异步电机仿真
- 格式:doc
- 大小:869.50 KB
- 文档页数:15
三相异步电动机变频调速系统设计及仿真引言随着科技的发展和电力系统的逐步完善,三相异步电动机在工业和民用领域中广泛应用。
为了满足不同负载条件下的调速需求,变频调速技术成为了最为常用的方案之一、本文基于三相异步电动机的特点,设计了一个简单的变频调速系统,并通过仿真验证了系统的性能。
一、系统结构设计根据三相异步电动机变频调速系统的基本结构,本文设计了以下几个部分:输入电源模块、变频器模块、电机驱动模块和反馈传感器模块。
1.输入电源模块输入电源模块通常由整流器和滤波器组成,用于将交流电转换为直流电,并通过滤波器减小输出的纹波电压。
本文采用了简化的输入电源模块结构,以简化设计和仿真过程。
2.变频器模块变频器模块是整个系统的核心部分,用于将直流电转换为固定频率或可调频率的交流电。
本文采用的是PWM(脉宽调制)变频器,控制器利用脉宽调制技术对直流电进行精细的调节,从而实现对输出频率的控制。
3.电机驱动模块电机驱动模块主要由电机和驱动器组成,用于将变频器输出的交流电转换为机械能,驱动电机工作。
本文使用了三相异步电动机作为驱动器,并采用了传统的电动机驱动方式。
4.反馈传感器模块反馈传感器模块用于获取电机的运行状态和工作参数,实时反馈给控制器,以实现对整个系统的闭环控制。
常用的反馈传感器有电流传感器、速度传感器和位置传感器等。
二、设计流程本文设计的变频调速系统采用闭环控制方式进行控制,设计流程如下:1.确定控制策略根据系统需求,选择适合的控制策略。
常用的控制策略有PI控制、模糊控制和神经网络控制等。
本文选择了基于PI控制的控制策略。
2.设计控制器根据控制策略设计控制器,主要包括比例环节和积分环节。
比例环节用于根据偏差信号产生控制量,积分环节用于消除系统的静态误差。
本文设计了基于PI控制器的控制器。
3.仿真系统建模根据系统的物理特性,建立仿真系统的数学模型。
本文仿真系统采用母线电压法,通过电机的等效电路进行建模和仿真。
基于MatlabSimulink的异步电机矢量控制系统仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电机矢量控制系统已成为现代电机控制领域的重要分支。
该系统通过精确控制异步电机的磁通和转矩,实现了对电机的高效、稳定和动态性能的优化。
Matlab/Simulink作为一种强大的仿真工具,为异步电机矢量控制系统的研究和设计提供了便捷的平台。
本文旨在探讨基于Matlab/Simulink的异步电机矢量控制系统仿真方法。
文章将简要介绍异步电机矢量控制的基本原理和关键技术,包括空间矢量脉宽调制(SVPWM)技术、转子磁链观测技术以及矢量控制策略等。
详细阐述如何利用Matlab/Simulink搭建异步电机矢量控制系统的仿真模型,包括电机模型、控制器模型以及系统仿真模型的构建过程。
文章还将探讨仿真模型的参数设置、仿真过程以及仿真结果的分析方法。
通过本文的研究,读者可以深入了解异步电机矢量控制系统的基本原理和仿真方法,掌握基于Matlab/Simulink的仿真技术,为异步电机矢量控制系统的实际设计和应用提供有益的参考和借鉴。
本文的研究也有助于推动异步电机矢量控制技术的发展和应用领域的拓展。
二、异步电机基本原理异步电机,又称感应电机,是一种广泛应用于工业领域的电动机。
其基本原理基于电磁感应和电磁力作用。
异步电机主要包括定子(静止部分)和转子(旋转部分)。
定子通常由铁芯和三相绕组构成,而转子则可能由实心铁芯、鼠笼型或绕线型结构组成。
当异步电机通电时,定子绕组中的三相电流会产生旋转磁场。
这个旋转磁场与转子中的导体相互作用,根据法拉第电磁感应定律,会在转子导体中产生感应电动势和感应电流。
这些感应电流在旋转磁场的作用下,受到电磁力的作用,从而使转子产生旋转力矩,驱动转子旋转。
异步电机的旋转速度与定子旋转磁场的旋转速度并不完全同步,这也是其被称为“异步”电机的原因。
异步电机的旋转速度通常略低于旋转磁场的同步速度,这是由于转子导体的电感和电阻导致的电磁延迟效应。
三相异步电动机proteus仿真
(实用版)
目录
1.三相异步电动机的基本概念和结构
2.Proteus 仿真软件的介绍和应用
3.三相异步电动机在 Proteus 中的仿真步骤
4.仿真结果的分析和应用
正文
三相异步电动机是一种常见的电动机类型,其结构主要包括定子部分和转子部分。
定子部分由机座、定子铁心和定子绕组组成,转子部分则由转子铁芯和转子绕组构成。
三相异步电动机的工作原理是利用定子绕组中的交流电流产生旋转磁场,这个磁场会作用于转子铁芯上,使得转子铁芯产生转矩,从而驱动电动机的转子旋转。
Proteus 仿真软件是一款专门用于电子电路仿真的软件,它可以模拟各种电子电路的工作过程,并提供各种分析工具,帮助用户进行电路设计和优化。
在 Proteus 中进行三相异步电动机的仿真,首先需要创建一个三相异步电动机的模型,这个模型可以包括定子绕组、转子绕组、定子铁心、转子铁芯等部分。
然后,用户可以设置电动机的参数,例如电压、频率、电流等,并设置仿真时间。
在仿真过程中,Proteus 软件可以提供实时的波形图和数据分析,帮助用户了解电动机的工作状态和性能。
例如,用户可以通过波形图查看电动机的电压、电流、功率等参数的变化情况,并通过数据分析工具进行进一步的分析和优化。
仿真结果可以帮助用户验证电动机的设计和优化方案,并预测其在实际工作中的表现。
例如,用户可以通过仿真结果分析电动机的起动性能、负载能力、效率等指标,并根据分析结果进行进一步的设计和优化。
第1页共1页。
一、概述三相异步电机是工业上常见的一种电动机类型,它具有结构简单、可靠性高、维护成本低等优点,在各种领域得到了广泛的应用。
对三相异步电机进行仿真分析可以帮助工程师更好地理解其工作原理和性能特点,从而为电机的设计和优化提供重要参考。
本文将以maxwell 软件为工具,以一个实例来介绍如何进行三相异步电机的仿真分析。
二、仿真模型建立1、确定仿真目标为了准确地分析三相异步电机的性能,我们需要建立一个包含电机本体、叶片、绕组等关键部件的仿真模型,通过对电机内部电磁场的分布、电磁感应等进行仿真分析,最终得到电机的转矩特性曲线、功率因数等关键性能参数。
2、建立电机几何模型在maxwell软件中,我们可以利用建模工具来绘制三相异步电机的几何结构,包括电机的定子、转子、绕组等关键部件。
在建立几何模型时,需要考虑电机的实际结构和尺寸参数,以确保仿真结果的准确性和可靠性。
3、设置电磁材料属性较为准确的电磁仿真分析需要考虑电机内部的导体、磁性材料等特性,因此在建立模型时,需要设置相应的材料属性,包括导体的电导率、磁性材料的饱和磁导率等参数。
maxwell软件提供了丰富的电磁材料库,用户可以根据实际情况选择合适的材料进行设置。
三、仿真分析1、电机的空载特性分析通过maxwell软件进行仿真分析,可以得到三相异步电机在空载情况下的电磁场分布、磁通线密度等关键参数。
通过对电机空载时的电磁特性进行分析,可以了解电机内部的磁场分布规律,对电机的设计和改进提供重要参考。
2、电机的负载特性分析对于三相异步电机而言,其负载特性是评价其性能的重要指标之一。
通过maxwell软件进行仿真分析,可以得到电机在不同负载下的转矩-转速特性曲线,从而了解电机的负载特性,并对电机的应用场景和工作性能进行评估。
3、电机的启动特性分析三相异步电机的启动特性对其在实际工程应用中具有至关重要的意义。
基于maxwell软件进行仿真分析,可以得到电机在启动过程中的电磁特性分析结果,从而了解电机的启动工况下的电流、转矩等重要参数,为电机的启动控制和优化提供重要依据。
异步电动机CFPWM-FOC系统仿真摘要矢量控制是一种优越的交流电机控制方式,它可以使交流电机取得同直流电机相媲美的控制效果。
本文介绍了现代交流调速系统的概况、矢量控制的基本概念以及在三相坐标系和两相坐标系下的异步电动机的数学模型。
研究了异步电动机CFPWM-FOC系统的仿真建模方法,并在此基础上应用MATLAB下的仿真工具SIMULINK软件建立了按转子磁场定向的异步电动机的数学模型。
本次设计利用SIMULINK工具做出了异步电动机CFPWM-FOC系统的仿真模型,利用仿真模型得到了PWM电压波形图、电流波形图、旋转磁场波形图、转矩波形图、转速波形图,并对仿真图进行了分析。
关键词:异步电机,矢量控制,SIMULINK,CFPWMAsynchronous Motor CFPWM- FOC System SimulationABSTRACTVector control is a superior AC motor control, which can make the AC motor to achieve comparable with the DC motor control effects. This article describes an overview of modern AC variable speed system, the basic concepts of vector control and the mathematical model under the coordinate system of the three-phase coordinate system and two-phase asynchronous motor. The asynchronous the motor CFPWM-the FOC system simulation modeling and MATLAB simulation tool SIMULINK software application based on the mathematical model of the rotor field oriented induction motor.The design using SIMULINK tools made the asynchronous the motor CFPWM-the FOC system simulation model, simulation model of the PWM voltage waveform, current waveform, the rotating magnetic field waveform, the torque waveform, speed waveform diagram and simulation the diagram is analyzed.KEY WORDS: Asynchronous Motor, Vector Control, CFPWM, SIMULINK目录前言 (1)第1章绪论 (3)1.1 课题背景 (3)1.2 交流调速系统控制技术的发展 (3)1.3 脉宽调制技术 (4)1.4 本章小结 (4)第2章三相异步电机数学模型 (6)2.1 三相异步电机的工作原理 (6)2.2 三相异步电机物理模型 (6)2.3 坐标变换 (9)2.3.1 三相/两相变换 (9)2.3.2 两相/两相旋转变换变换 (10)2.3.3 直角坐标/极坐标变换 (11)2.4 异步电机在二相静止坐标系上的数学模型 (12)2.5 本章小结 (12)第3章异步电机CFPWM-FOC研究 (14)3.1 电流滞环跟踪控制原理 (14)3.2 滞环宽度分析 (16)3.3 电流滞环跟踪控制的特点 (18)3.4 三相异步电机调速系统结构图 (18)3.5 本章小结 (19)第4章电流跟踪控制的SIMULINK仿真 (20)4.1 仿真工具语言MATLAB简介 (20)4.2 异步电机CFPWM-FOC系统仿真 (22)4.3 仿真模型设计分析 (22)4.4 仿真结果及分析 (26)4.5 本章小结 (29)结论 (30)谢辞 (31)参考文献 (32)外文资料翻译 (33)前言直流电机虽然调速性能良好,但也存在着难以克服的弱点:调速系统稳定性差,成本高,功率低,难维护,容量、电压、电流和转速受到换相条件的制约,实际应用对环境要求很高。
异步电机调压调速系统的matlab仿真代码异步电机是一种常见的电动机类型,广泛应用于各个领域的工业控制系统中。
在工业生产中,对异步电机的调压调速系统进行仿真设计可以帮助工程师们更好地理解电机的工作原理,并且优化控制算法,提高电机的性能和效率。
本文将根据异步电机调压调速系统的需求,介绍如何使用Matlab进行仿真设计。
异步电机调压调速系统主要包括三个部分:电机模型、调速控制器和电源电压。
首先,我们需要建立电机的模型。
在Matlab中,我们可以使用Simulink来搭建电机模型。
在搭建电机模型之前,我们需要明确电机的参数,例如额定功率、额定转速、定子电阻、定子电感、转子电阻、转子电感等。
根据这些参数,我们可以使用Simulink中的“Synchronous Machine”模块来搭建电机模型。
通过调整模块的参数,我们可以设定电机的额定功率和转速。
此外,我们还可以通过添加噪声、扰动等,模拟电机在实际工况下的运行情况。
接下来,我们需要设计调速控制器。
常见的调速控制算法有PID控制、模糊控制、自适应控制等。
在Matlab中,我们可以使用Simulink中的“PID Controller”模块来实现PID控制算法。
在使用PID控制器模块之前,我们需要根据电机的特性调整控制器的参数,例如比例系数、积分时间和微分时间。
通过不断调整参数和观察仿真结果,我们可以优化控制器的性能,实现电机的稳定调速。
最后,我们需要模拟电源电压对异步电机的影响。
在实际应用中,供电电压的波动会对电机的转速和输出功率产生影响。
在Matlab中,我们可以通过添加波动的直流电压源来模拟这种影响。
通过调整电压源的幅值和频率,我们可以观察电压波动对电机转速和输出功率的影响。
这对于调压调速系统的设计和优化非常重要。
在完成上述步骤后,我们可以对整个异步电机调压调速系统进行仿真。
通过控制器和电源电压的输入,我们可以观察电机的转速、输出功率和电流等参数的变化情况。
目录摘要 (2)1 设计意义及要求 (3)1.1设计意义 (3)1.2设计要求 (3)2异步电动机动态数学模型 (4)2.1异步电动机的三相数学模型 (4)2.2坐标变换 (8)2.2.1坐标变换的基本思路 (8)2.2.2三相-两相变换(3/2变换) (9)2.2.3静止两相-旋转正交变换(2s/2r变换) (10)2.3以ω-i s-ψr为状态变量的状态方程 (11)2.3.1 dq坐标系下状态方程 (11)2.3.2 mt标系下状态方程 (13)2.4 mt标系上异步电动机的动态结构图 (15)3异步电动机模型仿真 (15)3.1 仿真模型的参数计算 (15)3.2 建模与仿真 (16)3.2.1AC Motor模块 (16)3.2.2坐标变换模块................................................................ 错误!未定义书签。
3.2.3仿真模型 ........................................................................ 错误!未定义书签。
3.3 仿真结果分析 (21)3.3.1仿真波形 (21)3.3.2起动和加载的过渡过程分析 (23)结束语 (24)参考文献 (25)摘要异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发。
异步电动机的动态数学模型由磁链方程、电压方程、转矩方程和运动方程组成,非线性耦合在电压方程、磁链方程、与转矩方程中均有体现,相当复杂。
在实际应用中必须予以简化,简化的基本方法是坐标变换。
异步电动机的三相原始动态模型依次通过3/2变换、2s/2r变换,转换为旋转正交坐标系(dq坐标系)下的动态模型,若令d轴与转子磁链矢量重合,称为按转子磁链定向的同步旋转坐标系,简称mt坐标系。
通过按转子磁链定向,得到了以定子电流的励磁分量和转矩分量为输入的等效直流电动机模型。
「异步电动机变频调速系统的设计与仿真」异步电动机变频调速系统是一种常见的电力传动系统,具有调速范围广、动态响应好、控制精度高等优点。
本文将介绍异步电动机变频调速系统的设计与仿真,包括系统的结构、控制方案以及仿真结果评估。
首先,异步电动机变频调速系统由变频器、电机、传动装置以及控制系统组成。
变频器作为系统的核心,通过改变输入电压的频率和幅值,控制电机的转速。
电机是系统的执行器,通过转动输出机械功。
传动装置用于将电机的转动传递到负载物体上。
控制系统则根据系统的反馈信号来调节变频器的输出,实现对电机转速的精确控制。
在控制方案的设计中,可以采用电流矢量控制算法。
该算法通过测量电机的转子电流和转速,根据电机的模型推算出合适的电压矢量,以实现对电机转速的控制。
具体的控制步骤包括电机速度测量、电机参数辨识、电机模型预测、电压矢量计算和电压输出等。
为了评估异步电动机变频调速系统的性能,需要进行仿真实验。
仿真实验可以通过模拟各种状态和故障条件,得到系统的输出结果,并评估控制方案的有效性和性能。
在进行仿真实验时,可以设定电机的负载变化、输入电压变化等参数,并根据实际应用需求设定系统的性能指标。
通过对系统的输出结果进行分析和比较,可以评估系统的控制性能和稳定性,并进行相应的调整和优化。
总之,异步电动机变频调速系统的设计与仿真是一个复杂的过程,需要考虑到电机的特性、负载情况以及控制系统的性能指标。
通过合理的设计和仿真实验,可以得到一个性能优越的调速系统,满足实际应用需求。
三相异步电动机Proteus仿真引言三相异步电动机是电力系统中常见的一种电动机,具有广泛的应用。
在实际应用中,为了验证电动机的性能并进行故障诊断,可以使用电路仿真软件进行虚拟仿真。
Proteus是一款非常常用的电路仿真软件,可以进行电路的建模、仿真和调试。
本文将介绍如何使用Proteus进行三相异步电动机的仿真以及仿真结果的分析。
三相异步电动机的原理三相异步电动机是利用交流电的特性,在三相对称均匀磁场的作用下产生转矩的电动机。
它由定子和转子两部分组成。
定子是由三个对称分布的线圈组成,在电流通过时产生旋转磁场。
转子是一个可以自由旋转的铜棒,通过与旋转磁场的作用,产生转矩使转子旋转。
三相异步电动机的工作原理可以简单描述为以下几个步骤:1.三相交流电通过定子线圈,产生旋转磁场;2.旋转磁场切割转子导体,产生感应电动势;3.感应电动势在转子上产生电流,产生的电流与磁场相互作用,产生转矩;4.转矩将转子旋转,实现能量转换。
Proteus仿真环境搭建在进行三相异步电动机的Proteus仿真之前,我们需要先搭建仿真环境。
首先,确保你已经安装了最新版本的Proteus软件。
然后,按照以下步骤进行操作:1.打开Proteus软件,创建一个新的工程;2.在工程中添加一个电源模块,表示三相交流电源;3.在电源模块的输出端添加一个三相异步电动机模块;4.连接电源和电动机模块的输入输出端口。
完成以上步骤后,我们已经成功搭建了三相异步电动机的Proteus仿真环境。
三相异步电动机Proteus仿真参数设置在进行三相异步电动机的Proteus仿真之前,我们需要对仿真参数进行设置。
参数设置的准确性将直接影响到仿真结果的准确性。
下面是一些常用的参数设置方法:1. 电源参数设置在电源模块中,我们需要设置交流电源的参数,包括电压、频率等。
根据实际情况设置合适的参数值。
2. 电动机参数设置在电动机模块中,我们需要设置电动机的参数,包括定子的线圈数、转子的电阻、自感等。
异步电机调压调速系统的matlab仿真代码一、引言异步电机调压调速系统是工业控制领域中的一个重要研究方向,其应用范围广泛,包括电动汽车、风力发电等。
本文将介绍异步电机调压调速系统的matlab仿真代码。
二、异步电机模型1. 模型简介异步电机是一种常见的交流电动机,其转子和定子之间没有直接的电连接。
异步电机的转速受到供电频率和负载转矩的影响。
在matlab中,可以使用simscape库中的Asynchronous Machine模块来建立异步电机模型。
2. 建立模型在matlab中,打开simscape库并选择Asynchronous Machine模块。
将该模块拖入工作区,并设置参数,如额定功率、额定转速等。
然后连接输入端口和输出端口以完成建模。
三、PID控制器设计1. 控制器简介PID控制器是一种常见的反馈控制器,通过比较设定值和实际值之间的差别来计算控制信号。
在matlab中,可以使用Control System Toolbox库中的PID Controller对象来设计PID控制器。
2. 设计方法首先需要确定调节参数Kp、Ki和Kd。
可以使用试错法或者自适应控制方法来确定这些参数。
然后在matlab中使用PID Controller对象,并设置控制器参数。
四、调压调速系统仿真1. 系统简介异步电机调压调速系统是由异步电机、PID控制器和电源等组成的一个闭环控制系统。
其目的是通过控制电机的转速和电压来实现负载转矩的精确控制。
2. 仿真方法在matlab中,可以使用Simulink库来建立异步电机调压调速系统模型。
将异步电机模型和PID控制器模型连接起来,并添加输入信号和负载转矩信号。
然后运行仿真,并分析结果。
五、总结本文介绍了异步电机调压调速系统的matlab仿真代码,包括建立异步电机模型、设计PID控制器以及建立闭环控制系统模型并进行仿真。
这些内容对于工业控制领域的研究和应用具有重要意义。
MATALAB 异步电机矢量仿真目录1 异步电动机矢量控制原理 (2)2 坐标变换 (3)2.1 坐标变换基本思路 (3)2.2 三相——两相坐标系变换(3/2变换) (4)2.3 旋转变换 (5)3 转子磁链计算 (6)4 矢量控制系统设计 (7)4.1 矢量控制系统的电流闭环控制方式思想 (7)4.2 MATLAB系统仿真系统设计 (8)4.3 PI调节器设计 (9)5 仿真结果 (10)5.1 电机定子侧的电流仿真结果 (10)5.2 电机输出转矩仿真结果 (11)心得体会 (13)参考文献 (14)异步电机矢量控制Matlab 仿真实验1 异步电动机矢量控制原理矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。
所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。
其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流i A 、i B 、i C ,通过3/2变换可以等效成两相静止正交坐标系上的交流i sα和i sβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流i sm 和i st 。
图1-1 异步电动机矢量变换及等效直流电动机模型在三相坐标系上的定子交流电流,,A B C i i i ,通过3/2变换可以等效成两相静止正交坐标系上的交流s i α和s i β再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流sm i 和st i 。
m 绕组相当于直流电动机的励磁绕组,sm i 相当于励磁电流,t 绕组相当于电枢绕组,st i 相当于与转矩成正比的电枢电流。
其中矢量控制系统原理结构图如图1-2所示。
图1-2矢量控制系统原理结构图通过转子磁链定向,将定子电流分量分解为励磁分量sm i 和转矩分量st i ,转子磁链r ψ仅由定子电流分量sm i 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。
简化后的等效直流调速系统如图1-3所示。
图1-3简化后的等效直流调速系统2 坐标变换2.1 坐标变换基本思路异步电动机三相原始动态模型相当复杂,分析和求解这组非线性方程十分困难。
在实际应用中必须予以简化,简化的基本方法就是坐标变换。
矢量变换是简化交流电动机复杂模型的重要数学方法,是交流电动机矢量控制的基础。
坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。
以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流电流A i 、B i 、C i ,通过三相——两相变换可以等效成两相静止坐标系上的交流电流αi 和βi ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流d i 和q i 。
如果观察者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。
把上述等效关系用结构图的形式画出来,得到图2-l 。
从整体上看,输人为321112233022a b c i i N i i Ni αβ⎡⎤⎡⎤--⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。
从结构图内部看,经过3/2变换和按转子磁链定向的同步旋转变换,便得到一台由m i 和t i 输入,由ω输出的直流电动机。
3/2VR等效直流电动机模型αi βi ti A i mi Bi Ci ϕωA B C异步电动机图2-1 异步电动机的坐标变换结构图2.2 三相——两相坐标系变换(3/2变换)在交流电动机中三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效,三相静止坐标系和两相静止坐标系的变换则建立了磁动势不变情况下,三相绕组和两相绕组电压、电流和磁动势之间的关系。
图1绘出了ABC 和αβ两个坐标系中的磁动势矢量,按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在α、β轴上的投影都应相等,于是得:写成矩阵形式:(2-1)()233332333cos60cos6011 ()223sin 60sin 602a b c a b c b c b c N i N i N i N i N i i i N i N i N i N i i αβ=--=--=-=+按照变换前后总功率不变,可以证明:(2-2)则两相对称绕组的电流与三相对称绕组的电流之间的变换关系为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c B A C B A i i i C i i i i i i 230212121232302121132βα (2-3)2.3 旋转变换两相静止坐标系和两相旋转坐标系的变换(简称2s/2r 变换),两相静止绕组,通以两相平衡交流电流,产生旋转磁动势。
如果令两相绕组转起来,且旋转角速度等于合成磁动势的旋转角速度,则两相绕组通以直流电流就产生空间旋转磁动势。
从两相静止坐标系到两相旋转坐标系的变换,称为两相旋转-两相静止变换,简称2s/2r 变换。
其变换关系为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡q d s r q d i i C i i i i 22cos sin sin cos ϕϕϕϕβα (2-4) (2-4)式中,ϕ为d-q 坐标系d 轴与坐标系轴之间的夹角。
两相旋转到两相静止坐标系的变换矩阵为:⎥⎦⎤⎢⎣⎡-=ϕϕϕϕc o s s i ns i n c o s 22srC (2-5) 对(2-5)式进行逆变换可以得到两相静止到两相旋转的变换矩阵为:⎥⎦⎤⎢⎣⎡-==-ϕϕϕϕcos sin sin cos 12222sr rsC C (2-6) 电压和磁链的旋转变换阵与电流旋转变换阵相同。
111222333022a b c i i i i i αβ⎡⎤⎡⎤--⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦3 转子磁链计算按转子磁链定向的矢量控制系统的关键是r ψ的准确定向,也就是说需要获得转子磁链矢量的空间位置。
根据转子磁链的实际值进行控制的方法,称作直接定向。
转子磁链的直接检测比较困难,现在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。
转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。
在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。
本设计采用在αβ坐标系上计算转子磁链的电流模型。
由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量⎪⎪⎭⎪⎪⎬⎫++-=+--=βαβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (3-2)也可表述为:⎪⎪⎭⎪⎪⎬⎫++=-+=)(11)(11αβββααψωψψωψr r s m r r r r s m r r T i L s T T i L s T (3-2)然后,采用直角坐标-极坐标变换,就可得到转子磁链矢量的幅值r ψ和空间位置ϕ,考虑到矢量变换中实际使用的是ϕ的正弦和余弦函数,故可以采用变换式22χαψψψr r r += (3-3) rr ψψϕβ=sin (3-4)rr ψψϕα=cos (3-5)图3-1 在αβ坐标系上计算转子磁链的电流模型4 矢量控制系统设计4.1 矢量控制系统的电流闭环控制方式思想图4-1为电流闭环控制后的系统结构图,转子磁链环节为稳定的惯性环节,对转子磁链可以采用闭环控制,也可以采用开环控制方式;而转速通道存在积分环节,为不稳定结构,必须加转速外环使之稳定。
常用的电流闭环控制有两种方法:一个是将定子电流两个分量的给定置*sm i 和*st i 施行2/3变换,得到三相电流给定值。
采用电流滞环控制型PWM 变频器,在三相定子坐标系中完成电流闭环控制。
另一个是将检测到得三相电流施行3/2变换和旋转变换,达到mt 坐标系中的电流sm i 和st i 。
采用PI 调节器软件构成电流闭环控制,电流调节器的输出为定子电压给定值*sm u 和*st u ,经过反旋转变换得到静止两相坐标系的定子电压*u α和*u β,再经过SVPWM 控制逆变器输出三相电压,其系统结构图如图4-2所示。
本次MATLAB 仿真系统设计也是采用的这种控制方法。
图4-1 电流闭环控制后的系统结构图图4-2 定子电流励磁分量和转矩分量闭环控制的矢量控制系统结构图4.2 MATLAB系统仿真系统设计本次MATLAB系统结构仿真模型如图4-2-1所示,其中SVPWM用惯性环节等效代替,若采用实际的SVPWM方法仿真,将大大增加仿真计算时间,对计算机的运行速度和内存容量要求较高,转速,转子磁链和两个电流调节器均采用带有积分和输出限幅的PI调节器,两相磁链由电动机模型直接得到,其中转子磁链的幅值由两相磁链计算得到。
矢量控制系统仿真模型图如图4-3所示。
图4-3矢量控制系统仿真模型图由图中可知ASR为转速调节器,APsirR为转子磁链调节器,ACMR为定子电流励磁分量调节器,ACTR为定子电流转矩分量调节器,对转子磁链和转速而言,均表现为双闭环控制的系统结构,内环为电流恒定,外环为转子磁链或转速环。
其中系统中的K/P模块是计算转子磁链幅值和角度的,其内部结构图如图4-4所示。
图4-4 转子磁链和角度计算结构图在此次设计中,由于电动机模型是根据两相静止αβ坐标系下的数学模型建立,在仿真设计中加入了静止两相——旋转正交变换(2s/2r 变换)和旋转——静止两相正交变换(2r/2s 变换),其MATLAB 仿真结构图如图4-5所示。
4.3 PI 调节器设计本次仿真设计中的调节器都是采用PI 调节器,其传递函数为;i i ACR i (1)()K s W s s ττ+=(4-3-1)i K — 电流调节器的比例系数;i τ — 电流调节器的超前时间常数。
同时其传递函数也可写为:()IASR p K W s K S=+(4-3-2)其PI 调节器的MATLAB 仿真结构图如图4-6所示。