辽宁沈阳于洪区2019-2020学年度上学期期末学业水平测试九年级数学试题及答案
- 格式:pdf
- 大小:2.18 MB
- 文档页数:5
2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。
沈阳市2020版九年级上学期期末数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列各点中,在反比例函数的图像上的是C.D.A.B.2 . 如图,△ABC的顶点都在正方形网格的格点上,则tanC的值为()A.B.C.D.3 . 如图,⊙O为△ABC的内切圆,AC=11,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CD E的周长为()A.6B.9C.11D.124 . 如图,BD、CE分别是△ABC的中线,BD与CE交于点O,则下列结论中正确的是()A.B.C.D.5 . 在一个不透明的盒子中装有个小球,它们除了颜色不同外,其余都相同,其中有个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在,那么可以推算出大约是()A.10B.14C.16D.406 . 如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个B.2个C.3个D.4个7 . 若抛物线y=x2+mx的对称轴是x=2.5,则关于x的方程x2+mx=6的解为().A.-2,3B.2,-3C.-1,6D.1,-68 . 如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为()A.-8B.-6C.-4D.-29 . 二次函数y=ax2+bx+c的部分对应值如表:x…﹣2﹣10123…y…50﹣3﹣4﹣30…二次函数图象的对称轴是()A.直线x=1B.y轴C.直线x=D.直线x=﹣10 . 已知正六边形ABCDEF的边心距为 cm,则正六边形的半径为()cm.A.2B.2C.D.4二、填空题11 . 小芳同学有两根长度为4cm、10cm的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是.12 . 如图,,,则和的相似比为________.13 . 如图,已知小明、小颖之间的距离为,他们在同一盏路灯下的影长分别为,,已知小明、小颖的身高分别为,,则路灯的高为______14 . 已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:_____.15 . 如图1是一款优雅且稳定的抛物线型落地灯,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,点最高点C距灯柱的水平距离为1.6米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为__米.16 . 一个圆锥的左视图是一个等腰直角三角形,则这个圆锥的侧面展开图的圆心角等于___17 . 如图,在⊙O中,弦AB=2cm,∠AOB=120°,则⊙O的半径为_____cm.18 . 今年宁波市体育中考已确定抽测项目为篮球,实心球,50米跑.A、B两人随机从这三项中选择一项作为测试项目,他们都选中篮球的概率为________ .19 . 若反比例函数的图象在第二、四象限,则的值为_________;三、解答题20 . 某超市的某种商品现在的售价为每件50元,每周可以卖出500件。
辽宁省沈阳市九年级(上)期末数学试卷一、选择题(每题2分,共20分)1.(2分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.2.(2分)反比例函数y=的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.(2分)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0B.m>0C.m>﹣1D.m<﹣14.(2分)抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1)B.(﹣1,1)C.(1,3)D.(﹣1,3)5.(2分)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:16.(2分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和B,与y轴的正半轴交于点C,下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正确的个数为()A.0个B.1个C.2个D.3个7.(2分)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.48.(2分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4B.2C.D.9.(2分)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.B.C.D.10.(2分)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C 后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟二、填空题(每题3分,共18分)11.(3分)已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为.12.(3分)二次函数的图象经过点(4,﹣3),且当x=3时,有最大值﹣1,则该二次函数解析式为.13.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF 位似,原点O是位似中心,若AB=2,则DE=.14.(3分)2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.15.(3分)在△ABC中,∠B=45°,∠C=75°,AC=2,则BC的值为.16.(3分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为.三、解答题17.(8分)(1)解方程:x2+4x﹣1=0(2)计算:cos30°+sin45°18.(8分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动转盘,直到指针指向一个区域内为止)(1)请利用画树状图或列表的方法(只选其中一种),表示出转转盘可能出现的所有结果;(2)如果将两次转转盘指针所指区域的数据相乘,乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?19.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED 的周长.20.(10分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.21.(8分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.(12分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.25.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每题2分,共20分)1.(2分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.2.(2分)反比例函数y=的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【分析】根据反比例函数的图象性质求解.【解答】解:∵k=2>0,∴反比例函数y=的图象在第一,三象限内,故选:A.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.3.(2分)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0B.m>0C.m>﹣1D.m<﹣1【分析】根据反比例函数的性质得m+1<0,然后解不等式即可.【解答】解:根据题意得m+1<0,解得m<﹣1.故选:D.【点评】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.(2分)抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1)B.(﹣1,1)C.(1,3)D.(﹣1,3)【分析】把函数解析式整理成顶点式形式,然后写出顶点坐标即可.【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,∴顶点坐标为(1,1).故选:A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.5.(2分)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:1【分析】根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.【解答】解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选:C.【点评】此题主要考查的知识点:(1)直角三角形中,30°锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补.6.(2分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和B,与y轴的正半轴交于点C,下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正确的个数为()A.0个B.1个C.2个D.3个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=﹣1求出2a与b的关系.【解答】解:①∵由抛物线的开口向下知a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0.∵抛物线与y轴交于正半轴,∴c>0,∴abc>0;故①符合题意;②如图,当x=﹣2时,y>0,4a﹣2b+c>0,故②符合题意;③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,故③不符合题意;故选:C.【点评】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.7.(2分)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.4【分析】根据勾股定理求得OD=,然后根据矩形的性质得出CE=OD=.【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.【点评】本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.8.(2分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4B.2C.D.【分析】由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【解答】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选:C.【点评】此题考查了平行线分线段成比例定理.注意掌握各比例线段的对应关系是解此题的关键.9.(2分)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.B.C.D.【分析】过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【解答】解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×=40m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=40+120=160m.故选:D.【点评】本题主要考查了解直角三角形的应用﹣仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.10.(2分)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C 后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【分析】设出动点P,Q运动t秒,能使△PBQ的面积为15cm2,用t分别表示出BP和BQ的长,利用三角形的面积计算公式即可解答.【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.【点评】此题考查借助三角形的面积计算公式来研究图形中的动点问题.二、填空题(每题3分,共18分)11.(3分)已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为6.【分析】把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k的值.【解答】解:在y=x+1中,令x=2,解得y=3,则交点坐标是:(2,3),代入y=得:k=6.故答案是:6.【点评】本题考查了用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.12.(3分)二次函数的图象经过点(4,﹣3),且当x=3时,有最大值﹣1,则该二次函数解析式为y=﹣2(x﹣3)2﹣1.【分析】根据题意设出函数的顶点式,代入点(4,﹣3),根据待定系数法即可求得.【解答】解:设二次函数的解析式为y=a(x﹣3)2﹣1,把点(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,解得a=﹣2,∴y=﹣2(x﹣3)2﹣1.故答案为y=﹣2(x﹣3)2﹣1.【点评】本题考查了待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.13.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF 位似,原点O是位似中心,若AB=2,则DE=6.【分析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【解答】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=6.故答案为6.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.14.(3分)2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有8家公司参加了这次会议.【分析】设共有x家公司参加了这次会议,根据题意列出方程即可.【解答】解:设共有x家公司参加了这次会议,根据题意,得x(x﹣1)=28整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.故答案是:8.【点评】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于中等题型.15.(3分)在△ABC中,∠B=45°,∠C=75°,AC=2,则BC的值为.【分析】构造直角三角形,利用锐角三角函数及三角形的边角关系求解.【解答】解:如图所示,过点C作CD⊥AB,垂足为D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案为:【点评】本题考查了特殊角的三角函数值及直角三角形的边角间关系,构造直角三角形是解决本题的关键.16.(3分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为.【分析】先求出∠ACD=30°,进而可算出CE、AD,再算出△AEC的面积.【解答】解:如图,由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=,∴CE==,DE=,AD=,∴=.故答案为.【点评】本题考查了旋转的性质、矩形的性质、特殊角的三角函数,三角形面积计算等知识点,难度不大.清楚旋转的“不变”特性是解答的关键.三、解答题17.(8分)(1)解方程:x2+4x﹣1=0(2)计算:cos30°+sin45°【分析】(1)根据配方法即可求出答案.(2)根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)∵x2+4x﹣1=0,∴x2+4x+4=5,∴(x+2)2=5,∴x=﹣2±;(2)原式=×+×=;【点评】本题考查一元二次方程以及特殊角的锐角三角函数,解题的关键是熟练运用一元二次方程的解法以及特殊角的锐角三角函数的值,本题属于基础题型.18.(8分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动转盘,直到指针指向一个区域内为止)(1)请利用画树状图或列表的方法(只选其中一种),表示出转转盘可能出现的所有结果;(2)如果将两次转转盘指针所指区域的数据相乘,乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?【分析】(1)列表得出所有等可能的情况,进而可得转转盘可能出现的所有结果;(2)找出乘积为无理数的情况数,即可求出一等奖的概率.【解答】解:(1)列表如下:1.5﹣3﹣000 0 01 1.5﹣3 ﹣﹣1﹣1.53﹣由表可知所有等可能的情况有12种;(2)乘积是无理数的情况有2种,则P(乘积为无理数)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED 的周长.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点评】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.20.(10分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.【分析】(1)根据A、B的横坐标,结合图象即可得到不等式﹣x+n≤的解集;(2)根据待定系数法即可求得;(3)根据三角形面积公式求得即可.【解答】解:(1)由图象可知:不等式﹣x+n≤的解集为﹣2≤x<0或x≥4;(2)∵一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.∴k=4×(﹣2)=﹣2m,﹣2=﹣4+n解得m=4,k=﹣8,n=2,∴反比例函数和一次函数的解析式分别为y=﹣,y=﹣x+2;==6.(3)S△ABC【点评】此题是反比例函数与一次函数的交点问题,待定系数法求一次函数和反比例函数的解析式,三角形面积等,数形结合是解本题的关键.21.(8分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈≈20,∴AB=AH﹣BH=20﹣8.65≈11.4(米).答:AB的长度为11.4米.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的内角和和平角的定义得到∠BDE=∠CEF,于是得到结论;(2)根据相似三角形的性质得到,等量代换得到,根据相似三角形的性质即可得到结论.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(8分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(3)根据抛物线的性质和图象,求出每月的成本.【解答】解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x ﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着x的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,﹣10x2+700x﹣10000=2000解这个方程得:x1=30,x2=40.∵a=﹣10<0,抛物线开口向下.∴当30≤x≤40时,w≥2000.∵20≤x≤32∴当30≤x≤32时,w≥2000.设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P随x的增大而减小.∴当x=32时,P的值最小,P=3600.最小值答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.【点评】此题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.24.(12分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.【分析】(1)在MB的延长线上,截取BE=DN,连接AE,则可证明△ABE≌△ADN,得到AE=AN,进一步证明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;(2)在DC上截取DF=BM,连接AF,可先证明△ABM≌△ADF,得出AM=AF,进一步证明△MAN≌△FAN,可得到MN=NF,从而可得到DN﹣BM=MN;(3)由已知得出DN=12,由勾股定理得出AN==6,由平行线得出△ABQ∽△NDQ,得出===,=,求出AQ=2;由(2)得出DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM==2,由平行线得出△PBM∽△PDA,得出==,求出PM=AM=,得出AP=AM+PM=3.【解答】解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.【点评】本题是四边形的综合题目,考查了正方形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.25.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD ,OD 交BC 于点F ,当S △COF :S △CDF =3:2时,求点D 的坐标.(3)如图2,点E 的坐标为(0,),在抛物线上是否存在点P ,使∠OBP =2∠OBE ?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)c =3,点B (3,0),将点B 的坐标代入抛物线表达式:y =ax 2+2x +3并解得:a =﹣1,即可求解;(2)S △COF :S △CDF =3:2,则OF :FD =3:2,DH ∥CO ,故CO :DM =3:2,则DM =CO =2,而DM =﹣x 2+2x +3﹣(﹣x +3)=2,即可求解;(3)分点P 在x 轴上方、点P 在x 轴下方两种情况,分别求解即可.【解答】解:(1)c =3,点B (3,0),将点B 的坐标代入抛物线表达式:y =ax 2+2x +3并解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+2x +3…①;(2)如图1,过点D 作DH ⊥x 轴于点H ,交AB 于点M ,S △COF :S △CDF =3:2,则OF :FD =3:2,∵DH ∥CO ,故CO :DM =3:2,则DM =CO =2,由B 、C 的坐标得:直线BC 的表达式为:y =﹣x +3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设MH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点P(﹣,﹣);综上,点P的坐标(,)或(﹣,﹣).【点评】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似、解直角三角形、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。
辽宁省沈阳市九年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.2.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=33.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)4.在Rt△ABC中,∠C=90°,AB=2BC,那么sin A的值为()A.B.C.D.15.抛物线y=(x+2)2+3的顶点坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)6.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5187.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是()A.∠A=55°,∠D=35°B.AC=9,BC=12,DF=6,EF=8C.AC=3,BC=4,DF=6,DE=8D.AB=10,AC=8,DE=15,EF=98.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5079.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=8,则OB的长为()A.4B.5C.6D.10.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小二、填空题(每小题3分,共18分)11.若反比例函数y=的图象位于第二、四象限,则k的取值范围是.12.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=.13.将抛物线y=x2﹣2x+3沿y轴向上平移2个单位得到的抛物线的函数表达式为.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB=.16.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:tan60°+4sin30°﹣cos230°+tan45°18.(8分)如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.19.(8分)随着科技的迅猛发展,人与人之间的沟通方式更多样.某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同种沟通方式的概率.四、(每题8分,共16分)20.(8分)如图,已知反比例函数y=(k≠0)的图象经过点A(﹣2,m),过点A作AB⊥x 轴于点B,且△AOB的面积为4.(Ⅰ)求k和m的值;(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1≤x≤4时,求函数值y的取值范围.21.(8分)如图,在矩形ABCD中,边AB、BC的长(AB<BC)是方程x2﹣7x+12=0的两个根,点P从点A出发,以每秒1个单位的速度沿矩形ABCD边A→B→C→D→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上且AP=时,求t的值.五、(本题10分)22.(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为32.3°,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,女生楼在男生楼墙面上的影高为DA,已知CD=42m.(1)求楼间距AB;(2)若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7≈0.56,tan55.7°≈1.47)23.(10分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场决定采取降价措施,经调查发现,若毎件衬衫每降价1元,商场平均每天可多售出2件.(1)若每件降价x元,每天盈利y元,求出y与x之间的关系式;(2)每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?七、(本题12分)24.(12分)如图1,在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE;(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动,若EF,EG分别与AB,BC相交于点M,N(如图2).①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.25.(12分)如图,已知抛物线经过点A(3,0),B(0,3),C(﹣1,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标;(3)如图1,点D是抛物线上一动点,过D作y轴的平行线DE交直线AB于点E,当线段DE =1时,请直接写出D点的横坐标;(4)如图2,当D为直线AB上方抛物线上一动点时,DF⊥AB于F,设AC的中点为M,连接BD,BM,是否存在点D,使得△BDF中有一个角与∠BMO相等?若存在,请直接写出点D的横坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题2分,共20分)1.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.2.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选:B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.4.在Rt△ABC中,∠C=90°,AB=2BC,那么sin A的值为()A.B.C.D.1【分析】根据正弦的定义列式计算即可.【解答】解:∵∠C=90°,AB=2BC,∴sin A==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.抛物线y=(x+2)2+3的顶点坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)【分析】根据顶点式解析式写出顶点坐标即可.【解答】解:抛物线y=(x+2)2+3的顶点坐标是(﹣2,3).故选:C.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.6.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率不同,错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为0.482,错误;故选:A.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.7.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是()A.∠A=55°,∠D=35°B.AC=9,BC=12,DF=6,EF=8C.AC=3,BC=4,DF=6,DE=8D.AB=10,AC=8,DE=15,EF=9【分析】根据相似三角形的判定方法对各个选项进行分析即可.【解答】解:A、相似:∵∠A=55°∴∠B=90°﹣55°=35°∵∠D=35°∴∠B=∠D∵∠C =∠F∴△ABC∽△DEF;B、相似:∵AC=9,BC=12,DF=6,EF=8,∴,∵∠C=∠F∴△ABC∽△DEF;C、有一组角相等两边对应成比例,但该组角不是这两边的夹角,故不相似;D、相似:∵AB=10,BC=6,DE=15,EF=9,∴,∵∠C=∠F∴△ABC∽△DEF;故选:C.【点评】此题主要要求学生熟练掌握相似三角形的判定定理:两角对应相等,两组边对应成比例且夹角相等,三边对应成比例.8.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=507【分析】设这两年的年利润平均增长率为x,根据2018年初及2020年初的利润,即可得出关于x的一元二次方程,此题得解.【解答】解:设这两年的年利润平均增长率为x,根据题意得:300(1+x)2=507.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=8,则OB的长为()A.4B.5C.6D.【分析】由平行线分线段成比例可得CD=6,由勾股定理可得AC=10,由直角三角形的性质可得OB的长.【解答】解:∵四边形ABCD是矩形∴AB∥CD,AD=BC=8,∵OM∥AB∴OM∥CD∴,且AO=AC,OM=3∴CD=6,在Rt△ADC中,AC==10∵点O是斜边AC上的中点,∴BO=AC=5故选:B.【点评】本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.10.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小【分析】把二次函数解析式化为顶点式,逐项判断即可得出答案.【解答】解:∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为x=1,当x>1时,y随x的增大而增大,∴A、C正确,D不正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B正确;故选:D.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,其对称轴为x=h,顶点坐标为(h,k).二、填空题(每小题3分,共18分)11.若反比例函数y=的图象位于第二、四象限,则k的取值范围是k>2.【分析】根据图象在第二、四象限,利用反比例函数的性质可以确定2﹣k的符号,即可解答.【解答】解:∵反比例函数的图象在第二、四象限,∴2﹣k<0,∴k>2.故答案为:k>2.【点评】此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.12.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=2.【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2.故答案是:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.13.将抛物线y=x2﹣2x+3沿y轴向上平移2个单位得到的抛物线的函数表达式为y=(x﹣1)2+4.【分析】先把y=x2﹣2x+3配成顶点式,再利用顶点式写出平移后的抛物线的解析式.【解答】解:y=x2﹣2x+3=(x﹣1)2+2,此抛物线的顶点坐标为(1,2),把点(1,2)向上平移2个单位长度后所得对应点的坐标为(1,4),所以平移后得到的抛物线的解析式为y=(x﹣1)2+4.故答案为:y=(x﹣1)2+4.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为9.【分析】设四边形BCED的面积为x,则S=12﹣x,由题意知DE∥BC且DE=BC,从而△ADE得=()2,据此建立关于x的方程,解之可得.【解答】解:设四边形BCED的面积为x,则S=12﹣x,△ADE∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=()2,即=,解得:x=9,即四边形BCED的面积为9,故答案为:9.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.15.如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB=.【分析】先在图中找出∠AOB所在的直角三角形,再根据三角函数的定义即可求出tan∠AOB的值.【解答】解:过点A作AD⊥OB垂足为D,如图,在直角△AOD中,AD=1,OD=2,则tan∠AOB==.故答案为:.【点评】本题考查了锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.16.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有6种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;④当P在BC上,设BP=x,∵DP=2AP,∴2=,即x2+6x+24=0,△=62﹣4×1×24<0,此方程无解,即当点P在BC上时,不能使DP=2AP;⑤P在DC上,∵∠ADC=90°,∴AP>DP,不能DP=2AP,即当P在DC上时,不能具备DP=2AP;⑥P在BD上时,过P作PN⊥AD于N,过P作PM⊥AB于M,∵四边形ABCD是正方形,∴∠DAB=∠ANP=∠AMP=90°,∴四边形ANPM是矩形,∴AM=PN,AN=PM,∵四边形ABCD是正方形,∴∠ABD=45°,∵∠PMB=90°,∴∠MBP=∠MPB=45°,∴BM=PM=AN,同理DN=PN=AM,设PM=BM=AN=x,则PN=DN=AM=6﹣x,都不能DP=2AP,∵DP=2AP,∴由勾股定理得:2=,即x2﹣4x+12=0,△=(﹣4)2﹣4×1×12<0,此方程无解,即当P在BD上时,不能DP=2AP,故答案为:2或2或﹣.【点评】本题考查了正方形的性质和勾股定理,能求出符合的所有情况是解此题的关键,用了分类讨论思想.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:tan60°+4sin30°﹣cos230°+tan45°【分析】直接利用特殊角的三角函数值进而化简得出答案.【解答】解:原式=×+4×﹣()2+1=+2﹣+1=3.【点评】此题主要考查了实数运算,正确记忆相关数据是解题关键.18.(8分)如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.【分析】根据对角线互相垂直的平行四边形是菱形即可证明;【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(8分)随着科技的迅猛发展,人与人之间的沟通方式更多样.某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同种沟通方式的概率.【分析】列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【解答】解:画出树状图,如图所示所有情况共有9种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有3种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为=.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.四、(每题8分,共16分)20.(8分)如图,已知反比例函数y=(k≠0)的图象经过点A(﹣2,m),过点A作AB⊥x 轴于点B,且△AOB的面积为4.(Ⅰ)求k和m的值;(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1≤x≤4时,求函数值y的取值范围.【分析】(Ⅰ)根据三角形的面积公式先得到m的值,然后把点A的坐标代入y=,可求出k 的值;(Ⅱ)先分别求出x=1和4时,y的值,再根据反比例函数的性质求解.【解答】解:(Ⅰ)∵△AOB的面积为4,∴,即可得:k=x A•y A=﹣8,令x=2,得:m=4;(Ⅱ)当1≤x≤4时,y随x的增大而增大,令x=1,得:y=﹣8;令x=4,得:y=﹣2,所以﹣8≤y≤﹣2即为所求.【点评】本题考查了反比例函数图象上点的坐标特征,点在图象上,点的横纵坐标满足图象的解析式;也考查了反比例函数的性质,三角形的面积公式以及代数式的变形能力.21.(8分)如图,在矩形ABCD中,边AB、BC的长(AB<BC)是方程x2﹣7x+12=0的两个根,点P从点A出发,以每秒1个单位的速度沿矩形ABCD边A→B→C→D→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上且AP=时,求t的值.【分析】(1)利用因式分解法解出方程即可;(2)先根据勾股定理计算BP,再求t的值.【解答】解:(1)∵x2﹣7x+12=0,则(x﹣3)(x﹣4)=0,∴x1=3,x2=4.∵AB<BC,∴AB=3,BC=4;(2)如图,在Rt△ABP中,∵AP=,AB=3,∴BP===1.∴t==4.答:t的值是4秒.【点评】本题考查了矩形的性质、勾股定理以及一元二次方程的解法,正确解出方程、灵活运用勾股定理是解题的关键.五、(本题10分)22.(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为32.3°,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,女生楼在男生楼墙面上的影高为DA,已知CD=42m.(1)求楼间距AB;(2)若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7≈0.56,tan55.7°≈1.47)【分析】(1)如图,作CM⊥PB于M,DN⊥PB于N.则AB=CM=DN,设AB=CM=DN=xm.想办法构建方程即可解决问题.(2)求出AC,AD,分两种情形解决问题即可.【解答】解:(1)如图,作CM⊥PB于M,DN⊥PB于N.则AB=CM=DN,设AB=CM=DN =xm.在Rt△PCM中,PM=x•tan32.3°=0.63x(m),在Rt△PDN中,PN=x•tan55.7°=1.47x(m),∵CD=MN=42m,∴1.47x﹣0.63x=42,∴x=50,∴AB的长为50m.(2)由(1)可知:PM=31.5m,∴AD=90﹣42﹣31.5=16.5(m),AC=90﹣31.5=58.5,∵16.5÷3=5.5,58.5÷3=19.5,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.六、(本题10分)23.(10分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场决定采取降价措施,经调查发现,若毎件衬衫每降价1元,商场平均每天可多售出2件.(1)若每件降价x元,每天盈利y元,求出y与x之间的关系式;(2)每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?【分析】(1)根据题意,设每件降价x元,商场平均每天盈利y元,则每件盈利(40﹣x)元,每天可以售出(20+2x)件,所以商场平均每天盈利(40﹣x)(20+2x)元,即y=(40﹣x)(20+2x);(2)用“配方法”求出y的最大值,并求出每件衬衫的降价钱数.【解答】解:(1)设每件降价x元,商场平均每天盈利y元,则y=(40﹣x)(20+2x)=800+80x﹣20x﹣2x2=﹣2x2+60x+800;(2)y=﹣2x2+60x+800=﹣2(x2﹣30x+225)+800+450=﹣2(x﹣15)2+1250所以当x=15时,y的最大值为1250,答:每件衬衫降价15元时,商场平均每天盈利最多,是1250元.【点评】此题主要考查了二次函数的应用,正确表示出每件衬衫的利润以及销量是解题关键.七、(本题12分)24.(12分)如图1,在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE;(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动,若EF,EG分别与AB,BC相交于点M,N(如图2).①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题;【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4﹣x,=•x(4﹣x)=﹣(x﹣2)2+2,∴S△BMN∵﹣<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=m,EB=m.∴EG=m+m=(1+)m,∵S=•EG•BN=•BG•EH,△BEG∴EH==m,在Rt△EBH中,sin∠EBH===.【点评】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,属于中考压轴题.八、(本题12分)25.(12分)如图,已知抛物线经过点A(3,0),B(0,3),C(﹣1,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标;(3)如图1,点D是抛物线上一动点,过D作y轴的平行线DE交直线AB于点E,当线段DE =1时,请直接写出D点的横坐标;(4)如图2,当D为直线AB上方抛物线上一动点时,DF⊥AB于F,设AC的中点为M,连接BD,BM,是否存在点D,使得△BDF中有一个角与∠BMO相等?若存在,请直接写出点D的横坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x﹣3)(x+1),然后把B点坐标代入求出a得到抛物线解析式,然后把解析式(2)把一般式化为顶点式得到抛物线的顶点坐标;(3)易得直线AB的解析式为y=﹣x+3,设D(x,﹣x2+2x+3),则E(x,﹣x+3),利用题意得到|x2﹣3x|=1,然后•解绝对值方程即可;(4)若∠BDF=∠BMO,则∠DBF=∠OBM,作BH⊥y轴于B,作DH⊥BH于H,MG⊥AB于G,如图,证明∠DBH=∠MBG,再计算出tan∠MBG==tan∠DBH=,则BH=2DH,设D(t,﹣t2+2t+3)(0<t<3),所以t=2[3﹣(﹣t2+2t+3],然后解t的方程得到此时D点的横坐标.若∠DBF=∠BMO,作BB′⊥y轴于抛物线交于另一点B′,作B′G∥y轴交BD于G,如图3,则∠GBB′=∠MBA,B′(2,3),同理得tan∠MBA=,则GB′=1,所以G(2,4),接着求出直线BG的解析式为y=x+3,然后解方程组得D点坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣3)(x+1),把B(0,3)代入得a•(0﹣3)•(0+1)=3,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为(1,4);(3)易得直线AB的解析式为y=﹣x+3,设D(x,﹣x2+2x+3),则E(x,﹣x+3)∵DE=|﹣x2+2x+3﹣(﹣x+3)|=|x2﹣3x|∴|x2﹣3x|=1,解方程x2﹣3x=1得x1=,x2=;解方程x2﹣3x=﹣1得x1=,x2=,∴D点的横坐标为或或或;(4)存在.抛物线的对称轴为直线x=1,则M(1,0),若∠BDF=∠BMO,则∠DBF=∠OBM,作BH⊥y轴于B,作DH⊥BH于H,MG⊥AB于G,如图2,∵OA=OB=3,∴△OAB为等腰直角三角形,∴∠OBA=∠OAB=45°,AB=3,∴∠HBA=45°,∴∠DBH=∠MBG,在Rt△AMG中,AG=MG=AM=,∴BG=2,在Rt△MBG中,tan∠MBG===,在Rt△DBH中,tan∠DBH==,∴BH=2DH,设D(t,﹣t2+2t+3)(0<t<3),∴t=2[3﹣(﹣t2+2t+3],整理得2t2﹣5t=0,解得t1=0(舍去),t2=,∴D点坐标为(,),若∠DBF=∠BMO,作BB′⊥y轴于抛物线交于另一点B′,作B′G∥y轴交BD于G,如图3,则∠GBB′=∠MBA,B′(2,3),同理得tan∠MBA=,∴tan∠GBB′==,∴GB′=1,∴G(2,4),易得直线BG的解析式为y=x+3,解方程组得或,∴D点坐标为(,),综上所述,D点的横坐标为或.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。
2019—2020学年度第一学期期末学业水平检测九年级数学试题试卷满分:150分 时间:120分钟。
第Ⅰ卷(选择题,共36分)一、选择题(每小题的四个选项中只有一个是正确的,请把正确的选项选出来,每小题3分,共36分。
)1.关于x 的一元二次方程012=-+kx x 根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定2. 对于二次函数3)1(22--=x y ,下列说法正确的是( ) A.图象开口向下 B.图象和y 轴交点的纵坐标为﹣3 C.x <1时,y 随x 的增大而减小 D.图象的对称轴是直线x =﹣13.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是( )A .主视图B .左视图C .俯视图D .主视图和俯视图4.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,若旋转角为20°,则∠1为( )A .110°B .120°C .150°D .160°5.在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是( )A. 向左平移8个单位B. 向右平移8个单位C. 向左平移2个单位D. 向右平移2个单位 6.在双曲线xk 1y -=的每一分支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .3C .0D .17.如图,已知AD ∥BE ∥CF ,那么下列结论不成立的是( ) A.BC EF CAFD B.DEEF ABBC C. ACDF ABDE D.DEABEFAC8.如图,BC 是⊙O 的弦,OA⊥BC,∠AOB=55°,则∠ADC 的度数是( ) A.25° B. 55° C. 45° D. 27.5°9.如图,边为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan ∠BED 等于( ) A .552 B .21C .2D .5510.如图,在直角坐标系中,点E (﹣4,2),F (﹣1,﹣1),以O 为位似中心,按相似比为1:2把△EFO 缩小,则点E 的对应点E ′的坐标为( )A .(2,﹣1)或(﹣2,1)B .(8,﹣4)或(﹣8,4)C .(2,﹣1)D .(8,﹣4)11. 如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y1<y3<y212. 二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()第Ⅱ卷(非选择题,共114分)二、填空题(每小题5分,共40分。
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16 - √4C. √25 + √9D. √-12. 已知 a + b = 0,则 a 和 b 的符号是()A. a 和 b 同号B. a 和 b 异号C. a 和 b 中有一个为0D. 无法确定3. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = 2xD. y = |x|4. 在直角坐标系中,点P(-3,2)关于原点对称的点的坐标是()A.(3,-2)B.(-3,-2)C.(2,-3)D.(-2,3)5. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 2x + 1C. 2x - 3 = 0D. 3x + 2 = 5x - 46. 已知等差数列 {an} 的首项 a1 = 2,公差 d = 3,则第10项 a10 等于()A. 29B. 32C. 35D. 387. 在△ABC中,∠A = 60°,∠B = 45°,则∠C 的度数是()A. 75°B. 105°C. 120°D. 135°8. 下列各式中,分母有理化的正确方法是()A. √2 / (√3 - √2)B. √3 / (√6 - √2)C. √5 / (√10 - √2)D. √7 / (√14 - √3)9. 已知二次函数 y = ax^2 + bx + c(a ≠ 0),若 a + b + c = 0,则该函数的图像与x轴的交点个数是()A. 1B. 2C. 0D. 无法确定10. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3二、填空题(每题5分,共25分)11. 若 |a| = 5,则 a 的值为_________。
辽宁省沈阳市九年级(上)期末数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)如图,该几何体是由4个大小相同的正方体组成,它的俯视图是()A.B.C.D.2.(2分)菱形的两条对角线的分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm3.(2分)方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根4.(2分)在Rt△ABC中,∠C=90°,BC=4,AC=3,则sin A的值是()A.B.C.D.5.(2分)某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)6.(2分)已知二次函数y=(x﹣)2+1,则下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣;③其图象顶点坐标为(,﹣1);④当x<时,y随x 的增大而减小,其中说法正确的有()A.1个B.2个C.3个D.4个7.(2分)如图,小颖周末到图书馆走到十字路口处,记不清前面哪条路通往图书馆,那么她能一次选对路的概率是()A.B.C.D.08.(2分)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米9.(2分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是()A.B.C.D.10.(2分)把抛物线y=x2+1向右平移3个单位,再向上平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+3二、填空题(每小题3分,共18分)11.(3分)若两个相似三角形的面积比是9:25,则对应边上的中线的比为.12.(3分)如图,河堤横断面迎水坡BC的坡比是l:,堤高AC=5m,则坡面BC的长度是.13.(3分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是.14.(3分)如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直的接触地面和门的内壁,并测得AC=2m,则门高OE为.15.(3分)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.16.(3分)已知正方形ABCD的边长为1,P为射线AD上的动点(不与点A重合),点A关于直线BP的对称点为E,连接PE,BE,CE,DE.当△CDE是等腰三角形时,AP 的值为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2cos45°﹣6tan230°﹣sin60°.18.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)19.(8分)如图,矩形ABCD的对角线AC与BD相交于点O,延长BC到点E,使CE=BC,连结DE.(1)求证:四边形ACED是平行四边形;(2)若BO=,sin∠CAD=,请直接写出平行四边形ACED的周长.四、(每小题8分,共16分)20.(8分)如图,在四边形ABCD中,∠DAB=∠CBA=90°,点E为BC的中点,DE ⊥CE.(1)求证:△AED∽△BCE;(2)若AD=3,BC=12,求线段DC的长.21.(8分)如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.22.(10分)某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式;(2)每件文具的售价定为多少元时,月销售利润为2520元?(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?六、(本题10分)23.(10分)如图,在平面直角坐标系xOy中,函数y=x+b的图象与函数y=(x>0)的图象相交于点A(1,6),并与x轴交于点B.点C是线段AB上一点,△OBC与△OBA的面积比为2:3.(1)k=,b=;(2)求点C的坐标;(3)若将△OBC绕点O顺时针旋转,得到△OB'C',其中B的对应点是B',C的对应点是C',当点C'落在x轴正半轴上,判断点B是否落在函数y=(x>0)的图象上,并说明理由.24.(12分)在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,2),连接BC,位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E,连接AC,BC,PA,PB,PC.(1)求抛物线的表达式;(2)如图1,当直线l运动时,求使得△PEA和△AOC相似的点P点的横坐标;(3)如图1,当直线1运动时,求△PCB面积的最大值;(4)如图2,抛物线的对称轴交x轴于点Q,过点B作BG∥AC交y轴于点G.点H、K分别在对称轴和y轴上运动,连接PH、HK,当△PCB的面积最大时,请直接写出PH+HK+KG的最小值.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)如图,该几何体是由4个大小相同的正方体组成,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面可看到从上往下2行小正方形的个数为:2,1,并且下面一行的正方形靠左,故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.(2分)菱形的两条对角线的分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm【分析】由菱形的性质以及两条对角线长可求出其边长.【解答】解:∵菱形的两条对角线长分别为60cm和80cm,∴该菱形的边长为,故选:B.【点评】此题考查了菱形的性质与勾股定理.此题比较简单,注意掌握菱形的面积的求解方法是解此题的关键.3.(2分)方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.4.(2分)在Rt△ABC中,∠C=90°,BC=4,AC=3,则sin A的值是()A.B.C.D.【分析】利用勾股定理求得AB的长,然后利用三角函数定义求解.【解答】解:在直角△ABC中,AB===5,则sin A==.故选:D.【点评】本题考查勾股定理,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.(2分)某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.6.(2分)已知二次函数y=(x﹣)2+1,则下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣;③其图象顶点坐标为(,﹣1);④当x<时,y随x 的增大而减小,其中说法正确的有()A.1个B.2个C.3个D.4个【分析】利用抛物线的顶点式和二次函数的性质分别进行判断.【解答】解:∵a=>0,∴抛物线开口向上,所以①正确;∵y=(x﹣)2+1,∴抛物线的对称轴为直线x=,顶点坐标为(,1),所以②③错误;当x<时,y随x的增大而减小,所以④正确;综上所述,正确的说法有2个.故选:B.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.(2分)如图,小颖周末到图书馆走到十字路口处,记不清前面哪条路通往图书馆,那么她能一次选对路的概率是()A.B.C.D.0【分析】由小颖周末到公园走到十字路口处,则可知共有3条路供选择,直接利用概率公式求解即可求得答案.【解答】解:∵小颖周末到公园走到十字路口处,∴她能一次选对路的概率是:.故选:B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.(2分)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【解答】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选:D.【点评】此题考查了解直角三角形的应用,解答本题的关键是将实际问题转化为解直角三角形的问题,求出BE的长度,难度一般.9.(2分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比:2:3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.10.(2分)把抛物线y=x2+1向右平移3个单位,再向上平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+3【分析】直接根据平移规律(左加右减,上加下减)作答即可.【解答】解:将抛物线y=x2+1向右平移3个单位,再向上平移2个单位后所得抛物线解析式为y=(x﹣3)2+3.故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(每小题3分,共18分)11.(3分)若两个相似三角形的面积比是9:25,则对应边上的中线的比为3:5.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形的性质求出答案.【解答】解:∵两个相似三角形的面积比是9:25,∴两个相似三角形的相似比是3:5,∴对应边上的中线的比为3:5,故答案为:3:5.【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.12.(3分)如图,河堤横断面迎水坡BC的坡比是l:,堤高AC=5m,则坡面BC的长度是10cm.【分析】在Rt△ABC中,已知了坡面BC的坡比以及铅直高度AC的值,通过解直角三角形即可求出斜面BC的长.【解答】解:Rt△ABC中,AC=5m,tan B=1:;∴AB=AC÷tan B=5m,∴BC==5=10m.答:坡面BC的长度是10m,故答案为:10cm.【点评】此题考查的是解直角三角形的应用,关键是根据已知条件求出AB.13.(3分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.14.(3分)如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直的接触地面和门的内壁,并测得AC=2m,则门高OE为.【分析】根据所建坐标系,易求A、B、D的坐标,因它们都在抛物线上,所以代入解析式得方程组求解,再求顶点坐标得高度OE长.【解答】解:由题意得,抛物线过点A(﹣4,0)、B(4,0)、D(﹣2,4),设y=a(x+4)(x﹣4),把D(﹣2,4)代入y=a(x+4)(x﹣4),得4=a(﹣2+4)(﹣2﹣4),解得a=﹣,∴y=﹣(x+4)(x﹣4).令x=0得y=,即(0,),∴OE=∴门的高度约为m.故答案为:.【点评】此题主要考查了二次函数的应用,根据所建坐标系及图形特点,选择合适的函数表达式形式,有利于减小计算量.本题选取交点式较简便.15.(3分)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.【分析】先分别求出A、B两点的坐标,得到AB的长度,再根据三角形的面积公式即可得出△PAB的面积.【解答】解:∵把x=2分别代入、,得y=1、y=﹣.∴A(2,1),B(2,﹣),∴AB=1﹣(﹣)=.∵P为y轴上的任意一点,∴点P到直线x=2的距离为2,∴△PAB的面积=AB×2=AB=.故答案是:.【点评】此题考查了反比例函数图象上点的坐标特征及三角形的面积,求出AB的长度是解答本题的关键,难度一般.16.(3分)已知正方形ABCD的边长为1,P为射线AD上的动点(不与点A重合),点A关于直线BP的对称点为E,连接PE,BE,CE,DE.当△CDE是等腰三角形时,AP 的值为2﹣或2+或.【分析】根据题意分三种情况画出图形并进行讨论,第一种情况是当CE=CD,且点P 在线段AD上时,过点E作BC的垂线,分别交AD,BC于点M,N,求出EM的长,并证明△PEM是含有30°角的直角三角形,即可求出PE的长,即AP的长;第二种情况是当CE=CD,且点P在线段AD的延长线上时,过点E作BC的垂线,交BC于N,交AD于M,推出△BCE为等边三角形,证明△PME是含有30°角的直角三角形,即可求出PE的长,即AP的长;第三种情况是当ED=EC,且点E在CD的垂直平分线上时,证△ABE为等边三角形,求出∠ABP=30°,即可求出AP的长.【解答】解:①如图1,当CE=CD,且点P在线段AD上时,由题意知,△BEC为等边三角形,过点E作BC的垂线,分别交AD,BC于点M,N,则EN=BE=,∴ME=1﹣,在四边形ABEP中,∠ABE=30°,∠A=∠PEB=90°,∴∠APE=150°,∴∠MPE=180°﹣∠APE=30°,∴在Rt△PEM中,PE=2ME=2﹣,∴AP=PE=2﹣;②如图2,当CE=CD,且点P在线段AD的延长线上时,由题意知,△BCE为等边三角形,过点E作BC的垂线,交BC于N,交AD于M,则NE=CE=,∴ME=1+,在四边形ABEP中,∠A=∠BEP=90°,∠ABE=∠ABC+∠EBC=150°,∴∠APE=30°,∴在Rt△PME中,PE=2ME=2+,∴AP=PE=2+;③如图3,当ED=EC时,点E在CD的垂直平分线上,也在AB的垂直平分线上,∴AE=BE,又∵AB=EB,∴△ABE为等边三角形,∴∠ABE=60°,∴∠ABP=∠EBP=30°,在Rt△ABP中,AP=AB=,综上所述,AP的值为2﹣或2+或.【点评】本题考查了正方形的性质,轴对称的性质,等腰三角形的性质等,解题关键是能够根据题意画出分情况讨论的图形,并结合等腰三角形的性质等进行解答.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2cos45°﹣6tan230°﹣sin60°.【分析】原式利用特殊角的三角函数值计算即可求出值.【解答】解:原式=2×﹣6×﹣×=﹣2﹣=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)【分析】画出树状图即可解决问题.【解答】解:画树状图为:共有16种等可能的结果数,其中红色和蓝色的结果数4,所以摸到的两个球的颜色能配成紫色的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.19.(8分)如图,矩形ABCD的对角线AC与BD相交于点O,延长BC到点E,使CE=BC,连结DE.(1)求证:四边形ACED是平行四边形;(2)若BO=,sin∠CAD=,请直接写出平行四边形ACED的周长16.【分析】(1)根据矩形的性质得到AD∥BC,AD=BC,等量代换得到AD=CE,根据平行四边形的判定定理即可得到结论;(2)根据矩形的性质得到AC=BD=2OB=5,∠ADC=90°,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵CE=BC,∴AD=CE,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形;(2)解:∵四边形ABCD是矩形,∴AC=BD=2OB=5,∠ADC=90°,∵sin∠CAD=,∴CD=AC=4,∴AD==3,∴平行四边形ACED的周长=2×(3+5)=16,故答案为:16.【点评】本题考查了矩形的性质,平行四边形的判定和性质,解直角三角形,正确的识别图形是解题的关键.四、(每小题8分,共16分)20.(8分)如图,在四边形ABCD中,∠DAB=∠CBA=90°,点E为BC的中点,DE ⊥CE.(1)求证:△AED∽△BCE;(2)若AD=3,BC=12,求线段DC的长.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)利用相似三角形的性质以及勾股定理解决问题即可.【解答】(1)证明:∵EC⊥DE,∴∠DEC=90°,∵∠DAB=∠CBA=90°,∴∠ADE+∠AED=90°,∠AED+∠CEB=90°,∴∠ADE=∠CEB,∴△AED∽△BCE.(2)∵△AED∽△BCE,∴=,∵AE=EB,∴AE2=AD•BC=36,∴AE=EB=6,∴DE2=AD2+AE2=32+62=45,EC2=BE2+BC2=62+122=180,∴CD===15.【点评】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.【分析】过B作BE⊥AC于E,解直角三角形即可得到结论.【解答】解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB =90,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=90,∴AE=BE=AB=90km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=30km,∴AC=AE+CE=90+30,∴A,C两港之间的距离为(90+30)km.【点评】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.五、(本题10分)22.(10分)某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式;(2)每件文具的售价定为多少元时,月销售利润为2520元?(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【分析】(1)根据题意知一件文具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件文具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=﹣10x2+130x+2300中,求出x的值即可.(3)把y=﹣10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x ≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件文具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件文具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点评】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.六、(本题10分)23.(10分)如图,在平面直角坐标系xOy中,函数y=x+b的图象与函数y=(x>0)的图象相交于点A(1,6),并与x轴交于点B.点C是线段AB上一点,△OBC与△OBA的面积比为2:3.(1)k=6,b=5;(2)求点C的坐标;(3)若将△OBC绕点O顺时针旋转,得到△OB'C',其中B的对应点是B',C的对应点是C',当点C'落在x轴正半轴上,判断点B是否落在函数y=(x>0)的图象上,并说明理由.【分析】(1)将A(﹣1,6)代入y=﹣x+b可求出b的值;将A(1,6)代入y=可求出k的值;(2)过点C作CM⊥x轴,垂足为M,过点A作AN⊥x轴,垂足为N,由△OBC与△OBA的面积比为2:3,可推出=,由点A的坐标可知AN=6,进一步求出CM=4,即为点C的纵坐标,把y=4代入y=x+5中,可求出点C坐标;(3)过点B'作B'F⊥x轴,垂足为F,由题意可知,OC'=OC===,由旋转可知S△OBC =S△OB'C′,可求出B'F=,在Rt△OB'F中,通过勾股定理求出OF的长度,即可写出点B'的坐标,将其坐标代入y=可知没有落在函数y=(x>0)的图象上.【解答】解:(1)将A(1,6)代入y=x+b,得,6=1+b,∴b=5,将A(1,6)代入y=,得,6=,∴k=6,故答案为:6,5;(2)如图1,过点C作CM⊥x轴,垂足为M,过点A作AN⊥x轴,垂足为N,∵△OBC与△OBA的面积比为2:3,∴=,又∵点A的坐标为(1,6),∴AN=6,∴CM=4,即点C的纵坐标为4,把y=4代入y=x+5中,得,x=﹣1,∴C(﹣1,4);(3)由题意可知,OC'=OC===,如图2,过点B '作B 'F ⊥x 轴,垂足为F ,∵S △OBC =S △OB 'C ′,由一次函数y =x +5可知B (﹣5,0),∴OB •CE =OC '•B 'F ,即5×4=B 'F , ∴B 'F =,在Rt △OB 'F 中,∵OF ===,∴B '的坐标为(,), ∵×≠6, ∴点B '不在函数y =的图象上.【点评】本题考查了待定系数法求解析式,三角形的面积,反比例函数的性质,勾股定理等,解题关键是能够熟练运用反比例函数的性质.七、(本题12分)24.(12分)在正方形ABCD 中,点E 是直线AB 上动点,以DE 为边作正方形DEFG ,DF所在直线与BC所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.【分析】(1)①由正方形的性质得出∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,即∠ADE=∠CDG,由SAS证明△ADE≌△CDG得出∠A=∠DCG=90°,即可得出结论;②过点N作NP∥DE,通过全等三角形的性质和相似三角形的性质分别求出GM=3MF,PN=MF,即可求解;(2)利用勾股定理可求DE,GN的长,即可求解.【解答】证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===【点评】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,构造出相似三角形是解本题的关键.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,2),连接BC,位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E,连接AC,BC,PA,PB,PC.(1)求抛物线的表达式;(2)如图1,当直线l运动时,求使得△PEA和△AOC相似的点P点的横坐标;(3)如图1,当直线1运动时,求△PCB面积的最大值;(4)如图2,抛物线的对称轴交x轴于点Q,过点B作BG∥AC交y轴于点G.点H、K分别在对称轴和y轴上运动,连接PH、HK,当△PCB的面积最大时,请直接写出PH+HK+KG的最小值.【分析】(1)根据A和B的坐标设抛物线的解析式为:y=a(x+2)(x﹣4),把点C (0,2)代入可得:a=﹣,即可求解;(2)只有当∠PAE=∠ACO时,△PEA△∽AOC,可得方程,解方程可得P的横坐标;(3)如图1,先确定△PCB的面积最大时,PD最大,设P(x,﹣x2+x+2),D(x,﹣x+2),表示PD的长,根据二次函数的最值可得PD的最大值,最后利用三角形面积公式可得结论;(4)由(3)知:△PCB的面积最大时,P(2,2),则OP==4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+KG=PH+HK+KM′≥PM,求出PM即可解决问题.【解答】解:(1)∵点A(﹣2,0),点B(4,0),∴设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2)代入得:a=﹣,故抛物线的表达式为:y=﹣(x+2)(x﹣4)=﹣x2+x+2;(2)设P(x,﹣x2+x+2),∵动直线l在y轴的右侧,P为抛物线与l的交点,∴0<x<4,∵点A(﹣2,0)、C(0,2),∴OA=2,OC=2,∵l⊥x轴,∴∠PEA=∠AOC=90°,∵∠PAE≠∠CAO,∴只有当∠PAE=∠ACO时,△PEA∽△AOC,此时,即=,3x2﹣2x﹣16=0,(x+2)(3x﹣8)=0,x=﹣2(舍)或,则点P的横坐标为;(3)如图1,△PCB的面积=,∵OB=4是定值,∴当PD的值最大时,△PCB的面积最大,∵B(4,0),C(0,2),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+2,设P(x,﹣x2+x+2),D(x,﹣x+2),∴PD=(﹣x2+x+2)﹣(﹣+2)=﹣+x=﹣(x﹣2)2+,∵﹣<0,∴当x=2时,PD有最大值是,此时△PCB的面积==×4=2;(4)如图2中,△AOC中,OA=2,OC=2,∴AC=4,∴∠ACO=30°,∵BG∥AC,∴∠BGO=∠ACO=30°,Rt△BOG中,OB=4,∴OG=4,由(3)知:△PCB的面积最大时,P(2,2),则OP==4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,Rt△OMG中,OG=4,MG=2,∴OM=6,可得PM=10,∴PH+HK+KG的最小值为10.【点评】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.。
九年级上册沈阳数学全册期末复习试卷测试题(Word 版 含解析)一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .32.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .13.一组数据0、-1、3、2、1的极差是( ) A .4 B .3C .2D .14.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠05.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐6.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120° 7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 8.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .19.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8 B .9 C .10 D .11 10.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .211.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 12.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7513.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 14.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1915.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.17.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.18.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.19.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.20.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 21.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .22.方程290x 的解为________.23.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.24.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.25.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)26.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 27.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.29.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.32.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠ 的顶点为()2,0A -,且经过点()5,9B -与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线对应的函数表达式;(2)点P 为该抛物线上点C 与点B 之间的一动点.①若15PAB ABC S S ∆∆=,求点P 的坐标. ②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M ,连接BP延长交AD 于点N .试说明()DN DM DB +为定值.33.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +1=0有两个不相等的实数根,求a 的取值范围.34.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)35.已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.四、压轴题36.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.37.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.38.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________39.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题干可以明确得到p,q是方程2330x x-=的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程2330x x-=的两根,∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 3.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.4.D解析:D【解析】∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0.解得:k>﹣1且k≠0.故选D.考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.5.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.C解析:C【解析】【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键. 7.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键8.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.10.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 11.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C 、AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.12.D解析:D【解析】【分析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE ,在Rt △BCE 中,利用勾股定理即可解决问题.【详解】如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴2234+,∵CD=DB , ∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC , ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形,∵12•AD•BO=12•BD•AH , ∴OB=125, ∴BE=2OB=245, 在Rt △BCE 中,2222247555BC BE ⎛⎫-=-= ⎪⎝⎭. 故选D .点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.13.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.18.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.19.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a的值,再利用tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴解析:12 【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF =. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 20.60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB ∥CD∴△ABE ∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.21.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.22.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x=±【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为3x=±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.23.【解析】分析:由已知条件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB是解析:3 4【解析】分析:由已知条件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=ACBC求得所求的值了.详解:∵AB是O的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=22534-=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.24.(,2).【解析】【分析】【详解】解:如图,当点B 与点D 重合时,△BEF 面积最大,设BE=DE=x ,则AE=4-x ,在RT △ABE 中,∵EA2+AB2=BE2,∴(4-x )2+22=解析:(32,2). 【解析】【分析】【详解】解:如图,当点B 与点D 重合时,△BEF 面积最大,设BE=DE=x ,则AE=4-x ,在RT △ABE 中,∵EA 2+AB 2=BE 2,∴(4-x )2+22=x 2,∴x=52, ∴BE=ED=52,AE=AD-ED=32,∴点E 坐标(32,2). 故答案为:(32,2). 【点睛】 本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.25.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 26.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB ==10,∵∠ACB=90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=2268=10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.27.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CE DE =AG DG=2, ∴CE =2DE =2×2=4,∴CD =DE +CE =2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.28.1,,【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB 时∴△DCP∽△BCA∴即,解得DP=1如图:当P 在AB 上,即DP∥AC∴△DC解析:1,83,32【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】 本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.29.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题31.(1)(3,0)m ,2(,4)m m ;(2)①21y x =-+,②295y x x =-++ 【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =,∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:33m =(33m =-舍去), ∴二次函数的关系式为:22313y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB , ∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:15m =15m = ∴二次函数的关系式为:215955y x x =-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.32.(1)244y x x =++;(2)①点P 的坐标为()13,1P -,()24,4P -;②()27DN DM DB +=,是定值.【解析】【分析】(1)设函数为()()220y a x a =+≠,把()5,9B -代入即可求解;(2)①先求出直线AB 解析式,求出C’点,得到ABC S ∆,再求出PAB S ∆,设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',得到()',36P x x --,根据三角形面积公式得()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦,解出x 即可求解; ②过P 作x 轴的垂线,垂足为点E ,设AE t =,表示出()22,P t t --,故2PE t =,根据//PE BD ,得APE AMD ∆∆,故PE DM AE DA =,即23t DM t =,得到3DM t =.再过P 作BD 的垂线,垂足为点F ,根据 相似三角形的性质得到93DN t =+,可得()DN DM DB +的值即为定值.【详解】(1)解:设()()220y a x a =+≠,把点()5,9B -代入,得()2952a =-+,解得1a =, ∴该抛物线对应的函数表达式为()22244y x x x =+=++.(2)①设直线AB 的函数表达式为y kx b =+,。
辽宁省沈阳市九年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cos A的值是()A.B.C.D.2.如图所示的工件,其俯视图是()A.B.C.D.3.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=4.若锐角三角函数tan55°=a,则a的范围是()A.0<a<1B.1<a<2C.2<a<3D.3<a<45.已知点C是线段AB的黄金分割点(AC<BC),若AB=4,则AC的长为()A.(6﹣2)B.(2﹣2)C.(﹣1)D.(3﹣)6.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)7.下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣3=0B.x2﹣x+1=0C.x2+2x+1=0D.x2=18.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6D.﹣89.如图,有一块锐角三角形材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使其一边在BC上,其余两个顶点分别在AB、AC上,则这个正方形零件的边长为()A.40mm B.45mm C.48mm D.60mm10.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=300二、填空题(每小题3分,共18分)11.(3分)方程x2=9两根的积为.12.(3分)若=,则=.13.(3分)如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是.14.(3分)如图,在直角坐标系中,有两点A(6,3)、B(6,0),以原点O为位似中心,相似比为3:1,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为.15.(3分)已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,以此类推,则第2019个三角形周长为.16.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B 之间的距离为.三、解答题(共62分)17.(6分)计算:4cos30°﹣3tan60°+2sin45°•cos45°.18.(8分)解方程:x(x﹣2)+x﹣2=0.19.(8分)如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.20.(8分)超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g,小明妈妈从货架上随机取下两个苹果,请用列表法或画树状图的方法求取下的两个苹果总重量超过223g的概率.21.(8分)如图是某路灯在铅垂面内示意图,灯柱AC的高为12米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为21米,从D,E两处测得路灯B 的仰角分别为α和β,且tanα=6,tanβ=,求灯杆AB的长度.22.(10分)如图,在平面直角坐标系中,点A(,1)在反比例函数y=的图象上,OA⊥OB,AB⊥x轴于点C.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BO1A1(点O、A的对应点分别为O1、A1),点A1是否在反比例函数y=的图象上?若在请直接写出该点坐标,若不在请说明理由.23.(10分)某饭店推出一种早点套餐,试销一段时间后发现,每份套餐的成本为5元,若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份,该店每天固定支出费用为600元(不含套餐成本).为了便于结算,每份套餐的售价取整数,设每份套餐的售价为x(x>5)元,该店日销售利润为y元.(日销售利润=每天的销售额﹣套餐成本﹣每天固定支出)(1)求y与x的函数关系式并写出自变量的取值范围.(2)该店要想获得最大日销售利润,又要吸引顾客,使每天销售量较大,按此要求,每份套餐的售价应定为多少元?此时日销售利润为多少元?24.(12分)在矩形ABCD中,AB=2,BC=1,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为α(0°<α≤180°),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.(1)如图①,当点E落在DC边上时,直接写出线段EC的长度为;(2)如图②,当点E落在线段CF上时,AE与DC相交于点H,连接AC,①求证:△ACD≌△CAE;②直接写出线段DH的长度为.(3)如图③设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,△BEP的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.25.(12分)如图①,抛物线C1:y=+bx+c经过原点(0,0),与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2,C2交x轴于A、B两点(点A在点B的左边),交y轴于点C.(1)求抛物线C1的解析式.(2)如图②,当m=2时,连接AC,过点A做AD⊥AC交抛物线C2于点D,连接CD.①求抛物线C2的解析式.②直接写出点D的坐标为.(3)若抛物线C2的对称轴上存在点P,使△PAC为等边三角形,请直接写出此时m的值.参考答案与试题解析一、选择题(每小题2分,共20分)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cos A的值是()A.B.C.D.【分析】首先利用勾股定理计算出斜边长,再根据锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A进行计算即可,【解答】解:∵∠C=90°,BC=4,AC=3,∴AB==5,∴cos A=,故选:B.【点评】此题主要考查了锐角三角函数,关键是掌握余弦定义.2.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.4.若锐角三角函数tan55°=a,则a的范围是()A.0<a<1B.1<a<2C.2<a<3D.3<a<4【分析】由tan45°=1,tan60°=且锐角范围内tanα随∠α的增大而增大,知tan45°<tan55°<tan60°,即1<a<,从而得出答案.【解答】解:∵tan45°=1,tan60°=,且锐角范围内tanα随∠α的增大而增大,∴tan45°<tan55°<tan60°,即1<a<,则1<a<2,故选:B.【点评】本题主要考查锐角三角函数的增减性,解题的关键是掌握特殊锐角的三角函数值及tanα随∠α的增大而增大.5.已知点C是线段AB的黄金分割点(AC<BC),若AB=4,则AC的长为()A.(6﹣2)B.(2﹣2)C.(﹣1)D.(3﹣)【分析】根据黄金比值是计算即可.【解答】解:∵点C是线段AB的黄金分割点,且AC<BC,∴BC=AB=2(﹣1)cm,则AC=4﹣2(﹣1)=6﹣2,故选:A.【点评】本题考查的是黄金分割,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.6.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【分析】由抛物线的解析式可求得答案.【解答】解:∵y=2(x+3)2+5,∴抛物线顶点坐标为(﹣3,5),故选:B.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣3=0B.x2﹣x+1=0C.x2+2x+1=0D.x2=1【分析】分别找出一元二次方程中的二次项系数a,一次项系数b、常数项c,再利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.【解答】解:A、a=1,b=﹣2,c=﹣3,b2﹣4ac=4+12=16>0,有两个不相等的实数根,故此选项错误;B、a=1,b=﹣1,c=1,b2﹣4ac=1﹣4=﹣3<0,没有实数根,故此选项正确;C、a=1,b=2,c=1,b2﹣4ac=4﹣4=0,有两个相等的实数根,故此选项错误;D、a=1,b=0,c=﹣1,b2﹣4ac=4>0,有两个不相等的实数根,故此选项错误;故选:B.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6D.﹣8【分析】由x2+x﹣1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.【解答】解:由x2+x﹣1=0得x2+x=1,∴x3+2x2﹣7=x3+x2+x2﹣7,=x(x2+x)+x2﹣7,=x+x2﹣7,=1﹣7,=﹣6.故选:C.【点评】本题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+x的值,然后利用“整体代入法”求代数式的值.9.如图,有一块锐角三角形材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使其一边在BC上,其余两个顶点分别在AB、AC上,则这个正方形零件的边长为()A.40mm B.45mm C.48mm D.60mm【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.【解答】解:设正方形的边长为xmm,则AK=AD﹣x=80﹣x,∵EFGH是正方形,∴EH∥FG,∴△AEH∽△ABC,∴=,即=,解得x=48mm,故选:C.【点评】本题主要考查了相似三角形的应用,主要利用了相似三角形对应高的比等于对应边的比,表示出AI的长度,然后列出比例式是解题的关键.10.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(每小题3分,共18分)11.(3分)方程x2=9两根的积为﹣9.【分析】首先根据一元二次方程求出x的两个值,将他们乘积即可.【解答】解:∵x2=9,∴x=±3,∴两根的积﹣9.故答案为:﹣9【点评】本题主要考查了一元二次方程的解法,熟记解方程的方法是解答本题的关键.12.(3分)若=,则=﹣2.【分析】由=可设x=k、y=3k,代入所求代数式消去k即可得.【解答】解:∵=,∴设x=k、y=3k,则===﹣2,故答案为:﹣2.【点评】本题主要考查比例的性质,解题的关键是熟练掌握设k法求比例式的值.13.(3分)如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是4.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高==2,所以左视图的面积为×4×2=4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.(3分)如图,在直角坐标系中,有两点A(6,3)、B(6,0),以原点O为位似中心,相似比为3:1,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为(2,1).【分析】根据位似变换的性质计算即可.【解答】解:∵以原点O为位似中心,相似比为3:1,在第一象限内把线段AB缩小后得到线段CD,A(6,3)、∴点C的坐标为(6×,3×),∴点C的坐标为(2,1),故答案为:(2,1).【点评】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.15.(3分)已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,以此类推,则第2019个三角形周长为.【分析】根据题意可以写出前几个三角形的周长,从而可以发现三角形周长的变化规律,进而写出第2019个三角形周长.【解答】解:由题意可得,第1个三角形的周长是1,第2个三角形的周长是,第3个三角形的周长是,第4个三角形的周长是,则第2019个三角形的周长是,故答案为:.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中三角形周长的变化规律.16.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B 之间的距离为或5.【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得,可求BE,DE的长,由勾股定理可求PB的长.【解答】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB==5∵点D是AB的中点,∴BD=BA=∵B1D⊥BC,∠C=90°∴B1D∥AC∴∴BE=EC=BC=2,DE=AC=∵折叠∴B1D=BD=,B1P=BP∴B1E=B1D﹣DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2﹣BP)2,∴BP=如图,若点B1在BC右侧,∵B1E=DE+B1D=+,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP﹣2)2,故答案为:或5【点评】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.三、解答题(共62分)17.(6分)计算:4cos30°﹣3tan60°+2sin45°•cos45°.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4×﹣3×+2××=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)解方程:x(x﹣2)+x﹣2=0.【分析】把方程的左边分解因式得到(x﹣2)(x+1)=0,推出方程x﹣2=0,x+1=0,求出方程的解即可【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,∴x1=2,x2=﹣1.【点评】本题主要考查对解一元二次方程,解一元一次方程,等式的选择等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.(8分)如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.【分析】(1)由矩形的性质可得∠ACB=∠DAC,然后利用“角角边”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;(2)由菱形的性质可得AE=EC,AO=CO,EO=FO,由勾股定理可求CE、EO的长,即可求【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO∵AB2+BE2=AE2,∴36+(8﹣CE)2=CE2,∴CE=∵AB=6,BC=8,∴AC==10∴AO=CO=5∵EO==∴EF=2EO=故答案为:【点评】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.(8分)超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g,小明妈妈从货架上随机取下两个苹果,请用列表法或画树状图的方法求取下的两个苹果总重量超过223g的概率.【分析】画树状图展示所有12种等可能的结果数,再找出它们总重量超过223g的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果数,其中它们总重量超过223g的结果数为8,所以它们总重量超过223g的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.21.(8分)如图是某路灯在铅垂面内示意图,灯柱AC的高为12米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为21米,从D,E两处测得路灯B 的仰角分别为α和β,且tanα=6,tanβ=,求灯杆AB的长度.【分析】过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC=12.设BF=3x知EF=4x、DF=,由DE=21求得x,据此知BG=BF﹣GF,再求得∠BAG =∠BAC﹣∠CAG=30°可得AB=2BG.【解答】解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC =12.由题意得∠BDE=α,tan∠β=.设BF=3x,则EF=4x在Rt△BDF中,∵tan∠BDF=,∴DF=,∵DE=21,∴x+4x=21.∴x=.∴BF=14,∴BG=BF﹣GF=14﹣12=2,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=4,答:灯杆AB的长度为4米.【点评】本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.22.(10分)如图,在平面直角坐标系中,点A(,1)在反比例函数y=的图象上,OA⊥OB,AB⊥x轴于点C.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BO1A1(点O、A的对应点分别为O1、A1),点A1是否在反比例函数y=的图象上?若在请直接写出该点坐标,若不在请说明理由.【分析】(1)将点A代入,利用待定系数法即可求出反比例函数的表达式(2)先由射影定理求出BC=3,那么B,计算出S=△AOB(3)先解△AOB,得出∠ABO=30°,再根据旋转的性质求出A1点坐标为,即可求解.【解答】解:(1)∵点A,在反比例函数的图象上,∴∴反比例函数的表达式为(2)∵点A,AB⊥x轴于点,∴OC=,AC=1,由射影定理得OC2=AC•BC,可得BC=3,点B,=∴S△AOB故△AOB的面积为(3)点A1在该反比例函数的图象上.理由如下:∵OA⊥OB,OA=2,OB=,AB=4∴sin∠ABO=,∴∠ABO=30°∵将△BOA绕点B按逆时针方向旋转60°得到△BO1A1(点O、A的对应点分别为O1、A1),如图∴△BOA≌△BO1A1,∠OBO1=60°∴BO=BO1=,OA=O1A1=2,∠BOA=∠BO1A1=90°∠ABO1=30°+60°=90°,而BO1﹣OC=,BC﹣O1A1=1,∴点A1的坐标为∵∴点A1在该反比例函数的图象上【点评】此题考查的是反比例函数的图象求函数解析式,此类题型相对容易,但要注意反比例函数的性质.第(3)题中,判断点是否在函数图象上,只要该点满足该函数解析式即可.23.(10分)某饭店推出一种早点套餐,试销一段时间后发现,每份套餐的成本为5元,若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份,该店每天固定支出费用为600元(不含套餐成本).为了便于结算,每份套餐的售价取整数,设每份套餐的售价为x(x>5)元,该店日销售利润为y元.(日销售利润=每天的销售额﹣套餐成本﹣每天固定支出)(1)求y与x的函数关系式并写出自变量的取值范围.(2)该店要想获得最大日销售利润,又要吸引顾客,使每天销售量较大,按此要求,每份套餐的售价应定为多少元?此时日销售利润为多少元?【分析】(1)根据日销售利润=每天的销售额﹣套餐成本﹣每天固定支出,得出y与x的函数关系式;(2)分别求出当不超过10元时的最大利润和超过10元时的最大利润,再结合题意选择方案.【解答】解:(1)由题意,得当5<x≤10时,y=400(x﹣5)﹣600=400x﹣2600;当x>10时,y=[400﹣40(x﹣10)](x﹣5)﹣600=﹣40x2+1000x﹣4600;(2)当5<x≤10时,y=400x﹣2600,当x=10时,y=1400元,最大当x>10时y=﹣40x2+1000x﹣4600=﹣40(x﹣12.5)2+1650,当x=12时,y=1640,当x=13时,y=1640,∵要吸引顾客,使每天销售量较大,又要有较高的日纯收入,∴每份套餐的售价应定为12元,日纯收入为1640元.【点评】本题考查了一次函数的运用、二次函数的运用,方案设计的运用,解答时求出函数的解析式是关键.24.(12分)在矩形ABCD中,AB=2,BC=1,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为α(0°<α≤180°),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.(1)如图①,当点E落在DC边上时,直接写出线段EC的长度为2﹣;(2)如图②,当点E落在线段CF上时,AE与DC相交于点H,连接AC,①求证:△ACD≌△CAE;②直接写出线段DH的长度为.(3)如图③设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,△BEP的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【分析】(1)如图①中,在Rt△ADE中,利用勾股定理即可解决问题;(2)①证明:如图②中,根据HL即可证明△ACD≌△CAE;②如图②中,由△ACD≌△CAE,推出∠ACD=∠CAE,推出AH=HC,设AH=HC=m,在Rt△ADH中,根据AD2+DH2=AH2,构建方程即可解决问题;(3)存在.如图③中,连接PA,作BM⊥PE交PE的延长线于M.由题意:PF=PC=1,由AG=EF=1,∠G=∠F=90°,推出PA=PE=,推出S=•PE•BM=BM,推出当△PBEBM的值最大时,△PBE的面积最大,求出BM的最大值即可解决问题;【解答】(1)解:如图①中,∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,∵矩形AEFG是由矩形ABCD旋转得到,∴AE=AB=2,在Rt△ADE中,DE==,∴CE=2﹣,故答案为2﹣.(2)①证明:如图②中,∵当点E落在线段CF上,∴∠AEC=∠ADC=90°,在Rt△ADC和Rt△AEC中,,∴Rt△ACD≌Rt△CAE(HL);②解:如图②中,∵△ACD≌△CAE,∴∠ACD=∠CAE,∴AH=HC,设AH=HC=m,在Rt△ADH中,∵AD2+DH2=AH2,∴12+(2﹣m)2=m2,∴m=∴DH=2﹣=,故答案为.(3)解:存在.理由:如图③中,连接PA,作BM⊥PE交PE的延长线于M.由题意:PF=PC=1,∵AG=EF=1,∠G=∠F=90°,∴PA=PE=,∴S=•PE•BM=BM,△PBE∴当BM的值最大时,△PBE的面积最大,∵BM≤PB,PB≤AB+PA,∴PB≤2+,∴BM≤2+,∴BM的最大值为2+,∴△PBE的面积的最大值为+1.【点评】本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.(12分)如图①,抛物线C1:y=+bx+c经过原点(0,0),与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2,C2交x轴于A、B两点(点A在点B的左边),交y轴于点C.(1)求抛物线C1的解析式.(2)如图②,当m=2时,连接AC,过点A做AD⊥AC交抛物线C2于点D,连接CD.①求抛物线C2的解析式.②直接写出点D的坐标为(5,).(3)若抛物线C2的对称轴上存在点P,使△PAC为等边三角形,请直接写出此时m的值.【分析】(1)把原点(0,0)与(2,0)代入抛物线C1:y=+bx+c,解方程组求得b,c 的值,即可得出抛物线C1的解析式;(2)①根据抛物线的平移规律可得抛物线C2的解析式;②由抛物线C2的解析式,求得点C(0,4),A(2,0),B(4,0),作DH⊥x轴于点H,设点D(x,),证明△DHA∽△AOC,得,求得点D的横坐标,再代入抛物线求得纵坐标,即可得出点D的坐标;(3)设抛物线C2的解析式为:y=(x﹣m)(x﹣m﹣2),可得A(m,0),B(m+2,0).C (0,m2+m),对称轴为直线x=m+1,延长AP至K,使PK=AP,连接KC,作KG⊥y轴于G,证明△AOC∽△CGK,可得GK=(m2+m),利用中点坐标公式得出点P的横坐标为:,所以=m+1,解方程即可得出m的值.【解答】解:(1)∵抛物线C1:y=+bx+c经过原点(0,0),与x轴的另一个交点为(2,0),∴,解得,∴抛物线C1的解析式为:y=﹣x,(2)①∵y=﹣x=(x﹣1)2﹣,当m=2时,抛物线C2的解析式为:y=(x﹣3)2﹣,②当x=0时,y=4,当y=0时,x=2或x=4,∴C(0,4),A(2,0),B(4,0),如图,作DH⊥x轴于点H,设点D(x,),∵AD⊥AC,∴∠DAH=90°﹣∠CAO=∠ACO,∵∠DHA=∠AOC=90°,∴△DHA∽△AOC∴,即,解得x=5,此时y═,∴点D的坐标为(5,),故答案为:(5,),(3)由题意,抛物线C2的解析式为:y=(x﹣m)(x﹣m﹣2),A(m,0),B(m+2,0).C(0,m2+m),对称轴为直线x=m+1,延长AP至K,使PK=AP,连接KC,作KG⊥y轴于G,∵△PAC为等边三角形,∴∠PKC=∠PCK=∠APC=30°,∴∠ACK=60°+30°=90°,同理可证△AOC∽△CGK,∴,∴GK=(m2+m),即点K的横坐标为:(m2+m),∴点P的横坐标为:,∴=m+1,化简,得,(m+2)(m﹣2)=0,∴m=或m=﹣2(舍去),∴存在点P,使△PAC为等边三角形,此时m的值为,【点评】本题考查用待定系数法求二次函数解析式,相似三角形的判定和性质.解决(3)问的关键是构造三角形相似得出点K的横坐标.。
辽宁省沈阳市九年级(上)期末数学试卷一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案涂在答题卡上,每小题2分,共20分)1.如图所示的几何体的主视图是()A.B.C.D.2.方程(a﹣2)x2+ax+b=0是关于x的一元二次方程,则a的取值范围是()A.a≠0B.a≠2C.a=2D.a=03.如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOD=60°,AC=6,则图中长度为3的线段有()A.2条B.4条C.5条D.6条4.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A.B.C.D.5.已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<1B.1<y<2C.2<y<6D.y>66.抛物线y=3x2﹣6x+4的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,2)7.已知,则的值是()A.B.C.D.8.一元二次方程x2﹣2x=0的两根分别为x1和x2,其中x1<x2,则x12﹣2x22的值为()A.﹣4B.﹣8C.8D.49.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:210.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选①③C.选②④D.选②③二、填空题(每小题3分,共18分)11.(3分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是.12.(3分)边长为3cm的菱形的周长是.13.(3分)一元二次方程(x+1)(x﹣3)=2x﹣5实数根.(填“有”或“没有”)14.(3分)已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M.N两点,若点M的坐标是(1,2),则点N的坐标是.15.(3分)一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米,此时标杆旁边一棵杨树的影长为10.5米,则这棵杨树高为米.16.(3分)如图,抛物线C1:y=x2﹣2x﹣3与x轴交于A、B两点,点A在点B的左侧,将抛物线C1向上平移1个单位得到抛物线C2,点Q(m,n)在抛物线C2上,其中m>0且n<0,过点P作PQ∥y轴交抛物线C1于点P,点M是x轴上一点,当以点P、Q、M为顶点的三角形与△AOQ全等时,点M的横坐标为.三、(17题6分,18题,19题各8分,共22分)17.(6分)解方程:2x2+x=4x﹣118.(8分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.19.(8分)在一个不透明的布袋里共装有3个球(除颜色不同外其余都相同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,请用树状图或列表法求两次摸出的都是白球的概率.四、(20、21题各8分,共16分)20.(8分)小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?21.(8分)如图,四边形ABGH、BCFG、CDEF是边长为1的正方形,连接BH、CH、DH,求证:∠ABH+∠ACH+∠ADH=90°.22.(10分)已知关于x的一元二次方程(x﹣1)(x﹣4)=a2,其中a为常数.(1)求证:此方程有两个不相等的实数根;(2)当|a﹣2|=0时,求此方程的根.六、(本题10分)23.(10分)如图,在平面直角坐标系中,点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),连接AB、BC、OC(1)求证四边形OABC是菱形;(2)直线l过点C且与y轴平行,将直线l沿x轴正方向平移,平移后的直线交x轴于点P.①当OP:PA=3:2时,求点P的坐标;②点Q在直线1上,在直线l平移过程中,当△COQ是等腰直角三角形时,请直接写出点Q的坐标.24.(12分)Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C 重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'=AD,那么请直接写出点D'到直线BC的距离.25.(12分)如图,抛物线y=x2+bx+c过点A(2,0)和B(3,3).(1)求抛物线的表达式;(2)点M在第二象限的抛物线上,且∠MBO=∠ABO.①直线BM交x轴于点N,求线段ON的长;②延长BO交抛物线于点C,点P是平面内一点,连接PC、OP,当△POC∽△MOB时,请直接写出点P的坐标.参考答案与试题解析一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案涂在答题卡上,每小题2分,共20分)1.如图所示的几何体的主视图是()A.B.C.D.【分析】主视图是从正面看,注意所有的看到的棱都应表现在主视图中.【解答】解:该几何体的主视图为:.故选:C.【点评】此题主要考查了三视图的知识,关键是掌握三视图的几种看法.2.方程(a﹣2)x2+ax+b=0是关于x的一元二次方程,则a的取值范围是()A.a≠0B.a≠2C.a=2D.a=0【分析】根据一元二次方程的定义得到a﹣2≠0,由此求得a的取值范围.【解答】解:依题意得:a﹣2≠0,解得a≠2.故选:B.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOD=60°,AC=6,则图中长度为3的线段有()A.2条B.4条C.5条D.6条【分析】由题意可得AO=BO=CO=DO=3,可证△ABO是等边三角形,可得AB=3=CD,则可得一共有6条线段长度为3.【解答】解:∵四边形ABCD是矩形∴OA=OC=OB=OD=AC=3,AB=CD∵∠BOC=120°,OA=OB∴∠OAB=∠OBA=60°∴△AOB是等边三角形∴AB=AO=3∴CD=3∴一共6条线段长度为3.故选:D.【点评】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键.4.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A.B.C.D.【分析】根据概率公式直接进行解答即可.【解答】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为;故选:A.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5.已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<1B.1<y<2C.2<y<6D.y>6【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选:C.【点评】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.6.抛物线y=3x2﹣6x+4的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,2)【分析】由抛物线的解析式,利用二次函数的性质可求出抛物线的顶点坐标,此题得解(利用配方法找出顶点坐标亦可).【解答】解:∵a=3,b=﹣6,c=4,∴抛物线的顶点坐标为(﹣,),即(1,1).故选:A.【点评】本题考查了二次函数的性质,牢记“二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)”是解题的关键.7.已知,则的值是()A.B.C.D.【分析】依据,可设a=13k,b=5k,代入分式计算化简即可.【解答】解:∵,∴可设a=13k,b=5k,∴===,故选:D.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积,解决问题的关键是利用设k法.8.一元二次方程x2﹣2x=0的两根分别为x1和x2,其中x1<x2,则x12﹣2x22的值为()A.﹣4B.﹣8C.8D.4【分析】解方程得出方程的两根,代入计算可得.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∵x1<x2,∴x1=0,x2=2,则x12﹣2x22=0﹣2×22=﹣8,故选:B.【点评】本题主要考查解一元二次方程,解题的关键是根据方程的特点选择合适的方法解方程.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.10.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选①③C.选②④D.选②③【分析】根据要判定四边形是正方形,则需能判定它既是菱形又是矩形进而分别分析得出即可.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意.故选:D.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.二、填空题(每小题3分,共18分)11.(3分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是k<1.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.12.(3分)边长为3cm的菱形的周长是12cm.【分析】利用菱形的各边长相等,进而求出周长即可.【解答】解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故答案为:12cm.【点评】此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键.13.(3分)一元二次方程(x+1)(x﹣3)=2x﹣5有实数根.(填“有”或“没有”)【分析】先将方程整理成一般式,再求出判别式的值,从而做出判断.【解答】解:将方程(x+1)(x﹣3)=2x﹣5整理成一般式得:x2﹣4x+2=0,∵a=1,b=﹣4,c=2,∴△=(﹣4)2﹣4×1×2=8>0,∴此一元二次方程有实数根,故答案为:有.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.14.(3分)已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M.N两点,若点M的坐标是(1,2),则点N的坐标是(﹣1,﹣2).【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M.N 两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故答案为(﹣1,﹣2).【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.15.(3分)一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米,此时标杆旁边一棵杨树的影长为10.5米,则这棵杨树高为7.5米.【分析】根据同时同地的物高与影长成正比列式计算即可得解.【解答】解:设这棵杨树高度为xm,由题意得,=,解得:x=7.5,即这棵杨树高为7.5m.故答案为:7.5.【点评】本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.16.(3分)如图,抛物线C1:y=x2﹣2x﹣3与x轴交于A、B两点,点A在点B的左侧,将抛物线C1向上平移1个单位得到抛物线C2,点Q(m,n)在抛物线C2上,其中m>0且n<0,过点P作PQ∥y轴交抛物线C1于点P,点M是x轴上一点,当以点P、Q、M为顶点的三角形与△AOQ全等时,点M的横坐标为4.【分析】此题首先需要确定全等的对应关系,函数图象向上平移后,两个函数上下间距为1,OA=1,所以AO与PQ对应,∠AOQ=∠PQM,可确定OQ=QM,AQ=PB,得到两组线段相等后,设点M坐标,以两组线段相等为等量建立方程即可解决问题.【解答】解:∵△AOQ≌△PQM,AO=PQ∴∠AOQ=∠PQM,AQ=PM,OQ=QM∴AQ2=PB2,OQ2=QM2设Q(m,m2﹣2m﹣2),P(m,m2﹣2m﹣3),M(a,0)如图,过点Q作QH⊥AB,垂足为H,则在Rt△OHQ中,OQ2=(m)2+(m2﹣2m﹣2)2;在Rt△MHQ中,QM2=(a﹣m)2+(m2﹣2m﹣2)2;在Rt△AHQ中,AQ2=(m+1)2+(m2﹣2m﹣2)2;在Rt△PHB中,PB2=(a﹣m)2+(m2﹣2m﹣3)2由(m)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣2)2,解得m=由(m+1)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣3)2,解得a=﹣2(舍)或a=4∴点M的横坐标为4.【点评】此题是代几综合问题,考查了全等关系在二次函数中的应用和二次函数中点坐标与线段长的转换,首先要确定边角的对应关系,发现线段相等后,利用等量建立方程,只要确定了对应关系,此题就好解决了.三、(17题6分,18题,19题各8分,共22分)17.(6分)解方程:2x2+x=4x﹣1【分析】整理后,先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2+x=4x﹣1,2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,∴2x﹣1=0或x﹣1=0,x1=,x2=1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键,难度适中.18.(8分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.19.(8分)在一个不透明的布袋里共装有3个球(除颜色不同外其余都相同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,请用树状图或列表法求两次摸出的都是白球的概率.【分析】根据题意画出树状图,得出所有等情况数和两次摸出的都是白球的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:∵一共有9 种等可能的结果,每种结果出现的可能性相同,两次摸出的都是白球的有1种,∴两次摸出的都是白球的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、(20、21题各8分,共16分)20.(8分)小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【分析】设每天获得的利润为w元,根据每天获得的利润=每件的利润×每天的销售量,即可得出w关于x的二次函数关系式,再利用二次函数的性质即可解决最值问题.【解答】解:设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点评】本题考查了二次函数的应用以及二次函数的最值,利用配方法将二次函数关系式变形为顶点式是解题的关键.21.(8分)如图,四边形ABGH、BCFG、CDEF是边长为1的正方形,连接BH、CH、DH,求证:∠ABH+∠ACH+∠ADH=90°.【分析】由四边形ABGH,四边形BCFG,四边形CDEF都是正方形,易得==,继而可证得△HBC∽△DBH,然后有相似三角形对应角相等,求得∠ACH=∠DHB,再利用三角形外角的性质求解即可求得答案.【解答】证明:∵四边形ABGH,四边形BCFG,四边形CDEF都是正方形,由题意BH==,BC=1,BD=2,∴==,又∵∠HBC=∠DBH(公共角),∴△HBC∽△DBH,∴∠ACH=∠DHB,∴∠ACH+∠ADH=∠DHB+∠ADH=∠ABH=45°,∵∠ABH=45°,∴∠ABH+∠ACH+∠ADH=90°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.五、(本题10分)22.(10分)已知关于x的一元二次方程(x﹣1)(x﹣4)=a2,其中a为常数.(1)求证:此方程有两个不相等的实数根;(2)当|a﹣2|=0时,求此方程的根.【分析】(1)原方程可整理得:x2﹣5x+4﹣a2=0,代入判别式公式,得到△>0,即可得证,(2)根据“|a﹣2|=0”,得到a的值,代入原方程,解之即可.【解答】(1)证明:原方程可整理得:x2﹣5x+4﹣a2=0,△=25﹣4(4﹣a2)=4a2+9>0,即此方程有两个不相等的实数根,(2)解:∵|a﹣2|=0,∴a=2,原方程可整理得:x2﹣5x=0,解得:x1=0,x2=5.【点评】本题考查了根的判别式和绝对值,解题的关键:(1)正确掌握判别式公式,(2)正确掌握解一元二次方程的方法.六、(本题10分)23.(10分)如图,在平面直角坐标系中,点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),连接AB、BC、OC(1)求证四边形OABC是菱形;(2)直线l过点C且与y轴平行,将直线l沿x轴正方向平移,平移后的直线交x轴于点P.①当OP:PA=3:2时,求点P的坐标;②点Q在直线1上,在直线l平移过程中,当△COQ是等腰直角三角形时,请直接写出点Q的坐标.【分析】(1)根据两点距离公式可求AO=BC=CO=AB=5,即可证四边形OABC是菱形;(2)①分点P在线段OA上,在点A右侧两种情况讨论,根据题意可求OP的长,即可求点P的坐标;②分三种情况讨论,根据全等三角形的判定和性质,可求点Q的坐标.【解答】证明:(1)∵点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),O点坐标(0,0)∴AO=BC=5,CO==5,AB==5∴AO=BC=CO=AB=5∴四边形ABCO是菱形(2)①当点P在线段OA上,∵OP:PA=3:2,OP+AP=5∴OP=3,PA=2∴点P坐标为(3,0)当点P在点A的右侧,∵OP:PA=3:2,OP﹣AP=OA=5∴OP=15,AP=10∴点P坐标为(15,0)②如图,当∠COQ=90°,OC=OQ时,过点C作CE⊥OA于E,则OE=3,CE=4,∵∠COE+∠POQ=90°,∠COE+∠OCE=90°,∴∠OCE=∠POQ,且OC=OQ,∠CEO=∠OPQ∴△COE≌△OQP(AAS)∴PQ=OE=3,OP=CE=4,∴点Q坐标(4,﹣3)如图,当∠OCQ=90°,OC=CQ时,过点C作CE⊥OA于点E,则CE=4,OE=3,过点Q作FQ⊥CE于点F,∵∠OCE+∠ECQ=90°,∠ECQ+∠CQF=90°,∴∠OCE=∠CQF,且OC=CQ,∠OEC=∠CFQ=90°,∴△OEC≌△CFQ(AAS)∴CF=OE=3,FQ=CE=4,∴EF=1,∵QF⊥CE,CE⊥AO,PQ⊥OA∴四边形EPQF是矩形∴EP=FQ=4即OP=7∴点Q坐标为(7,1)如图,若∠CQO=90°,CQ=OQ时,过点C作CE⊥OA于点E,则CE=4,OE=3,∵∠CQH+∠OQP=90°,∠PQO+∠QOP=90°,∴∠CQH=∠QOP,且OQ=CQ,∠CHQ=∠OPQ=90°,∴△OPQ≌△QHC(AAS)∴OP=HQ,CH=PQ,∵CE⊥OA,PH⊥BC,PH⊥OA∴四边形CEPH是矩形,∴EP=CH=PQ,HP=CE=4,∵HQ+PQ=HP=4=OP+EP,OP﹣EP=OE=3,∴OP=,EP=PQ=∴点Q坐标(,)综上所述:点Q坐标为:(4,﹣3),(7,1),(,)【点评】本题是四边形综合题,考查了菱形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质以及分类讨论思想,添加恰当的辅助线构造全等三角形是本题的关键.七、(本题12分)24.(12分)Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C 重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'=AD,那么请直接写出点D'到直线BC的距离.【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE =DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC的距离.【解答】证明:(1)∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F=D'D,∠ADF=∠AD'F,∵cos∠ADF==,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+=,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【点评】本题是相似三角形综合题,考查了折叠的性质,平行线的性质,直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质以及分类讨论的思想,证明∠DAD'=90°是本题的关键.八、(本题12分)25.(12分)如图,抛物线y=x2+bx+c过点A(2,0)和B(3,3).(1)求抛物线的表达式;(2)点M在第二象限的抛物线上,且∠MBO=∠ABO.①直线BM交x轴于点N,求线段ON的长;②延长BO交抛物线于点C,点P是平面内一点,连接PC、OP,当△POC∽△MOB时,请直接写出点P的坐标.【分析】(1)把点A、B坐标代入二次函数表达式,即可求解;(2)①证明△BOL≌△BOA,利用即可求解;②当△POC∽△MOB时,点P 的位置可能第二象限也可能在第四象限,分别求解即可.【解答】解:(1)把点A、B坐标代入二次函数表达式:,解得:,故:抛物线的表达式为:y=x2+x﹣…①;(2)①过点B分别向x轴、y轴作垂线,交于点S、K,连接A、L,点B坐标为(3,3)则:四边形OSBK为正方形,∵∠MBO=∠ABO,BO是正方形OSBK的对角线,BO=BO,∴△BOL≌△BOA(AAS),∴OA=OL=2,∴AL⊥BO,sinα===,则cosα=,tanα=,∵OL∥BS,∴,即:,则:ON=6;②则点N坐标为(﹣6,0),把点L(0,2)、N坐标代入一次函数表达式:y=kx+b,解得:y=x+2…②,联立①、②解得:x=﹣3或3(舍去3)即点M坐标为(﹣3,1),BC所在的直线的表达式为:y=x…③,联立①、③解得:x=﹣或3(舍去3),则点C坐标为(﹣,﹣),则:OM=,OB=3,OC=,MB=2当△POC∽△MOB时,点P的位置可能第二象限也可能在第四象限,当点P在第二象限时,如下图,过点P作PH⊥x轴,△POC∽△MOB,∠PCO=∠MBO=α,∴=,即:=,解得:OP=,PC═,AB所在直线表达式中的k值为3,∵∠PCO=∠MBO=∠OBA=α,∴PC所在直线表达式中的k值为3,则:PC所在的直线表达式为:y=3x+,令y=0,则x=﹣,即Q点坐标为(﹣,0),即:OQ=,则:CQ=,则:PQ=PC﹣CQ,而PH2=OP2﹣OH2=PQ2﹣QH2=PQ2﹣(OQ﹣OH)2,其中,OP=,PQ=PC﹣CQ,OQ=,解得:OH=,则点P坐标为(﹣,),当点P在第四象限时,同理可求点P坐标为(,﹣),故点P坐标为(﹣,)或(,﹣).【点评】本题是二次函数综合题,涉及到三角形全等、三角形相似、解直角三角形、函数基本知识等诸多知识点,是代数与几何综合的难度很大的题目.。