4−(−3.6)−1.4+(−5.2))(2)−22×7−(−3)×6−5÷(−15【答案】(1)−3.1(2)15【分析】(1)根据有理数的混合运算法则依次计算即可;(2)根据有理数的混合运算法则依次计算即可.【详解】(1)−1.5+1.4−(−3.6)−1.4+(−5.2)=3.6+(1.4−1.4)−(5.2+1.5))(2)先计算乘方与绝对值,同步进行乘法运算,最后计算加减运算即可得到答案.【详解】解:(1)(−2)3+12×8=−8+4=−4.(2)(−2)2−|−7|+3−2×(−12)=4−7+3−(−1)=7−7+1=1.【点睛】本题考查的是含乘方的有理数的混合运算,绝对值的运算,掌握混合运算的运算方法与运算顺序是解题的关键.27.(2023秋·江苏南通·七年级统考期中)计算(1)(-20)+(-9)-11;(2)(3)(+-)×18(4)【答案】(1)-40;(2)100;(3)8;(4)-32.【详解】试题分析:(1)原式=-29-11=-40;(2)原式=(−4)×5×(−5)=100;(3)原式=6+3−1=8;(4)原式=−10+8÷4−(−8)×(−3)=−10+2−24=−32.考点:有理数的混合运算.28.(2023秋·山东潍坊·七年级统考期中)计算下列各题:(1)−23−(−18)−1−(+15)+23;(2)(13+56−512)÷(−136);(3)−22+[12−(−2)×3]÷(−3).【答案】(1)2;(2)−27;(3)-10(--))15 (3) 2 (4)(2)−12020+|−2|+18×(23−56)【答案】(1)8;(2)-2【分析】(1)先化简符号,再作加减法;(2)先算乘方,绝对值,利用乘法分配律展开计算,再作加减法.【详解】解:(1)12−(−18)+(−7)−15=12+18−7−15=8;(2)−12020+|−2|+18×(23−56)=−1+2+(18×23−18×56)=−1+2+(12−15)=−1+2−3=-2【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.41.(2023春·全国·七年级专题练习)计算:(1)(−13)−2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0(2)3x(2x−3)(3)(a+b)(3a−2b)(4)(4a2−6ab+2a)÷2a【答案】(1)﹣2;(2)6x2−9x;(3)3a2+ab−2b2;(4)2a−3b+1.【分析】(1)根据负整数指数幂、0指数幂的运算法则,运用有理数的混合运算法则计算即可;(2)根据单项式乘以多项式法则计算即可;(3)根据多项式乘以多项式运算法则计算即可;(4)根据多项式除以单项式运算法则计算即可.【详解】(1)(−13)−2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2.。
七年级上册数学综合复习--有理数混合运算与代数式化简求值例1.1.,,,),(),(,,在0%20135|6|3222--------中正数的个数为( ) (A )2个 (B )3个 (C)4个 (D)5个 2、有理数22-,3)2(-,2--,)21(+-按从小到大的顺序排列是( ) (A )3)2(-<22-<2--<)21(+- (B ))21(+-<2--<22-< 3)2(- (C )2--<)21(+-<22-<3)2(- (D )22-<3)2(-<)21(+-<2-- 3.下列各对数中,数值相等的是( )A 、23+与22+B 、32-与3)2(-C 、23-与2)3(-D 、223⨯与2)23(⨯4. 在2223)3(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于 ( )A . -5B .5C .6D .8例2、计算:(1)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛--32775.2324523 (2)115292.011275208.06.0++--+--(3)4941911764131159431+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++ (4)()()[]2432315.011--⨯⨯---(5)()2475.131185428122008⨯⎪⎭⎫ ⎝⎛-+--+-÷⨯-(6)()()[]2285.0813********-----⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛---例3、计算:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯+⨯⨯÷8-619-9-613-7613-1-2011 ()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+÷⨯2-31-4.0-411-4-3242-2021例4、1、如图,若开始输入2-=x ,则最后输出的结果是 .2、右图是一个数值转换机的示意图若输入x 的值为3,y 的值为-2时,则输出的结果为: ______ .若输入x 的值为-3,y 的值为2时,则输出的结果为:______ .达标测评1(每道6分):⑴ 22334236293---⨯-÷-()⑵()()32003212475.281311---+-⨯⎪⎭⎫ ⎝⎛-+(3))]51()43541()2[(234-÷⨯-----(4)23)23(942-⨯÷--6÷(-2)×(-31) (5)2220102231)5.01(1-⨯⨯---(6)])1()92()32()3(2[2200332---⨯-⨯-+---重点内容二:化简求值(一)例1、1.下面是同类项的一组是( )(A) x 3与3x (B) ―mn 2与2m 2n (C) a 3与b 3 (D) 52与-22.下列合并同类项正确的有( )(A )2x+4x=8x 2 (B)3x+2y=5xy (C)7x 2-3x 2=4 (D)9a 2b -9ba 2=03.下列各式中,去括号正确的是( )。
专题02 有理数的混合运算 技巧提升40题有理数的混合运算(40题)解题技巧:主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算,再算低级运算,同级运算从左到右依次进行。
(1)有括号,先算括号里面的运算,按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算,按从左往右依次进行。
当然,在准守上述计算原则的前提下,也需要灵活使用运算律,以简化运算。
1.(2022·江苏镇江·七年级阶段练习)计算:(1)(-8)+10-2+(-1); (2)1134256115⎛⎫⨯-⨯÷ ⎪⎝⎭;(3)12-7×(-4)+8÷(-2); (4)345123618⎛⎫⎛⎫+-÷- ⎪ ⎪⎝⎭⎝⎭;(5)1519816⎛⎫-⨯ ⎪⎝⎭; (6)()4445393173777⎛⎫⎛⎫⎛⎫-⨯-+-⨯++⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(2022·广东梅州·七年级期末)计算:33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭.3.(2022·湖南长沙·七年级期末)计算:()()241110.5134⎡⎤---⨯⨯--⎣⎦.4.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭.5.(2022·全国七年级专题练习)计算: (1) (2)-12×(-5)÷[-32+(-2)2].6.(2022·全国·七年级)计算:(1)137()244812+-⨯; (2)﹣23÷8﹣14×(﹣2)2;(3)﹣24+(3﹣7)2﹣2×(﹣1)2; (4)[(﹣2)3+43]÷4+(﹣23).7.(2022·广东梅州·七年级期末)计算:()22020311(2021)23π-⎛⎫-+-+-- ⎪⎝⎭8.(2022·江苏七年级月考)计算:(1), (2),(3), (4)9.(2022·山东聊城市·七年级月考)计算:(1); (2);()()()23223322----+-()()()()-3-4-11--19++()()231-2-1-0.52--37⎡⎤⨯⨯⎣⎦()()201921416212--÷-⨯--()()325112243612⎛⎫-+--+⨯- ⎪⎝⎭221229433⎛⎫--⨯-+÷- ⎪⎝⎭()157242612⎛⎫-+-⨯- ⎪⎝⎭10.(2022·浙江杭州市·七年级期末)计算: (1). (2).(3) (4)11.(2022·河北·石家庄七年级阶段练习)计算(1) 5.3 3.2 2.5 5.7--+-- (2)1111513 4.522552---+-+(3)()()31117 6.2580.7522424⎛⎫⎛⎫⎛⎫+-+--+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (4)()521315.5185772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)4512117621⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)()14812649⎛⎫-÷⨯-÷ ⎪⎝⎭12.(2022·浙江初一课时练习)计算: (1); (2);(3); (4); 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭512.584⎛⎫-÷⨯- ⎪⎝⎭()142722449-÷⨯÷-311313524⎛⎫⎛⎫⎛⎫-⨯-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭114222⎛⎫-⨯÷-⨯ ⎪⎝⎭(5);(6). 13.(2022·全国·七年级课时练习)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)11(3)(3)33⎛⎫⨯-÷-⨯-⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷-⎪ ⎪⎝⎭⎝⎭;(4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯-⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷--⎪⎝⎭;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷--⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.14.(2022·浙江初一课时练习)计算:(1)512.584⎛⎫-÷⨯-⎪⎝⎭;(2)()142722449-÷⨯÷-;(3)311313524⎛⎫⎛⎫⎛⎫-⨯-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)114222⎛⎫-⨯÷-⨯⎪⎝⎭;2415127754⎛⎫⎛⎫-÷-⨯⨯-÷⎪ ⎪⎝⎭⎝⎭134118432-÷⨯⨯-(5)2415127754⎛⎫⎛⎫-÷-⨯⨯-÷ ⎪ ⎪⎝⎭⎝⎭; (6)134118432-÷⨯⨯-.15.(2022·江苏初一课时练习)计算: (1); (2).(3); (4).16.(2022·日照市初一月考)计算:()()()()()118120.1250.0013⎛⎫-⨯-⨯-⨯-⨯- ⎪⎝⎭;()()()253152212 2.50.25774375⎛⎫⎛⎫⎛⎫-⨯÷-⨯÷-+-÷-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.17.(2022·四川南充市·阆中中学七年级期中)计算: (1)1131()(3)(2)(5)2442---++-+.(2)94(81)(16)49-÷⨯÷-. 4535531513513135⎛⎫⎛⎫⨯+-⨯+⨯- ⎪ ⎪⎝⎭⎝⎭2215130.34(13)0.343737-⨯-⨯+⨯--⨯82112124317152⎛⎫⎛⎫⎛⎫⎛⎫+⨯-⨯+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭157(60)15612⎡⎤⎛⎫⎛⎫+---⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦18.(2022·江苏七年级月考)计算:(1), (2),(3), (4)19.(2022·浙江杭州市·七年级期末)计算:(1). (2).(3) (4)20.(2022·山东聊城市·七年级月考)计算:(1); (2);21.(2021·广西柳州市·九年级三模)计算:(﹣3)2×()3﹣(﹣9+3).()()()()-3-4-11--19++()()231-2-1-0.52--37⎡⎤⨯⨯⎣⎦()()201921416212--÷-⨯--()()325112243612⎛⎫-+--+⨯- ⎪⎝⎭71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭221229433⎛⎫--⨯-+÷- ⎪⎝⎭()157242612⎛⎫-+-⨯- ⎪⎝⎭1322.(2021·广西南宁市·南宁二中九年级三模)计算:.23.(2022·河南洛阳市·七年级期末)计算:(1);(2).24.(2022·浙江七年级期末)计算:(1).(2).(3). (4).25.(2022·湖北黄石市·七年级月考)计算: (1)(2)26.(2022·浙江七年级单元测试)计算(1) (2)(3) (4)22331(2)62⎡⎤-÷⨯+---⎣⎦3(4)18(6)(5)⨯-+÷---433116(2)(1)2--÷-+-⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()()2018211113223⎡⎤⎛⎫-+-⨯+-+ ⎪⎢⎥⎝⎭⎣⎦()()()()322019234221-⨯-+-÷---3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(5) (6)(7) (8)27.(2022·全国初一课时练习)计算: (1)-22÷23×213⎛⎫ ⎪⎝⎭2; (2)214×(-67)÷(12-2); (3)17-23÷(-2)×3;(4)2×(-5)+23-3÷12; (5)(-5)3×[2-(-6)]-300÷5.28.(2022·全国初一单元测试)计算 (1)225(3)39⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦(2)3116(2)(4)8⎛⎫÷---⨯- ⎪⎝⎭(3)11332442⎛⎫⎛⎫-+---- ⎪ ⎪⎝⎭⎝⎭ (4)()()3226433--÷-⨯--.22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++29.(2022·全国初一单元测试)计算下列各题:(1)()157482812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦ (2)()()222211432333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(3)()()232415123262⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭ (4)666433363777⎛⎫⎛⎫⨯--⨯--⨯ ⎪ ⎪⎝⎭⎝⎭30.(2022·湖北省初一月考)计算: (1)()()2018211113223⎡⎤⎛⎫-+-⨯+-+ ⎪⎢⎥⎝⎭⎣⎦(2)()()()()322019234221-⨯-+-÷---31.(2022·新疆乌鲁木齐·七年级期末)计算:(1)()11893-+--+- (2)()2411236⎡⎤--⨯--⎣⎦32.(2022·广西河池·七年级期末)计算(1)()23214⎛⎫ ⎪⎝-⨯⎭-; (2)()32312592-+-⨯+-÷.33.(2022·河南平顶山·七年级期末)计算:(1)(15732612-+-)÷(136-); (2)(﹣1)4×|﹣8|+(﹣2)3×(12)2;34.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.35.(2022·云南红河·七年级期末)计算: (1)23(2)5(13)4-⨯+-÷. (2)20222314235-+⨯-÷-.36.(2022·云南文山·七年级期末)3124(2)(4)|6|2⎛⎫÷---⨯-+- ⎪⎝⎭.37.(2022·全国·七年级)计算下列各题:(1)115424236⎛⎫----⨯ ⎪⎝⎭; (2)7775(3)(9)(3)17(3)444-⨯-+-⨯++⨯-.38.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|39.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.40.(2022·四川乐山·七年级期末)计算:32(1)(5)[(3)2(5)]-⨯-÷-+⨯-.专题02 有理数的混合运算 技巧提升40题有理数的混合运算(40题)解题技巧:主要是要注意混合运算的运算顺序。
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
期末复习:有理数混合运算专题复习初一 ( ) 班 姓名: 座号:导学一、知识点梳理:复习有理数有关运算的法则 导学二、重温故知1.小试牛刀,填空:(1) 如果运进货物30吨记作+30吨,那么运出50吨记作 。
(2) 某种药品的说明书上标明保存温度是(10±2)℃,由此可知在 ℃~ ℃范围内保存才才合适。
导学三、闯关行动开始,师生共同展示(我倾听,我掌握) 第一关:加减关 2.有理数的加减法:(1) )(-)(-64+= (2) )(-64+ = (3) =)(-64+ (4))(-60+= (5)66+)(-= (6)43+-= (7)34+-= (7) (-3)-(-2)= (8) 0-(-2)= (9)(–14)–(+16)= (10)(+5)–(+9)= (11)0–13= (12)–16–38= 3.填空:(1)比2℃低8℃的温度是 ℃;(2)比-3℃低6℃的温度是 ℃;第二关:乘除关4.有理数的乘除法:直接写出结果(1)4×(-3)= (2) (-0.5)×(-9)= (3) ()()()432-⨯-⨯-= (4)35÷(-5)= (5))41()4(-÷-= (6) 1845-= 第三关:乘方关5.填空:(-2) 2= (-3)3= (-0.1)3= (+21)2= (-1)100 = (-1)101 = 12 = -12 =6.下列各组数中,不相等的一组是( )A.()32-和32-B. ()22-和22-C.-()42-和42- D. 32-和32导学四:一展锋芒(我掌握,我快乐) 7.计算:(1))(-)(-35242516+++ (2)15)7()18(12--+--解:原式= 解:(3)-2×6÷(-4) (4))(-)(-575125÷解: 解:(5))12()216141(-⨯-+ (6))()(-)(-)(-317563256+⨯+⨯ 解: 解:(7)4)2(5)2(32÷--⨯- (8)[]24)3(53611--⨯-- 解: 解:导学五:学以致用(我努力,我提高)8.国家规定超市里的封闭式冷冻柜至少要达到零下5℃,否则里面的食品不能得到保鲜,现知道某超市的冷冻柜里的温度是零下18℃ ,由于电力紧缺,供电站准备拉闸五小时,已知停电后温度每小时约上升4℃,问超市的冷冻柜里的食品还能不能得到保鲜作用?9.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正.负数来表示,记录如下表:②若标准质量为450克,则抽样检测的总质量是多少?导学六:课堂小结我们这节课复习了什么?期末复习:有理数混合运算专题复习小测初一( ) 班姓名:座号:综合基础过关(我过关,我收获) 1.填空:(1)___)9()6(=-++ , (2)___)9()6(=--+, (3)___)9()6(=-⨯+, (4)___46=+-, (5)___4716=-, (6)___)14()56(=-÷- (7)____)3(2=-, (8)____32=-, (9)____)2(3=--2.在―2,3,4,―5这四个数中,任取两个数相乘,所得积最大的是( ) A 、20 B 、-20 C 、12 D 、103.(-1)100+(-1)101所得的值是( ) A 、1 B 、-1 C 、0 D 、-1100 4..计算:(1)9+(—7)+10+(—3)—(—9) (2))832143(16+--⨯- 解:原式= 解:原式=期末复习:有理数混合运算专题复习小测初一 ( ) 班 姓名: 座号:综合基础过关(我过关,我收获) 1.填空:(1)___)9()6(=-++ , (2)___)9()6(=--+, (3)___)9()6(=-⨯+, (4)___46=+-, (5)___4716=-, (6)___)14()56(=-÷- (7)____)3(2=-, (8)____32=-, (9)____)2(3=--2.在―2,3,4,―5这四个数中,任取两个数相乘,所得积最大的是( ) A 、20 B 、-20 C 、12 D 、103.(-1)100+(-1)101所得的值是( ) A 、1 B 、-1 C 、0 D 、-1100 4..计算:(1)9+(—7)+10+(—3)—(—9) (2))832143(16+--⨯- 解:原式= 解:原式=。