图形的平移与旋转复习课
- 格式:pptx
- 大小:1009.60 KB
- 文档页数:18
3.长方形和正方形,平移、旋转和轴对称复习 - 苏教版三年级数学上册教案教学目标1.复习长方形、正方形的定义和性质。
2.理解平移、旋转、轴对称的概念。
3.能够进行简单的平移、旋转、轴对称变换。
教学重点1.平移、旋转、轴对称的概念和基本操作。
2.平移、旋转、轴对称的特点和变化规律。
教学难点1.平移、旋转、轴对称的变换与图形的位置、面积、周长等性质的关系。
2.同时运用平移、旋转、轴对称的变换进行复合变换。
教学内容本节课将围绕长方形和正方形、平移、旋转、轴对称这些重要概念展开学习。
概念复习首先,让我们来回忆一下长方形和正方形的定义和性质。
长方形是指有两组相对平行的边且每组中的边相等的四边形。
它的性质有:•对角线相等,且相互垂直。
•对边相等,且相互平行。
•内角和为180度。
•面积为长乘宽。
正方形是一种特殊的长方形,它的性质有:•四条边相等,且相互平行。
•对角线相等,且相互垂直。
•内角和为360度,每个角为90度。
•面积为边长的平方。
平移接下来,我们介绍平移这一概念。
平移指的是在平面内把一个图形沿着某个方向上不改变它的大小和形状地移动。
对于二维图形,可以上下左右任意平移。
它的特点有:•只改变图形的位置,不改变图形的形状和大小。
•平移前后,图形的周长和面积不变。
旋转旋转是指以固定点(旋转中心)为中心,固定角度(旋转角)旋转一个平面图形。
它的特点有:•旋转前后,图形的形状和大小不变,但是位置会发生改变。
•旋转角度为正,表示逆时针旋转;旋转角度为负,表示顺时针旋转。
•每旋转一度,图形的每一个点会按照相对于旋转中心的距离和旋转角度的比例按逆时针方向旋转一个度。
轴对称轴对称是指一个图形绕着某一条轴对称轴翻折,翻折后的图形与原图重合。
它的特点有:•对称轴将图形分为两个相同的部分,两端的点称为对称点,两点到对称轴的距离相等。
•对称轴可以竖直、水平或倾斜。
平移、旋转、轴对称的复合变换当我们将平移、旋转、轴对称进行组合使用时,就会得到复合变换。
北师大版三年级下册重难点题型同步训练第二章《图形的运动》第三课:平移与旋转一、单选题1.(2020模拟三上·武城期末)图形平移后得到的图形是()。
A. B. C. D.【答案】 C【解析】【解答】图形平移后得到的图形是。
故答案分为:C。
【分析】注意平移不改变图形的形状和大小,平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等。
2.(2020模拟三上·宁津期中)下面图案中,()是通过下图平移得到的。
A. B. C.【答案】 A【解析】【解答】解:平移不改变图形的形状和方向,所以A的图案是通过已知图形平移得到的。
故答案为:A。
【分析】平移不改变图形的形状和方向。
3.下图中,甲、乙两图的周长相比,结果是()。
A. 甲长B. 乙长C. 一样长【答案】 C【解析】【解答】根据图形可以看出,甲乙两图的周长一样长。
故答案为:C。
【分析】利用平移法,把甲图的线段向上,向右平移,刚好是一个长方形,和乙图一样。
4.(2020模拟三下·龙华期末)地球自转的运动现象是()。
A. 旋转B. 平移C. 对称【答案】 A【解析】【解答】解:地球自转的运动现象是旋转。
故答案为:A。
【分析】旋转是物体绕着一个中心点做圆周运动;平移是物体沿着一条直线运动。
5.下面是做平移运动的是()。
A. B. C.【答案】 C【解析】【解答】拉抽屉做的是平移运动,风车和轮子是旋转运动。
故答案为:C。
【分析】旋转就是指在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
旋转改变的是图形的方向,不改变图形的形状和大小;平移就是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。
平移不改变图形的形状和大小,改变的是图形的位置,平移可以不是水平的。
6.(2020模拟三下·龙华期中)轴对称、旋转、平移这三种图形变换的共同点是()。
A. 都是沿一定方向移动了一定的距离B. 都不改变图形的形状和大小C. 对应线段互相平行【答案】 B【解析】【解答】解:轴对称、旋转、平移这三种图形变换的共同点是都不改变图形的形状和大小。
图形的平移与旋转课例编号26 学科数学年级二学期第一学期课题图形的平移与旋转(第二课时)教科书书名:义务教育教科书数学二年级上册教学人员姓名单位授课教师XX市XX区XX小学指导教师XX市XX区教师进修学校学习目标学习目标:1.结合生活实例,在观察、对比、分析等活动中,进一步认识平移与旋转现象。
2.在具体情境中,应用所学平移与旋转知识解决简单问题。
3.在活动中发展观察、比较、想象和推理能力,发展空间观念。
学习重点:进一步体会物体图形经过平移或旋转后的变化。
学习难点:应用平移与旋转解决简单的问题。
教学过程时间教学环节主要师生活动4分钟一、复习导入一、结合生活实例,再次感知平移与旋转的特点。
上节课我们一起走进了游乐场,发现了平移和旋转现象。
课下,用心的小朋友们,也开始了他们的寻找之旅,他们会找到哪些平移和旋转现象呢?我们一起来看看吧。
(一)欣赏作品,巩固平移与旋转特点。
生1:这是我家大衣柜,我看到妈妈在打开大衣柜时,衣柜推拉门是直直的从左边到了右边,关上时从右边又到了左边,衣柜门做的是平移运动。
生2:周末天气特别晴朗,我和爸爸妈妈出去玩,汽车在笔直的公路上行驶着,车身的运动就是平移,我们坐看到了一个漂亮的大风车,风车的叶片绕着中间的点,转啊转,转动起来可真好看!生3:一天傍晚,我看到工人叔叔在修路灯,拧灯泡时灯泡是旋转的。
我好想对工人叔叔说:叔叔您们辛苦啦,一定要注意安全。
这位同学发现了,拧灯泡时灯泡的运动,确实基本上,是旋转呢。
(二)对比平移,借助旋转特点,理解秋千的运动方式。
1.观察、想象一下自己荡秋千的时候,初步判断荡秋千属于什么运动方式。
2.结合荡秋千慢动作,发现秋千的运动路线是弯曲的。
3.对比汽车运动路线,感受到秋千的运动方式与风车和钟表指针的运动方式是相同的。
(三)小结平移时物体是直直的在运动,就像小汽车车身的运动(按),运动方向不发生变化,但是荡秋千时不是直直的运动,方向发生了改变。
虽然秋千没有绕够一圈,但一直是绕着支架上的杆儿在动,它和风车钟表指针的运动方式是一样的,所以即使没有绕够一圈儿也是旋转。
收稿日期:2021-01-16作者简介:曹自由(1979—),男,高级教师,主要从事中学数学教育研究.“图形的轴对称、平移和旋转”中考专题复习教学设计曹自由摘要:图形的变化是发展空间观念的内容抓手,也是研究图形的基本方法,是发现和构造不变量和不变关系的重要途径.学生在新授课阶段分别学习了轴对称、平移和旋转,在中考第二轮复习中需要建立它们之间的关联,进行整体复习.通过四个课时的复习教学,分别引导学生感受运动变化、理解运动变化、运用运动变化、整合运动变化,有效发展学生的空间观念、几何直观和推理能力.文章将第1课时设计整理成文,以供研讨.关键词:图形的变化;中考复习;教学设计一、内容和内容解析1.内容图形的变化(轴对称、平移、旋转).2.内容解析初中阶段学习的几何图形的变化包括轴对称、平移、旋转和相似(位似)的概念、性质和应用.本节课复习的内容是图形的全等变换——轴对称、平移和旋转.图形的全等变换可以看作是图形的刚体运动,用全等变换的思想研究图形的性质和关系是“图形与几何”领域重要的学习内容.在义务教育阶段,图形之间最重要的关系就是全等,全等可以用图形重合的方式直观获得,而“图形重合”需要通过图形的运动来实现,这种运动就是图形的轴对称、平移和旋转.图形的变化是理解图形空间结构的基本方法,也是空间观念的核心要素.抽象轴对称、平移和旋转的基本性质,用逻辑的方法理解图形的全等变换是从定性到定量研究图形的变化的桥梁.从小学直观认识图形的轴对称、平移和旋转到初中的逻辑研究、坐标表示再到后续的矩阵表示,是图形的全等变换的定性到定量发展的三个重要阶段.基于以上分析,确定本节课的教学重点是:建立三种图形的变化相关知识的逻辑体系,并用图形变化的观点认识几何图形.二、目标和目标解析1.目标(1)理解轴对称、平移、旋转之间的联系,加深对运动变化的认识,落实画图和识图的能力,渗透几何直观能力.(2)在问题探究的过程中,逐步形成用图形的变化思考、解决问题的意识,渗透图形变化思想.2.目标解析达成目标(1)的标志:能够从运动变化的角度描述两个已知图形之间的关系,能够根据图形变化(轴对称、平移、旋转)的概念和性质画出运动变化后的图形,通过梳理建立三种变化相关知识的逻辑体系.达成目标(2)的标志:能够以运动的视角观察图形,用变化的思想分析图形特征.三、教学问题诊断分析近几年北京中考试卷中的几何综合题都考查了图形的变化的相关内容,并且不是单一的,而是从一种变化到另一种变化的综合考查.但是学生学习时,知识是零散的、分割开的,先学习了平移,然后是轴对称和旋转,没有形成三种变化相关知识的逻辑体系.同时,图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.基于以上分析,可以确定本节课的教学难点是:三种图形的变化之间的转化.四、教学过程设计1.课前学习题目如图1,在平面直角坐标系xOy中,△AOB 可以看作是△OCD经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OCD得到△AOB 的过程:.图1思考问题:什么是轴对称、平移、旋转?它们各有什么性质?它们之间有什么联系?【设计意图】此题为2017年中考北京卷第15题,学生在课前复习轴对称、平移、旋转的相关知识,关注知识的形成过程及知识之间的内在联系,在应用中不断深化认识.通过解决中考试题回顾思考涉及的知识和思想方法,进一步提升能力.2.交流梳理环节1:交流课前学习成果.(1)平移:如图2,平移前后的两个图形全等(从图形形状、大小关系来看);对应线段平行且相等,两对应点连线互相平行(共线)且相等(从图形位置变化来看).图2CC′BAA′B′(2)轴对称:如图3,关于某直线对称的两个图形全等(从图形形状、大小关系来看);对应线段相等,两个图形关于某直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线(从图形位置变化来看).图3B′A′ABCNMC′(3)旋转:如图4,旋转前后的两个图形全等(从图形形状、大小关系来看);每两对对应点连线所形成的角都等于旋转角(从图形位置变化来看);对应点到旋转中心的距离相等(从图形位置变化来看).BCAA′C′(1)OB′ABCC′A′(2)图4(4)轴对称、平移、旋转三者的关系:如图5,两条对称轴平行的轴对称复合⇔一次平移;两条对称轴相交的轴对称复合⇔一次旋转.2(3)2(1)2(2)图5轴对称在三种变化中起到桥梁作用,轴对称与另外两种全等变换在地位上是有区别的,它是更加基础的一种变化,所有平移、旋转都可以用轴对称变化来解释.【设计意图】学生先回答思考问题,借此梳理三种变化的性质,明确各自的画图方法及依据,明确三种变化之间的关系.环节2:问题引导深入思考.思考:只用一种变化可不可以操作?如何操作?用两种变化如何操作?哪种方法容易快速想到?为什么?【设计意图】课上让学生先交流自己的结果.而学生在交流结果时一定是无序的,这时教师可以引导学生进行有序思考.问题1:对于题目,只用两种变化有哪些方法?学生活动:交流使用两种变化的情况.(1)旋转+平移.思路1:将△COD绕点C顺时针旋转90°后,再向左平移两个单位得到△AOB.思路2:将△COD绕点O顺时针旋转90°后,再向上平移两个单位得到△AOB.思路3:将△COD向左平移两个单位后,再绕点C 顺时针旋转90°得到△AOB.思路4:将△COD向上平移两个单位后,再绕点A 顺时针旋转90°得到△AOB.(2)旋转+轴对称.思路5:将△COD先关于x轴对称,再以点C为旋转中心顺时针旋转90°,再作关于直线x=1的对称得到△AOB.追问:采用“平移+轴对称”的方式可以吗?归纳:对应顶点排列的顺序一致——旋转;与目标图形的方向一致——平移.问题2:用一种变化有哪些方法?追问:两个全等的三角形通过某种运动方式一定能重合吗?若能重合,如何运动?归纳:对应顶点排列顺序一致,经过一次旋转能重合.学生活动:对于题目,展示只通过旋转或只通过轴对称完成任务的方法,并说明自己的画图方法和画图依据.方法1:(旋转)根据旋转的性质,确定旋转中心、旋转方向和旋转角.思路6:将△COD绕点()1,1顺时针旋转90°得到△AOB.思路7:将△COD先绕点()1,-1逆时针旋转90°后,再绕点O旋转180°得到△AOB.方法2:(轴对称)两条对称轴相交的轴对称复合⇔一次旋转.思路8:先将△COD沿直线x=1对称后,再沿直线y=x对称得到△AOB.思路9:先将△COD沿直线y=1对称后,再沿直线y=-x+2对称得到△AOB.【设计意图】题目难度不大,且学生具备直接识别运动变化的能力,但是学生自己描述运动变化的经验还是比较少的,而且运动的方式是不唯一的,给出运动前后的图形,描述运动变化要素,这对学生的要求实际上是提高了很多的.因此,要关注这三种运动变化之间的联系,通过这个过程深化学生对于运动变化的认识.3.变式练习变式1:如图6,在正方形ABCD中,点E,F分别是BC,CD的中点,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(平移、轴对称、旋转)得到△BCF?图6B E CFDA图7B E CDA变式2:如图7,在等边三角形ABC中,AD=BE,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(轴对称、平移、旋转)得到△CAD?学生活动:展示所画图形的变化过程,并用语言描述这个过程.学生可能想到如下情况.(1)旋转+平移(如图8和图9).D图8图9(2)两次轴对称(如图10).图10(3)一次旋转(如图11).图11【设计意图】将任务探究的思维过程结构化,形成解决问题的方法思路.同时渗透用运动变化的眼光观察图形的思想方法.满足特定条件下的图形的变化可能有多种情况,培养思维的有序性、多样性.4.归纳与提升总结、归纳本节课的教学流程如图12所示.运动的眼光,变换的思想ìíîïï图形的平移图形的轴对称图形的旋转图12【设计意图】归纳方法、提升能力,形成用运动的眼光、变换的思想看待两个图形之间的关系的能力,渗透运动变换思想.5.布置作业(1)如图13,在平面直角坐标系xOy中,△O′A′B′可以看作是△OAB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OAB得到△O′A′B′的过程:.图13(2)如图14,在平面直角坐标系xOy中,点A,B的坐标分别为A()-4,1,B()-1,3,经过两次变化(平移、轴对称、旋转)得到对应点A″,B″的坐标分别为A″()1,0,B″()3,-3,则由线段AB得到线段A′B′的过程是:,由线段A′B′得到线段A″B″的过程是:.图14(3)如图15,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由线段AB得到线段A′B′的过程:.图16图15ABA′B′(4)如图16,在平面直角坐标系xOy中,△ABC可以看作△DEF是经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△DEF得到△ABC的过程:.五、教学反思本节课是“图形的轴对称、平移和旋转”中考第二轮专题复习课,内容属于“图形的变化”.希望通过一系列数学活动,帮助学生在已有知识基础上对图形变换思想进行相应的概括和应用.同时,在落实“四基”、培养“四能”的过程中,促进学生数学学科核心素养的形成和发展.1.感受运动变化,建立逻辑体系学生通过亲身经历课前的数学操作活动后,体验的水平停留在“感觉”阶段,还没有对活动过程进行深入的思考,没有深刻认识到三种全等变换之间内在的逻辑关系.在此基础上,学生在课堂上通过交流及反思性观察将获得的体验进行抽象,梳理三种全等变换各自的性质及它们之间的联系,形成解决该类问题的一般思维模式.图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.在关注联系的基础上,通过问题引导,使学生能够进行知识的归纳梳理,并能够主动利用经验的迁移去研究其他问题.通过本节课的教学,进一步帮助学生感受运动变化,学会以运动变化的视角分析图形,也为后续进一步主动运用图形变化视角认识几何图形,运用图形变换思想解决综合性问题奠定基础. 2.培养思维的有序性、多样性满足特定条件下的图形的变化可能有多种情况,开放性问题有助于学生体验解决问题方法的多样性.与此同时,通过增加限定条件,从两种图形变化的组合,到只用一种图形变化,将任务探究的思维过程结构化,形成解决问题的方法思路.同时,渗透用运动变化的眼光观察图形的思想方法.本节课的教学目标定位在落实画图和识图能力,渗透几何直观能力,理解轴对称、平移、旋转之间的联系,加深对运动变化的认识;在问题探究的过程中,逐步形成用图形的变化视角思考解决问题的意识,渗透图形变化思想.在实际授课过程中,知识与技能落实得比较到位,而思想性体现不够充分,还需要深入研究,在思想性上多做文章.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]教育部基础教育课程教材专家工作委员会.《义务教育数学课程标准(2011年版)》解读[M].北京:北京师范大学出版社,2012.[3]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[4]任华中,傅海伦,邵亚娜.初中数学基本活动经验的教学目标层次划分[J].中国数学教育(初中版),2018(6):30-32.。
《图形的平移与旋转复习课》教课方案一、教课目的(一)知识与技术1.知道旋转和平移都不过改变图形的地点,而不改变图形的形状和大小,并能举例说明。
2.掌握平移、旋转的基天性质,并能举例说明。
3.掌握在平面直角坐标系中,平移后的图形与原图形对应点之间的关系,并能举例说明。
4.掌握两个成中心对称图形的特征。
5.梳理本章内容,用适合的方式体现全章知识构造,并与伙伴沟通。
(二)过程与方法经历建立本章知识的网络图,培育梳理知识的能力,核心知识的理解是要点。
(三)感情、态度与价值观1.经历对生活中的典型图案进行察看、剖析、赏识等过程,进一步发展空间观点、加强审盛情识 .2.经过学生之间的沟通、议论、培育学生的合作精神.教课要点:理解平移、旋转与中心对称的观点和性质 . 掌握坐标系中平移、对称的坐标特点。
教课难点:灵巧运用平移、旋转与中心对称的观点和性质解决有关图形问题。
二、教课过程教课过程分为以下几个环节:回首知识、建立网络图、稳固练习、总结概括。
(一)回首知识依据以下问题,回首本章知识。
1.平移能否改变图形的地点、形状和大小?旋转呢?请举例说明.2.平移、旋转各有哪些基天性质?请举例说明.3.在平面直角坐标系中,平移后的图形与原图形对应点的坐标之间有如何的关系?请举例说明.4.两个成中心对称的图形有哪些特征?中心对称图形有哪些特征?知识点概括:( 1)平移平移的观点:在平面内,将一个图形沿着某个方向挪动必定的距离,这样的图形运动叫做图形的平移。
平移的性质:平移不改变图形的形状和大小;图形经过平移,连结各组对应点所得的线段相互平行且相等。
(2)旋转旋转的观点:把一个图形绕一个定点转动必定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角。
旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角相互相等。
(3)轴对称:假如一个图形沿一条直线折叠后,直线两旁的部分可以重合,那么这个图形叫做轴对称图形。