2016年9月份长春高三一模理科数学答案
- 格式:doc
- 大小:674.93 KB
- 文档页数:6
长春市普通高中2017届高三质量监测(一)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. D4. C5. B6. C7. A 8. C 9. C 10. D 11. B 12. A简答与提示:1. 【命题意图】本题考查复数的实部和虚部运算与复数与平面内点的对应关系.【试题解析】B 题意可知,21cos 32π=-,2sin 3π=,则1z 2=-,对应的点在第二象限. 故选B.2. 【命题意图】本题考查集合中元素的计算与交集的运算.【试题解析】C 由已知{}|23A x x =-<<,则{}0,1,2A N = ,故选C.3. 【命题意图】本题考查平面向量的几何表示中的加、减、数乘、数量积运算. 【试题解析】D 由已知,ABC ∆的边长为1,21AB a == ,所以12a = ,AC AB BC =+ ,则1BC b == ,因为2,3a b π<>= ,故选D. 4. 【命题意图】本题主要抽样中的用样本去估计总体. 【试题解析】C 由已知,抽得样本中含谷27粒,占样本的比例为271=2168,则由此估计总体中谷的含量约为11512=1898⨯石. 故选C. 5. 【命题意图】本题是对逻辑问题中的特称命题的否定进行考察.【试题解析】B 由已知,命题的否定为0x ∀>,2(1x x a ⋅-≤使),故选B.6. 【命题意图】本题考查直到型循环结构程序框图运算.【试题解析】C 有已知,1,0k s ==,1,2s s k k =+==,3,4s k ==,7,8s k ==,15,16s k ==,31,32s k ==,符合条件输出,故选C.7. 【命题意图】本题考查等差数列和等比数列的基本量的求取.【试题解析】A 由已知,3121a a d =+=-,2416()a a a =-即2111(3)(5)a d a a d +=--,且{}n a 为递减数列,则11,1d a =-=.有714S =-,故选A.8. 【命题意图】本题主要考查三视图的还原,还涉及体积的求取.【试题解析】C 由题意,此模型为柱体,底面大小等于主视图面积大小,即几何体体积为211(122)322V π=⋅+⨯⨯⨯,故选C. 9. 【命题意图】本题主要考查相离两圆的公切线的相关知识.【试题解析】C 由已知,直线l 满足到原点的距离为1,到点(2的距离为2,满足条件的直线l 即为圆221x y +=和圆22(2)(4x y -+=的公切线,因为这两个圆有两条外公切线和一条内公切线. 故选C.10. 【命题意图】本题背景基于经典国学故事,考查图像对函数特点的描述.【试题解析】D 由故事内容不难看出,最终由乌龟先到达终点,故选D.11. 【命题意图】本题考查双曲线的定义及渐近线的相关知识. 【试题解析】B 由已知1a =,18PF = ,则26PF = .又因为120PF PF ⋅= ,则1210FF =,即5c =.则渐近线方程为y =±,故选B.12. 【命题意图】本题是考查导数的几何意义,但因为函数隐含在里面,不容易分离出来.【试题解析】A 因为ln(1)+30b a b +-=,则=3ln(1)a b b -+,即3ln(1)y x x =-+因为20d c -,则2c d =即2y x =要求取的表达式的本质就是曲线上的点到直线距离的最小值. 因为132311x y x x +'=-=++,则2y '=,有0x =,0y =,即过原点的切线方程为2y x =. 最短距离为1d ==. 故选A. 二、填空题(本大题共4小题,每小题5分,共20分)13. 1516 14. 3 15. 16. ])94(1[54n n S -= 简答与提示:13. 【命题意图】本题考查二项展开式系数问题.【试题解析】常数项为422456115()()216T C x x =-=. 14. 【命题意图】本题考查线性可行域的画法及线性目标函数的最值求法.【试题解析】由已知可得,线性可行域如图所示,则线性目标函数在点3,0()取最小值3. 15. 【命题意图】本题考查三棱锥的外接球问题,特别涉及到了三棱锥和长方体的外接球之间的关系.【试题解析】由已知,可将三棱锥S ABC -放入正方体中,其长宽高分别为2,则到面ABC 距离最大的点应该在过球心且和面ABC 垂直的直径上,因为正方体的外接球直径和正方体的体对角线长相等,则2r =. 则到面ABC 距离的最大值为222)33r ==(. 16. 【命题意图】本题通过三角形为背景考查归纳推理及数列的相关知识,对学生的逻辑推理能力提出很高要求,是一道较难题.【试题解析】数列{a n }构成以94为首项,以94为公比的等比数列,故])94(1[54n n S -=. 三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的化简以及恒等变换公式的应用,还有解三角形的内容,如正弦定理等.【试题解析】(1) 由题可知1()sin 2cos2)222f x x x =-++sin(2)3x π=-, 令222232k x k πππππ--+≤≤,k ∈Z ,即函数()f x 的单调递增区间为5[,]1212k k ππππ-+,k ∈Z . (6分)(2) 由()2f A =,所以sin(2)32A π-=3A π=或2A π=(舍) 又因为3AB AC AD += ,则D 为△ABC 的重心,以AB 、AC 为邻边作平行四边形ABEC ,因为2AD =,所以6AE =,在△ABE 中,AB =120ABE ∠= .=,解得1sin 4AEB ∠=且cos AEB ∠=.因此11sin sin()324BAD AEB π∠=-∠=-⋅=(12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1) 由已知,⎩⎨⎧=⨯+⨯+⨯+⨯=+++45515.06001005004.04001003001)0040.0015.0(100b a b a , 即⎩⎨⎧=+=+05.250030045.0)(100b a b a ,有⎩⎨⎧==0035.0001.0b a .(6分) (2)由(1)结合直方图可知当年产量为kg 300时,其年销售额为6000元;当年产量为kg 400时,其年销售额为6000元;当年产量为kg 500时,其年销售额为7500元;当年产量为kg 600时,其年销售额为6000元;则估计年销售额的期望为652515.0600035.075004.060001.06000=⨯+⨯+⨯+⨯(元).(12分)19. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题通过分层设计,考查了线面角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)如图所示建立空间直角坐标系,由已知)0,0,0(A ,)0,0,2(B ,)1,0,0(P ,)0,1,0(D ,)0,1,2(C .令λ=,因为)1,1,2(-=,所以),,2(λλλ-=,则)1,,2(λλλ-M . 因为ADM BP 面⊥且)1,0,2(-=BP . 所以⎪⎩⎪⎨⎧=⋅+-==⋅0150AD BP AM BP λ, 则51=λ. 即PM 的长为56.(6分) (2)因为)54,51,52(M ,则)54,51,52(-=MD ,因为面ABP 的一个法向量)0,1,0(=,令MD 与面ABP 成角为θ, 则322516251625454sin =++=θ,故35cos =θ.(12分)20. (本小题满分12分)【命题意图】本小题考查椭圆的几何意义以及标准方程,直线和椭圆的位置关系及定值的求法,A B C D P M y z考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)由题意可知两焦点为(与,且26a =,因此椭圆的方程为22196x y +=. (4分) (2) ① 当MN 不与x 轴重合时,设MN的方程为x my =B,2)C -联立椭圆与直线MN 2223180x y x my ⎧+-=⎪⎨=+⎪⎩消去x可得22(23)120m y ++-=,即12y y +=,1221223y y m -=+ 设11(,)M x y ,22(,)N x y则BM:2y x -= ① CN:2y x +=- ② ②-①得4(x =1221212(2)(2)4(my y my y x m y y +--=1212224(y y x my y +=2234(23m x m +=+43x =则x =x =. ②当MN 与x 轴重合时,即MN 的方程为0x =,即(3,0)M ,(3,0)N -.即BM:2y x -= ① CN:2y x += ② 联立①和②消去y可得x =. 综上BM 与CN的交点在直线x =. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,以及函数图像的判定,考查学生解决问题的综合能力.【试题解析】(1) 当2a =时,2()23f x x x =+-()22f x x '=+,则(1)4f '=,又(1)0f =,所以()f x 在1x =处的切线方程为44y x =-,又因为()f x 和()g x 的图像在1x =处的切线相同,2(1ln )()k x g x x -'= 所以(1)4g k '==. (4分)(2) 因为()()()F x f x g x =-有零点 所以24ln ()30x F x x ax x=+--= 即324ln 3x x x a x -+=有实根. 令3224ln 34ln 3()x x x x h x x x x x-+==-+ 342348ln 348ln 3()1x x x x x x h x x x x ----'=--=令3()48ln 3x x x x ϕ=--- 则28()330x x xϕ'=---<恒成立,而(1)0ϕ=, 所以当1x >时,()0x ϕ<,当(0,1)x ∈时,()0x ϕ>.所以当1x >时,()0h x '<,当(0,1)x ∈时,()0h x '>.故()h x 在(1,)+∞上为减函数,在(1,0)上为增函数,即max (1)2h h ==. 当x →+∞时,()h x →-∞,当0x +→时,()h x →-∞.根据函数的大致图像可知2a ≤. (12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】 (1) 由已知连接DE ,因为ABE AED ∠=∠且BAE ∠公用,所以AEB ADE ∆∆∽即AB AD AE ⋅=2 (5分) (2) 因为 AB AD AE ⋅=2,所以16)(42=+=BD AD AD因为CE BC =,所以222AB BC AC +=,即222)(6)64(DB AD ++=+ 2)(36100DB AD ++=,则8=+BD AD ,故6,2==BD AD ,所以半径是3. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到参数方程与平面直角坐标方程的互化、把曲线的参数方程和曲线的极坐标方程联立求交点等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1) 曲线1C 的普通方程为22(2)1x y -+=(5分) (2) 由已知2:()6C R πθρ=∈,即x y 33=, 因为⎪⎩⎪⎨⎧=+-=1)2(3322y x x y ,有034342=+-x x ,则23,23==y x , 故交点的极坐标为)6,3(π(10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想.【试题解析】 (1) 由于3,(1)()31,(11)3,(1)x x f x x x x x --≥⎧⎪=---<<⎨⎪+≤-⎩,所以max ()(1)2k f x f ==-=. (5分)(2) 由已知22222=++b c a ,有4)()(2222=+++c b b a , 因为ab b a 222≥+(当b a =取等号),bc c b 222≥+(当c b =取等号),所以)(24)()(2222bc ab c b b a +≥=+++,即2≤+bc ab ,故[]2)(max =+c a b (10分)。
2016届高三年级第一次综合诊断考试理数答案一、选择题 (本大题共12小题,每小题5分,满分60分.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C A B D B C A BDAC二、填空题(本大题共4小题,每小题5分,满分20分.)13. 35 14.2211612x y += 15. 1(0,)216. 2015 三、解答题(本大题共6小题,满分70分.) 17、【解】 (Ⅰ).1)6sin(22)cos(12)sin(3)(m x m x x x f +-+=+-⋅-=πωωω依题意函数.32,32,3)(==ωπωππ解得即的最小正周期为x f 所以.1)632sin(2)(m x x f +-+=π分所以依题意的最小值为所以时当6.1)632sin(2)(.0,.)(,1)632sin(21,656326,],0[ -π+==≤π+≤π≤π+≤ππ∈x x f m m x f x x x (Ⅱ).1)632sin(,11)632sin(2)(=+∴=-+=ππC C C f 22252,..863663622,,2sin cos cos(),2152cos sin sin 0,sin .102510sin 1,sin .122Rt C C C ABC A B B B A C A A A A A A πππππππ<+<+==∆+==+--±∴--==-<<∴= 而所以解得分在中解得分分18、∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB∴EF AE ⊥,EF BE ⊥ 又A E E B ⊥∴,,EB EF EA 两两垂直以点E 为坐标原点,,,EB EF EA 分别为轴 建立如图所示的空间直角坐标系由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0)∴(2,2,0)EG = ,(2,2,2)BD =-,,x y z∴22220BD EG ⋅=-⨯+⨯=∴B D E G ⊥-----------------6分()2由已知得(2,0,0)EB = 是平面DEF 的法向量,设平面DEG 的法向量为(,,)n x y z =∵(0,2,2),(2,2,0)ED EG ==∴00ED n EG n ⎧⋅=⎪⎨⋅=⎪⎩ ,即00y z x y +=⎧⎨+=⎩,令1x =,得(1,1,1)n =- 设平面DEG 与平面DEF 所成锐二面角的大小为θ则||23cos |cos ,|3||||23n EB n EB n EB θ=<>===∴平面DEG 与平面DEF 所成锐二面角的余弦值为33----------------12分 19.(本题满分12分) 解:(1)众数:8.6; 中位数:8.75 ;……………2分(2)设i A 表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则140121)()()(3162121431631210=+=+=C C C C C A P A P A P ; …………6分(3)ξ的可能取值为0,1,2,3.6427)43()0(3===ξP ;6427)43(41)1(213===C P ξ; 64943)41()2(223===C P ξ;641)41()3(3===ξP ………………10分 所以ξ的分布列为:ξE 27279101230.7564646464=⨯+⨯+⨯+⨯=. ……………12分另解:ξ的可能取值为0,1,2,3.则1~(3,)4B ξ,3313()()()44k k kP k C ξ-==.所以ξE =75.0413=⨯. 20.(本小题满分12分) 解:(Ⅰ)∵错误!未找到引用源。
吉林市普通中学2016—2017学年度高中毕业班第一次调研测试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,共4页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。
1. 已知{|12},{|03}A x x B x x x =-<<=<>或,则A B =A. {|10}x x -<<B. {|23}x x <<C. {|1}x x <-D. {|3}x x >2. 14sin3π的值是 A.12B. 12-C.3D. 3-3. 四边形ABCD 中,AB DC =且||||AD AB AD AB -=+,则四边形ABCD 是 A . 平行四边形 B . 菱形 C . 矩形D . 正方形4. 设等比数列{}n a 的前n 项和为n S ,若a a 143,24==,则S 6=A . 93B. 189C . 99D . 1955. 已知向量(,2),(1,1)m a n a =-=-,且m ∥n ,则实数a =A . 1-B . 2或1-C . 2D . 2-6. 已知(,0)2x π∈-且4cos 5x =,则tan2x = A.724B. 724-C.247D. 247-7. 将函数()sin()6f x x π=+的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得函数()g x 图象的一个对称中心可以是A. (,0)12π-B. 5(,0)12πC. (,0)3π-D. 2(,0)3π8. 大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论。
XX 市普通高中2016届高三质量监测(三)数学理科(试卷类型A ) 第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项涂在答题卡上) 1. 设集合{|13}A x x =-<<,1{|39}3x B x =<<,则A B = A. (1,2) B .(1,2)- C. (1,3)D. (1,3)-2. 复数1z ,2z 在复平面内对应的点关于虚轴对称,若12z i =+,则12z z ⋅= A. 5 B. 34i + C. 5- D. 34i --3. 已知向量21=-(,)a ,01=(,)b ,则|2|=a +b A. 22B. 5C. 2D. 44.已知函数5log ,0()2,0xx x f x x >⎧=⎨⎩≤,则1(())25f f = A.4B.14C.4- D.14- 5.已知实数{},1,2,3,4,5,6x y ∈,且7x y +=,则2xy ≥的概率为 A.13 B. 23C. 12 D. 566.已知tan 2α=,α为第一象限角,则sin 2cos αα+=A. 5B.4255+ C. 455+ D. 525-7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A.18B. 14C. 12D.98. 将函数()sin(2)(||)2f x x πϕϕ=+<的图象向右平移12π个单位后的图象关于y 对称,则函数()f x 在[0,]2π上的最小值为B. 12C. 12-D. -9. 按右图所示的程序框图,若输入110011a =,则输出的b =A.B. C. D.10. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,以2F 为圆心的圆与双曲线的渐近线相切,若圆2F 和双曲线的一个交点为M ,满足12MF MF ⊥,则双曲线的离心率是 D. 2 11. 在ABC ∆中,D 是BC 中点,已知90BAD C ∠+∠=︒,则ABC ∆的形状为A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形 12.定义在(1,0)(0,1)-上的偶函数()f x ,满足1()02f =,当0x >时,总有21()()ln(1)2()x f x x f x x'-⋅->,则()0f x <的解集为A. {}|11,0x x x -<<≠且B. 11|1,122x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 C. 11|,022x x x ⎧⎫-<<≠⎨⎬⎩⎭且D. 11|1,22x x x ⎧⎫-<<-<<⎨⎬⎩⎭或0第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题—21题为必考题,每个试题考生都必须作答,第22题—24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 已知实数,x y 满足120x y x y +⎧⎪⎨⎪⎩≤≤≥≥,则2+x y 的最大值为___________. 14.设函数()1xf x e =-的图象与x 轴的交点为P ,则曲线()y f x =在点P 处的切线方程为_________.15.在椭圆221369x y +=上有两个动点,M N ,点(2,0)K ,满足0KM KN ⋅=,则KM NM ⋅的最大值为__.16.如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为___________. 三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分12分)已知数列{}n a 满足1511a =,143(2)n n a a n -≥=-. (1)求证:数列{1}n a +为等比数列;(2)令2|log (1)|n n b a =+,求数列{}n b 的前n 项和为n S .18.(本小题满分12分)某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如下(单位:cm ):7155789998161845298356170275461241801119男女男生成绩不低于175cm 的定义为“合格”,成绩低于175cm 的定义为“不合格”;女生成绩不低于165cm 的定义为“合格”,成绩低于165cm 的定义为“不合格”. (1)求女生立定跳远成绩的中位数;(2)若在男生中按成绩是否合格进行分层抽样,抽取6个人,求抽取成绩“合格”的男生人数; (3)若从全班成绩“合格”的学生中抽取2人参加选拔测试,用X 表示其中男生的人数,试写出X 的分布列,并求X 的数学期望.19.(本小题满分12分)已知等腰梯形ABCD 如图1所示,其中AB ∥CD ,,E F 分别为AB 和CD 的中点,且2AB EF ==,6CD =,M 为BC 中点,现将梯形ABCD 按EF 所在直线折起,使平面EFCB ⊥平面EFDA ,如图2所示,N 是线段CD 上一动点,且CN ND λ=.(1)当1=2λ时,求证:MN ∥平面ADFE ; (2)当=1λ时,求二面角M NA F --的余弦值.20.(本小题满分12分)动点P 在抛物线2=2x y 上,过点P 作x 轴的垂线,垂足为Q ,设2PM PQ =.(1)求点M 的轨迹E 的方程;(2)设点(4,4)N -,过点(4,5)H 的直线交轨迹E 于,A B (不同于点N )两点,设直线,NA NB 的斜率分别为12,k k ,求12||k k -的取值X 围. 21.(本小题满分12分) 已知函数1()(cos )()xf x ea x a -=-+∈R .(1)若函数()f x 存在单调递减区间,XX 数a 的取值X 围;(2)若0a =,证明:1[1,]2x ∀∈-,总有(1)2()cos(1)0f x f x x '--+⋅+>.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲.已知四边形ABCD 为圆O 的内接四边形,且BC CD =,其对角线AC 与BD 相交于点M ,过点B 作圆O 的切线交DC 的延长线于点P .(1)求证:AB MD AD BM ⋅=⋅;(2)若CP MD CB BM ⋅=⋅,求证:AB BC =. 23.(本小题满分10分)选修4—4:坐标系与参数方程.已知直线l 的参数方程为2222x m y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上.(1)若直线l 与曲线C 交于A ,B 两点,求||||FA FB ⋅的值; (2)若曲线C 的内接矩形的周长的最大值.24.(本小题满分10分)选修4—5:不等式选讲. 已知0x ∃∈R 使不等式|1||2|x x t ---≥成立. (1)求满足条件的实数t 的集合T ;(2)若1,1m n >>,对t T ∀∈,不等式33log log m n t ⋅≥恒成立,求m n +的最小值.XX 市普通高中2016届高三质量监测(三)数学(理科)参考答案与评分参考一、选择题(本大题包括12小题,每小题5分,共60分)1. B2. C3. B4. B5. B6. C7. A8. D9. A10. B11. D 12. B 简答与提示:1. B 【命题意图】本题主要考查集合的化简与交运算,属于基础题.【试题解析】B 由题意可知{|12}B x x =-<<,所以{|12}A B x x =-<<. 故选B. 2. C 【命题意图】本题考查复数的乘法运算,以与复平面上的点与复数的关系,属于基础题.【试题解析】C 复数22z i =-+,所以12(2)(2)5z z i i ⋅=+-+=-. 故选C. 3. B 【命题意图】本题主要考查平面向量的运算性质.【试题解析】B 由2(2,1),a b +=得|2|5a b +=,故选B.4. B 【命题意图】本题考查分段函数与指数、对数运算,是一道基础题.【试题解析】B 11()2,(2)254f f =--=.故选B. 5. B 【命题意图】本题考查古典概型,属于基础题.【试题解析】B 由题意,(,)x y 的所有可能为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种,其中满足2x y ≥的有4种,故概率为23. 故选B. 6. C 【命题意图】本题考查三角函数定义与恒等变换.【试题解析】C 由三角函数定义sin ,cos 55αα==,故4sin 2cos 2sin cos cos 5ααααα+=+=. 故选C.7. A 【命题意图】本题主要考查四棱锥的体积,考查空间想象能力,属于基础题.【试题解析】A 该几何体可以看成由两个四棱锥组成,每个四棱锥的底面面积为9,高为3,故其体积为9,所以整个几何体体积为18. 故选A.8. D 【命题意图】本题主要考查三角函数的图象与性质,是一道基础题.【试题解析】D 由题可知,3πϕ=-,从而()sin(2)3f x x π=-,则该函数在0,2π⎡⎤⎢⎥⎣⎦的最小值为2-. 故选D. 9. A 【命题意图】本题考查程序框图与进位制,属基础题.【试题解析】A 经计算得01234512120202121251b =⨯+⨯+⨯+⨯+⨯+⨯=. 故选A. 10. B 【命题意图】本题主要考查双曲线的几何性质与圆切线的性质,是一道中档题.【试题解析】B 由题可知,212||,||||22MF b MF MF a b a ==+=+,由12MF MF ⊥,有22212||||4MF MF c +=,整理得2b a =,所以离心率e =故选B.11. D 【命题意图】本题主要考查解三角形正弦定理的应用,是一道中档题.【试题解析】D 如图,由题可知,90BAD C B CAD ∠+∠=∠+∠=︒,在ABD ∆中,sin sin cos BD AD BD BAD B C ==∠,在ADC ∆中,sin sin cos CD AD CD CAD C B ==∠,所以sin sin cos cos B CC B =,即sin 2sin 2B C =,所以B C =或22B C π+=,则此三角形为等腰三角形或直角三角形. 故选D.12. B 【命题意图】本题考查函数导数运算、导数与单调性关系、奇偶性等综合应用,是一道较难题.【试题解析】B 由题可知当(0,1)x ∈时,222()ln(1)()1xf x x f x x'->-,从而2222(()ln(1))()ln(1)()01xf x x f x x f x x ''⋅-=-->-,有函数2()ln(1)y f x x =⋅-在(0,1)上单调递增,由函数2()ln(1)y f x x =⋅-为偶函数,所以其在(1,0)-上单调递减,由于(1,0)(0,1)x ∈-时2ln(1)0x -<,所以()0f x <等价于2()ln(1)0y f x x =⋅->,由1()02f =,故()0f x <的解集为1{|1,2x x -<<-或11}2x <<. 故选B. 二、填空题(本大题包括4小题,每小题5分,共20分)13. 414.y x =-15. 6416.43简答与提示:13. 4【命题意图】本题主要考查线性规划问题,是一道常规题. 从二元一次方程组到可行域,再结合目标函数的几何意义,全面地进行考查.【试题解析】令2z x y =+,根据可行域与的几何意义,可确定最优解为(2,0),从而2x y +的最大值为4.14. y x =-【命题意图】本题考查导数的几何意义,是一道中档题.【试题解析】由题意(0,0)P ,(),(0)1xf x e f ''=-=-,从而曲线在点P 处的切线方程为y x =-. 15. 64【命题意图】本题考查椭圆的简单几何性质和平面向量的基本运算,考查数形结合思想,是一道中档题.【试题解析】由题意NM KM KN =-,由0KM KN ⋅=,有2KM NM KM ⋅=,从椭圆的简单几何性质可得,当M 点为(6,0)-时2KM 最大,故KM NM ⋅的最大值为64.16. 43【命题意图】本题涉与球内接四棱锥体积运算,需要借助导数进行运算求解,是一道较难题.【试题解析】由球的几何性质可设四棱锥高为h ,从而23222[1(1)](2)33P ABCD V h h h h -=--=-+,有222(34)(34)33PABCD V h h h h -'=-+=-+,可知当43h =时,P ABCD V -体积最大.三、解答题(本大题必做题5小题,三选一选1小题,共70分) 17. (本小题满分12分)【命题意图】本小题主要考查数列递推关系、等比数列、等差数列前n 项和,对考生的化归与转化能力有较高要求.【试题解析】解:(1) 证明:由43411-=-n n a a 知)1(4111+=+-n n a a , 由,01≠+n a 41111=++-n na a ,则数列{}1+n a 是以512为首项,41为公比的等比数列.(6分) (2) 由(1)知n a n 211)1(log 2-=+,设{})1(log 2+n a 的前n 项和为n T ,210n n T n -=2|log (1)|n n b a =+,当5≤n 时,2210,0)1(log n n T S a n n n -==>+,当6≥n 时,50102)()1(log )1(log 25552625+-=-=--=+--+-=n n T T T T T a a T S n n n n综上得⎪⎩⎪⎨⎧≥+-≤-=6,50105,1022n n n n n n S n .(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,包括茎叶图、离散型随机变量的分布列以与数学期望的求法.【试题解析】(1).(3分)(2) 男生中成绩“合格”和“不合格”人数比为4:8,用分层抽样的方法抽取6个人,则抽取成19. 【命题意图】本小题主要考查立体几何的相关知识,二面角的求法与空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 过点M 作EF MP ⊥于点P ,过点N 作FD NQ ⊥于点Q ,连接PQ . 由题意,平面⊥EFCB 平面EFDA ,所以⊥MP 平面EFDA且22=+=CFBE MP ,因为EF DF EF CF ⊥⊥,,所以⊥EF 平面CFD ,所以EF NQ ⊥,由FD NQ ⊥,所以⊥NQ 平面EFDA ,又12CN ND =,所以,即NQ MP NQ MP =,//,则MN //PQ ,由MN ⊄平面ADFE ,PQ ⊂//平面ADFE (6分)(2) 以F 为坐标原点,FE 方向为x 轴,FD 方向为y 轴,FC 方向为z 轴,建立如图所示坐标系.,即)1,1,1(1=n ,在平面FAN 中,)23,23,0(),0,1,2(==FN FA ,即)2,2,1(2-=n则93cos =θ,所以二面角M NA F --的余弦值为93. (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉与到抛物线的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1)设),(y x M ,有)2,(y x P ,将P 代入y x 22=,得y x 42=,从而点M 的轨迹E 的方程为y x 42=.(4分)(2) 设),(),,(2211y x B y x A ,联立⎩⎨⎧=+-=yx x k y 45)4(2,得0201642=-+-k kx x ,则⎩⎨⎧-==+201642121k x x k x x ,因为44,44222111+-=+-=x y k x y k ,所以|16)(4))(81(||414414|||212121221121+++--=++--++-=-x x x x x x k x k kx x k kx k k因为,A B 不同于点N ,所以81≠k ,则1)2(||221+-=-k k k故21k k -的取值X 围是),1[+∞. (12分) 21. (本小题满分12分)【命题意图】本题主要考查函数与导数的综合应用能力,具体涉与到用导数来描述原函数的单调性、极值等情况.对考生的逻辑推理与运算求解能力有较高要求.【试题解析】解(1)由题意得1()(sin cos )x f x e a x x -'=--++,若函数()f x 存在单调减区间,则1()(sin cos )0x f x e a x x -'=--++≤即sin cos 0a x x -++≥存在取值区间,即)4a x π≤+存在取值区间,所以a <(6分)(2) 当0a =时,11()cos ,()(sin cos )x x f x e x f x e x x --'==-+21(1)2()cos(1)cos(1)[sin()]4x x f x f x x x e x π+-'--+⋅+=+⋅-⋅+由11,2x ⎡⎤∈-⎢⎥⎣⎦有310,[0,]22x π⎡⎤+∈⊆⎢⎥⎣⎦,从而cos(1)0x +>,要证原不等式成立,只要证21sin()04x x ex π+--⋅+>对⎥⎦⎤⎢⎣⎡-∈∀21,1x 恒成立,首先令)22()(12+-=+x ex g x ,由22)(12-='+x e x g ,可知, 当),21(+∞-∈x 时)(x g 单调递增,当)21,(--∞∈x 时)(x g 单调递减,所以0)21()22()(12=-≥+-=+g x e x g x ,有2212+≥+x e x构造函数)4sin(2222)(π+-+=x x x h ,⎥⎦⎤⎢⎣⎡-∈21,1x ,因为)4cos(222)(π+-='x x h ))4cos(22(22π+-=x , 可见,在[]0,1-∈x 时,0)(≤'x h ,即)(x h 在[]0,1-上是减函数,在⎥⎦⎤ ⎝⎛∈21,0x 时,0)(>'x h ,即)(x h 在⎥⎦⎤⎝⎛21,0上是增函数,所以,在⎥⎦⎤⎢⎣⎡-21,1上,0)0()(min ==h x h ,所以0)(≥x g .所以,22)4sin(22+≤+x x π,等号成立当且仅当0=x 时,综上2122)4x e x x π+≥+≥+,由于取等条件不同,故21)04x ex π+-+>,所以原不等式成立.(12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉与到切割线定理以与三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解(1) 由BC CD =可知,BAC DAC ∠=∠,在△ABD 中,则AB ADBM DM=,因此AB MD AD BM ⋅=⋅;(5分)(2) 由CP MD CB BM ⋅=⋅可知CP BM CB MD =,又由(1)可知BM AB MD AD =,则CP ABCB AD=,由题意BAD PCB ∠=∠,可得△BAD ∽△PCB ,则ADB CBP ∠=∠,又ADB ACB ∠=∠,即CBP ACB ∠=∠,又PB 为圆O 的切线,则CBP CAB ∠=∠,因此ACB CAB ∠=∠, 即AB AC =. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉与到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解(1) 已知曲线C 的标准方程为221124x y +=,则其左焦点为(-,则m =-将直线l的参数方程2x y ⎧=-⎪⎪⎨⎪=⎪⎩与曲线C 的方程221124x y +=联立, 得2220t t --=,则12||||||2FA FB t t ⋅==. (5分) (2) 由曲线C 的方程为221124x y +=,可设曲线C上的定点,2sin )P θθ 则以P为顶点的内接矩形周长为42sin )16sin()(0)32ππθθθθ⨯+=+<<,因此该内接矩形周长的最大值为16. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉与到绝对值不等式与 不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】(1) 令1,1()|1||2|23,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则1()1f x -≤≤,由于0x ∃∈R 使不等式|1||2|x x t ---≥成立,有{|1}t T t t ∈=≤. (5分)(2) 由(1)知,33log log 1m n ⋅≥,根据基本不等式33log log 2m n ≥+≥ 从而23mn ≥当且仅当3m n ==时取等号,再根据基本不等式6m n +≥≥当且仅当3m n ==时取等号,所以m n +的最小值为6.(10分)。
2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.23.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5 分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n 的最大值为.16.(5 分)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5 个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3 个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900 元.该企业现有甲材料150kg,乙材料90kg,则在不超过600 个工时的条件下,生产产品A、产品B 的利润之和的最大值为元.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y 的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|= ,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y 的值是解决本题的关键.3.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9 项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10 分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y 在7:50 至8:00,或8:20 至8:30 时,小明等车时间不超过10 分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n 的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x 轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1 表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n 的取值范围是:(﹣1,3).当焦点在y 轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5 分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2 时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0 有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A 错误;函数f(x)=x c﹣1 在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B 错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C 正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C 的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n 所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω 的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω 的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2 .r +1【考点】9O :平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A :平面向量及应用. 【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m ,1),=(1,2),可得 m +2=0,解得 m=﹣2. 故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5 分)(2x +)5 的展开式中,x 3 的系数是 10 .(用数字填写答案)【考点】DA :二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P :二项式定理. 【分析】利用二项展开式的通项公式求出第 r +1 项,令 x 的指数为 3,求出 r ,即可求出展开式中 x 3 的系数. 【解答】解:(2x +)5 的展开式中,通项公式为:T = =25﹣r,令 5﹣=3,解得 r=4 ∴x 3 的系数 2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5 分)设等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2…a n 的最大值为 64 .1 2 n 1 【考点】87:等比数列的性质;8I :数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列. 【分析】求出数列的等比与首项,化简 a 1a 2…a n ,然后求解最值. 【解答】解:等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,可得 q (a 1+a 3)=5,解得 q=. a 1+q 2a 1=10,解得 a 1=8.则 a a …a =a n •q1+2+3+…+(n ﹣1)=8n • = = ,当 n=3 或 4 时,表达式取得最大值: =26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5 分)某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品 A 的利润为 2100元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 216000元.【考点】7C :简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设 A 、B 两种产品分别是 x 件和 y 件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设 A 、B 两种产品分别是 x 件和 y 件,获利为 z 元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000 元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC 不为0 求出cosC 的值,即可确定出出C 的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b 的值,即可求△ABC 的周长.【解答】解:(Ⅰ)∵在△ABC 中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC 的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,求出平面BEC、平面ABC 的法向量,代入向量夹角公式可得二面角E﹣BC﹣A 的余弦值.【解答】(Ⅰ)证明:∵ABEF 为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE 为二面角D﹣AF﹣E 的平面角;由ABEF 为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF 为二面角C﹣BE﹣F 的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB✪平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC 为等腰梯形.以E 为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC 的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC 的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A 的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A 的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X 的分布列.(II)由X 的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5 中n 的最小值.(III)法一:由X 的分布列得P(X≤19)=.求出买19 个所需费用期望EX1和买20 个所需费用期望EX2,由此能求出买19 个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19 时,费用的期望和当n=20时,费用的期望,从而得到买19 个更合适.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,P (X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)= =,P(X=20)= ==,P(X=21)= =,P(X=22)= ,∴X 的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19 时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20 时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19 个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E 的轨迹为以A,B 为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A 到PQ 的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E 的轨迹为以A,B 为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E 的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•= •=12•,A 到PQ 的距离为d==,|PQ|=2 =2=,则四边形MPNQ 面积为S= |PQ|•|MN|= ••12•=24•=24,当m=0 时,S 取得最小值12,又>0,可得S<24•=8 ,即有四边形MPNQ 面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a 进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2 是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0 恒成立,当x<1 时,f′(x)<0,此时函数为减函数;当x>1 时,f′(x)>0,此时函数为增函数;此时当x=1 时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1 存在一个零点;当x<1 时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t1,t2,且t1<t2,则当x<t1,或x>t2 时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1 存在一个零点;即函数f(x)在R 是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当ln(﹣2a)<x<1 时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0 得:函数f(x)在R 上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故函数f(x)在R 上单调递增,函数f(x)在R 上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1 时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=1 时,函数取极大值,由f(1)=﹣e<0 得:函数f(x)在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2 是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1 时,g′(x)<0,g(x)单调递减;当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)= ,m>0,则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K 为AB 中点,连结OK.根据等腰三角形AOB 的性质知OK⊥ AB,∠A=30°,OK=OAsin30°=OA,则AB 是圆O 的切线.(Ⅱ)设圆心为T,证明OT 为AB 的中垂线,OT 为CD 的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K 为AB 中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB 与⊙O 相切;(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设T 是A,B,C,D 四点所在圆的圆心.∵OA=OB,TA=TB,∴OT 为AB 的中垂线,同理,OC=OD,TC=TD,∴OT 为CD 的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1 的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1 是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ 化为极坐标方程;(Ⅱ)化曲线C2、C3 的极坐标方程为直角坐标方程,由条件可知y=x 为圆C1 与C2 的公共弦所在直线方程,把C1 与C2 的方程作差,结合公共弦所在直线方程为y=2x 可得1﹣a2=0,则a 值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足tanα0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1 时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)= ,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1 时,|x﹣4|>1,解得x>5 或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1 或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5 或x<3,即有x>5 或≤x<3.综上可得,x<或1<x<3 或x>5.则|f(x)|>1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域内均无效.3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.5、 考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
设集合{}2430A x x x =-+<,{}230x x ->,则AB =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭2。
设yi x i +=+1)1(,其中y x ,是实数,则=+yi x (A)1(B )2(C )3(D )23.已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )974。
某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A)错误! (B)错误! (C )错误! (D )错误!5.已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B)(- (C )()0,3 (D)(6。
吉林省长春市普通高中2016届高三数学下学期质量监测试题(三)理(扫描版)长春市普通高中2016届高三质量监测(三)数学(理科)参考答案及评分参考一、选择题(本大题包括12小题,每小题5分,共60分)1. B2. C3. B4. B5. B6. C7. A8. D9. A 10. B 11. D 12. B 简答与提示:1. B 【命题意图】本题主要考查集合的化简与交运算,属于基础题.【试题解析】B 由题意可知{|12}B x x =-<<,所以{|12}A B x x =-<<I . 故选B.2. C 【命题意图】本题考查复数的乘法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】C 复数22z i =-+,所以12(2)(2)5z z i i ⋅=+-+=-. 故选C. 3. B 【命题意图】本题主要考查平面向量的运算性质.【试题解析】B 由2(2,1),a b +=r r 得|2|a b +=r r,故选B.4. B 【命题意图】本题考查分段函数及指数、对数运算,是一道基础题.【试题解析】B11()2,(2)254f f =--=. 故选B. 5. B 【命题意图】本题考查古典概型,属于基础题.【试题解析】B 由题意,(,)x y 的所有可能为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种,其中满足2x y ≥的有4种,故概率为23. 故选B. 6. C 【命题意图】本题考查三角函数定义及恒等变换.【试题解析】C 由三角函数定义sin αα==sin 2cos 2sin cos cos ααααα+=+=. 故选C.7. A 【命题意图】本题主要考查四棱锥的体积,考查空间想象能力,属于基础题.【试题解析】A 该几何体可以看成由两个四棱锥组成,每个四棱锥的底面面积为9,高为3,故其体积为9,所以整个几何体体积为18. 故选A.8. D 【命题意图】本题主要考查三角函数的图象及性质,是一道基础题.【试题解析】D 由题可知,3πϕ=-,从而()sin(2)3f x x π=-,则该函数在0,2π⎡⎤⎢⎥⎣⎦的最小值为2-. 故选D. 9. A 【命题意图】本题考查程序框图及进位制,属基础题.【试题解析】A 经计算得01234512120202121251b =⨯+⨯+⨯+⨯+⨯+⨯=. 故选A.10. B 【命题意图】本题主要考查双曲线的几何性质与圆切线的性质,是一道中档题.【试题解析】B 由题可知,212||,||||22MF b MF MF a b a ==+=+,由12MF MF ⊥,有22212||||4MF MF c +=,整理得2b a =,所以离心率e =故选B.11. D 【命题意图】本题主要考查解三角形正弦定理的应用,是一道中档题.【试题解析】D 如图,由题可知,90BAD C B CAD ∠+∠=∠+∠=︒,在ABD ∆中,sin sin cos BD AD BD BAD B C ==∠,在ADC ∆中,sin sin cos CD AD CDCAD C B ==∠,所以sin sin cos cos B CC B=,即sin 2sin 2B C =,所以B C =或22B C π+=,则此三角形为等腰三角形或直角三角形. 故选D.12. B 【命题意图】本题考查函数导数运算、导数与单调性关系、奇偶性等综合应用,是一道较难题.【试题解析】B 由题可知当(0,1)x ∈时,222()ln(1)()1xf x x f x x '->-,从而2222(()ln(1))()ln(1)()01xf x x f x x f x x''⋅-=-->-,有函数2()ln(1)y f x x =⋅-在(0,1)上单调递增,由函数2()ln(1)y f x x =⋅-为偶函数,所以其在(1,0)-上单调递减,由于(1,0)(0,1)x ∈-U 时2ln(1)0x -<,所以()0f x <等价于2()ln(1)0y f x x =⋅->,由1()02f =,故()0f x <的解集为1{|1,2x x -<<-或11}2x <<. 故选B. 二、填空题(本大题包括4小题,每小题5分,共20分)13. 414. y x =-15. 6416.43简答与提示:13. 4【命题意图】本题主要考查线性规划问题,是一道常规题. 从二元一次方程组到可行域,再结合目标函数的几何意义,全面地进行考查.【试题解析】令2z x y =+,根据可行域及z 的几何意义,可确定最优解为(2,0),从而2x y +的最大值为4.14. y x =-【命题意图】本题考查导数的几何意义,是一道中档题.【试题解析】由题意(0,0)P ,(),(0)1xf x e f ''=-=-,从而曲线在点P 处的切线方程为y x =-.15. 64【命题意图】本题考查椭圆的简单几何性质和平面向量的基本运算,考查数形结合思想,是一道中档题.【试题解析】由题意NM KM KN =-u u u u r u u u u r u u u r ,由0KM KN ⋅=u u u u r u u u r ,有2KM NM KM ⋅=u u u u r u u u u r u u u u r ,从椭圆的简单几何性质可得,当M 点为(6,0)-时2KM uuuu r 最大,故KM NM ⋅u u u u r u u u u r的最大值为64.16. 43【命题意图】本题涉及球内接四棱锥体积运算,需要借助导数进行运算求解,是一道较难题.【试题解析】由球的几何性质可设四棱锥高为h ,从而23222[1(1)](2)33P ABCD V h h h h -=--=-+,有222(34)(34)33PABCD V h h h h -'=-+=-+,可知当43h =时,P ABCD V -体积最大. 三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题主要考查数列递推关系、等比数列、等差数列前n 项和,对考生的化归与转化能力有较高要求.【试题解析】解:(1) 证明:由43411-=-n n a a 知)1(4111+=+-n n a a , 由,01≠+n a 41111=++-n na a ,则数列{}1+n a 是以512为首项,41为公比的等比数列.(6分)(2) 由(1)知n a n 211)1(log 2-=+,设{})1(log 2+n a 的前n 项和为n T ,210n n T n -=2|log (1)|n n b a =+,当5≤n 时,2210,0)1(log n n T S a n n n -==>+,当6≥n 时,50102)()1(log )1(log 25552625+-=-=--=+--+-=n n T T T T T a a T S n n n n Λ综上得⎪⎩⎪⎨⎧≥+-≤-=6,50105,1022n n n n n n S n .(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,包括茎叶图、离散型随机变量的分布列以及数学期望的求法..【试题解析】(1) . (3分) (2) 6个人,19. 【命题意图】本小题主要考查立体几何的相关知识,二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 过点M 作EF MP ⊥于点P,过点N 作FD NQ ⊥于点Q ,连接PQ . 由题意,平面⊥EFCB 平面EFDA ,所以⊥MP 平面EFDA且22=+=CFBE MP ,因为EF DF EF CF ⊥⊥,,所以⊥EF 平面CFD ,所以EF NQ ⊥,由FD NQ ⊥,所以⊥NQ 平面EFDA ,又12CN ND =,所以,即NQ MP NQ MP =,//,则MN //PQ ,由MN ⊄平面ADFE ,,所以MN //平面ADFE (6分) (2) 以F 为坐标原点,FE 方向为x 轴,FD 方向为y 轴,FC 方向为z 轴,建立如图,即)1,1,1(1=n ,在平面FAN 中,)23,23,0(),0,1,2(==FN FA ,即)2,2,1(2-=n则93cos =θ,所以二面角M NA F --的余弦值为93.(12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 设),(y x M ,有)2,(y x P ,将P 代入y x 22=,得y x 42=,从而点M 的轨迹E 的方程为y x 42=.(4分)(2) 设),(),,(2211y x B y x A ,联立⎩⎨⎧=+-=yx x k y 45)4(2 ,得0201642=-+-k kx x ,则⎩⎨⎧-==+201642121k x x k x x ,因为44,44222111+-=+-=x y k x y k ,所以 |16)(4))(81(||414414|||212121221121+++--=++--++-=-x x x x x x k x k kx x k kx k k因为,A B 不同于点N ,所以81≠k ,则1)2(||221+-=-k k k故21k k -的取值范围是),1[+∞. (12分)21. (本小题满分12分)【命题意图】本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值等情况. 对考生的逻辑推理与运算求解能力有较高要求.【试题解析】解(1) 由题意得1()(sin cos )x f x e a x x -'=--++,若函数()f x 存在单调减区间,则1()(sin cos )0x f x e a x x -'=--++≤即sin cos 0a x x -++≥存在取值区间,即)4a x π≤+存在取值区间,所以a < (6分)(2) 当0a =时,11()cos ,()(sin cos )x x f x e x f x e x x --'==-+21(1)2()cos(1)cos(1)[sin()]4x x f x f x x x e x π+-'--+⋅+=+⋅-⋅+由11,2x ⎡⎤∈-⎢⎥⎣⎦有310,[0,]22x π⎡⎤+∈⊆⎢⎥⎣⎦,从而cos(1)0x +>,要证原不等式成立,只要证21sin()04x x ex π+--⋅+>对⎥⎦⎤⎢⎣⎡-∈∀21,1x 恒成立,首先令)22()(12+-=+x ex g x ,由22)(12-='+x e x g ,可知, 当),21(+∞-∈x 时)(x g 单调递增,当)21,(--∞∈x 时)(x g 单调递减,所以0)21()22()(12=-≥+-=+g x ex g x ,有2212+≥+x e x 构造函数)4sin(2222)(π+-+=x x x h ,⎥⎦⎤⎢⎣⎡-∈21,1x ,因为)4cos(222)(π+-='x x h ))4cos(22(22π+-=x ,可见,在[]0,1-∈x 时,0)(≤'x h ,即)(x h 在[]0,1-上是减函数, 在⎥⎦⎤ ⎝⎛∈21,0x 时,0)(>'x h ,即)(x h 在⎥⎦⎤ ⎝⎛21,0上是增函数,所以,在⎥⎦⎤⎢⎣⎡-21,1上,0)0()(min ==h x h ,所以0)(≥x g .所以,22)4sin(22+≤+x x π,等号成立当且仅当0=x 时,综上2122)4x e x x π+≥+≥+,由于取等条件不同,故21)04x ex π+-+>,所以原不等式成立.(12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到切割线定理以及三角形 相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解(1) 由BC CD =可知,BAC DAC ∠=∠,在△ABD 中,则AB ADBM DM=,因此AB MD AD BM ⋅=⋅; (5分) (2) 由CP MD CB BM ⋅=⋅可知CP BM CB MD =,又由(1)可知BM ABMD AD=,则CP ABCB AD=,由题意BAD PCB ∠=∠,可得△BAD ∽△PCB ,则ADB CBP ∠=∠,又ADB ACB ∠=∠,即CBP ACB ∠=∠,又PB 为圆O 的切线,则CBP CAB ∠=∠,因此ACB CAB ∠=∠,即AB AC =. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解(1) 已知曲线C 的标准方程为221124x y +=,则其左焦点为(-,则m =-将直线l的参数方程22x y ⎧=-⎪⎪⎨⎪=⎪⎩与曲线C 的方程221124x y +=联立, 得2220t t --=,则12||||||2FA FB t t ⋅==. (5分) (2) 由曲线C 的方程为221124x y +=,可设曲线C上的定点,2sin )P θθ 则以P为顶点的内接矩形周长为42sin )16sin()(0)32ππθθθθ⨯+=+<<,因此该内接矩形周长的最大值为16.(10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】(1) 令1,1()|1||2|23,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则1()1f x -≤≤,由于0x ∃∈R 使不等式|1||2|x x t ---≥成立,有{|1}t T t t ∈=≤. (5分) (2) 由(1)知,33log log 1m n ⋅≥,根据基本不等式33log log 2m n ≥+≥ 从而23mn ≥当且仅当m =时取等号,再根据基本不等式6m n +≥当且仅当3m n ==时取等号,所以m n +的最小值为6. (10分)。
长春市普通高中2016届高三质量监测(一)数学(理科)试题一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合{012}A =,,,{|,,}B z z x y x A y A ==+∈∈,则B =A. {}0,1,2,3,4B. {}0,1,2C. {}0,2,4D. {}1,22. 复数1+1ii-(i 是虚数单位)的虚部为 A. i B. 2i C. 1 D. 23.抛物线24y x =-的准线方程为 A. 1y =-B. 1y =C. 1x =-D. 1x =4. 已知向量a ,b 满足(5,10)=-a +b ,(3,6)-=a b ,则a,b 夹角的余弦值为 A.C.5.下列说法中正确的是A.“(0)0f =”是“函数()f x 是奇函数”的充要条件;B. 若2000:,10p x x x ∃∈-->R .则2:,10p x x x ⌝∀∈--<R ;C. 若p q ∧为假命题,则,p q 均为假命题;D. “若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”. 6. 若实数,x y 满足2211x y y x y x -⎧⎪-+⎨⎪+⎩≥≥≤,则2z x y =-的最小值为A. 2-B. 1-C. 1D. 27.执行如图所示的程序框图,输出20152016s =.那么判断框内应填A. 2015?k ≤B. 2016?k ≤C. 2015?k ≥D. 2016?k ≥8.在ABC ∆中, 2,3AB AC ==,BC 边上的中线2AD =,则ABC ∆的面积为A.9. 已知几何体的三视图如图所示,则该几何体的表面积为A. 4+B. 6+C. 2+D. 2+10.已知函数3||x x y e=,则其图像为A. B.C. D. 11. 函数()sin()cos()66f x x x ππ=++,给出下列结论: ① ()f x 的最小正周期为 π ②()f x 的一条对称轴为6x π=③()f x 的一个对称中心为(,0)6π④ ()6f x π-是奇函数 其中正确结论的个数是A. 1B. 2C. 3D. 412.设函数()f x 在R 上的导函数为()f x ',且22()()f x xf x x '+>.下面的不等式在R 上恒成立的是A. ()0f x >B. ()0f x <C. ()f x x >D. ()f x x <二、填空题(本大题共4小题,每小题5分,共20分) 13. 61(2)x x-的展开式中常数项是___________.14. 已知随机变量ξ服从正态分布()2N m σ,,若(3)(4)P P ξξ-=≤≥,则m=________.15.已知三棱锥S ABC -中, SA BC ==SB AC =SC AB ==则该三棱锥的外接球表面积为________.16.如图,等腰梯形ABCD 中, 2AB DC = ,32AE EC =.一双曲线经过C ,D ,E 三点,且以A ,B 为焦点,则该双曲线离心率是 ________.三、解答题17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,12a = ,且满足112()n n n a S n +*+=+∈N .(1)证明数列2n n S ⎧⎫⎨⎬⎩⎭为等差数列; (2)求12n S S S +++ .18.(本小题满分12分)为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:男生:(1)从这20名男生中随机选出3人,求恰有一人睡眠时间不足7小时的概率;(2)完成下面2()0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828P K k k ≥(22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)19.(本小题满分12分) 如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,2AB AC ==,13AA =.(1)过BC 的截面交1A A 于P 点,若PBC ∆为等边三角形,求出点P 的位置; (2)在(1)条件下,求平面PBC 与平面11PB C 所成二面角的大小. 20. (本小题满分12分)设点A ,B 的坐标分别为(2,0)-,(2,0),直线AP ,BP 相交于点P ,且它们的斜率之积是14-. (1)求点P 的轨迹C 的方程;(2) D ,E ,F 为曲线C 上的三个动点, D 在第一象限, E ,F 关于原点对称,且||||DE DF =,问DEF ∆的面积是否存在最小值?若存在,求出此时D 点的坐标;若不存在,请说明理由.21. (本小题满分12分)已知函数()1x f x e ax =--. (1)判断函数()f x 的单调性;(2)若()ln(1)ln x g x e x =--,当(0,)x ∈+∞时,不等式(())()f g x f x <恒成立,求实数a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分) 选修4—1:几何证明选讲.已知ABC ∆中, AB AC =,以点B 为圆心,以BC 为半径的圆分别交AB ,AC 于两D ,E 两点,且EF 为该圆的直径.(1)求证: 2A F ∠=∠; (2)若112AE EC ==.求BC 的长. 23. (本小题满分10分) 选修4—4:坐标系与参数方程.已知曲线C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l 的极坐标方程为sin()4πρθ+=(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)设点P 为曲线C 上的动点,求点P 到直线l 距离的最大值. 24.(本小题满分10分) 选修4—5:不等式选讲. 已知函数()|||5|f x x a x =-+-.(1)若不等式()3f x ≥恒成立,求a 的取值范围; (2)当2a =时,求不等式2()815f x x x -+≥的解集.长春市普通高中2016届高三质量监测(一) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 简答与提示:1.A 【命题意图】本题考查集合中元素的计算与集合的性质.【试题解析】A 题意可知,集合{|,,}{0,1,2,3,4}B z z x y x A y A ==+∈∈=,故选A.2.C 【命题意图】本题考查复数的除法运算与复数虚部的概念.【试题解析】C21(1)21(1)(1)2i i ii i i i ++===--+,虚部为1,故选C. 3.D 【命题意图】本题考查抛物线的准线的概念,是对学生的基础知识的直接考查. 【试题解析】D 由题意,抛物线24y x =-的准线为1x =,故选D. 4.D 【命题意图】本题主要对向量的基本运算进行考查.【试题解析】D ()()(4,2)2a b a b a ++-==-,()()(1,8)2a b a b b +--==- ,则,a b 的夹角余弦值为cos 13||||a b a b θ⋅===⋅. 故选D. 5.D 【命题意图】本题是对逻辑问题的综合考查,全面考查考生对各种逻辑问题的理解.【试题解析】D 选项A 中,由奇函数定义可知,“(0)0f =”是“函数()f x 是奇函数”的既不充分也不必要条件;选项B 中,若p :0x ∃∈R ,20010x x -->,则p ⌝:x ∀∈R ,210x x --≤;选项C 中,若p q ∧为假命题,只能判定,p q 中至少有一个为假命题;选项D 的说法正确,故选D. 6.B 【命题意图】本题考查线性规划以及目标函数的几何意义等知识.【试题解析】B 图为可行域,而目标函数2z x y =-可化为2y x z =-,即z -为该直线在y 轴上的截距,当直线过(0,1)时,截距取得最大值,此时z 取得最小值为1-,故选B.7.A 【命题意图】本题考查程序框图的基本运作过程,同时通过程序框图也对数列中的裂项求和进行考查.【试题解析】A 由程序框图,当2015k =时,还应该进入循环,而当2016k =时,不再进入循环,故应填2015k ≤,故选A.8.C 【命题意图】本题主要考查解三角形,以及利用余弦定理搭建三角形中边与角的关系式.【试题解析】C 由题意,设CD BD x ==,根据余弦定理可得,2294944cos 23232x x C x x +-+-==⋅⋅⋅⋅,可得x =且cos C =sin C =,故1sin 2ABC S AC BC C =⋅⋅=C. 9.B 【命题意图】本题主要考查考生对三视图的理解,以及简单几何体表面积的计算.【试题解析】B锥,且顶点在底面上的投影为斜边的中点,据此可求得该几何体的表面积为6故选B.10.A 【命题意图】本题考查对图像特征的理解,以及利用求导等手段发现函数特点的方法.【试题解析】A 函数3||x x y e=为奇函数,且0|0x y ='=,可推出在原点处切线的斜率为0,故选A.11.B 【命题意图】本题考查三角变换公式,以及sin()y A x ωϕ=+中各个量对函数图像的影响.【试题解析】B 由题1()sin()cos()sin(2)6623f x x x x πππ=++=+,可知①④正确,故选B.12.A 【命题意图】本题是利用导数考查抽象函数的特征问题,目的在于考核考生对导数的理解,包括函数的特征点,以及导数对函数图像的影响等.【试题解析】A 当0x =时,可得()0f x >;当0x >时,将22()()f x xf x x '+>的两侧同时乘以x 可得232()()xf x x f x x '+>,即23[()]0x f x x '>>,则2()x f x 在0x >时单调递增,即22()0(0)0x f x f >⋅=,所以()0f x >;当0x <时,将22()()f x xf x x '+>的两侧同时乘以x 可得232()()xf x x f x x '+<,即23[()]0x f x x '<<,则2()x f x 在0x <时单调递减,即22()0(0)0x f x f >⋅=,所以()0f x >,综上可得到()0f x >. 故选A.二、填空题(本大题共4小题,每小题5分,共20分)简答与提示:13. 160-【命题意图】本题考查二项展开式系数问题.【试题解析】常数项为333461(2)()160T C x x=-=-.14.12【命题意图】本题考查正态分布的基本知识,特别是正态分布2(,)N μσ中各个量的意义.【试题解析】由正态分布的性质可知,34122m -+==. 15.14π【命题意图】本题考查了球的内接几何体问题,特别涉及到了长方体,以及长方体的局部几何体的外接球问题.【试题解析】由条件,可将三棱锥S ABC -放入如图所示的长方体中,设其长宽高分别为,,a b c ,有22213,a b SC +== 22222210,5c b SB a c SA +==+==,得到22214a b c ++=,该长方体的外接球也就是三棱锥的外14π.本题通过平面几何的性质考查双曲线的标准方程以及离心率,对学生的运算求解能力提出很高要求,是一道较难题.【试题解析】设双曲线的标准方程为22221x y a b-=(0,0)a b >>,0(,0),(,)2c A c C y -,由23AE EC = ,得022(,)55y c E -,从而满足2202222022144412525y c a b y c a b ⎧-=⎪⎪⎨⎪-=⎪⎩,消去202y b ,解得227c a =,离三、解答题17.(本小题满分12分)【命题意图】本题考查数列通项公式及其前n 项和公式的求法,其中涉及错位相减法在数列求和问题中的应用. 【试题解析】 (1) 证明:由条件可知,112n n n n S S S ++-=+,即1122n n n S S ++-=,整理得11122n n n n S S ++-=,所以数列{}2nnS 是以1为首项,1为公差的等差数列. (6分) (2) 由(1)可知,112nn S n n =+-=,即2n n S n =⋅,令12n n T S S S =+++ 212222n n T n =⋅+⋅++⋅ ①21212(1)22n n n T n n += ⋅++-⋅+⋅ ②①-②,212222n n n T n +-=+++-⋅ ,整理得12(1)2n n T n +=+-⋅. (12分)18.(本小题满分12分)【命题意图】本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1) 设所求事件概率为P ,则121283202895C C P C ==. (6分)(2)20(126148)400.440 2.7062026142091k ⨯-⨯==≈<⨯⨯⨯所以没有90%的把握认为“睡眠时间与性别有关”(12分)19.(本小题满分12分)【命题意图】本小题以三棱柱为载体,考查立体几何的基础知识. 本题通过分层设计,考查了二面角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)由题意PC PB ==,在三棱柱中,由1AA ⊥平面ABC且2AB AC ==可得,2PA =,故点P 的位置为1AA 的三等分点,且靠近1A 处.(4分)(2)以A 为坐标原点,CA 方向为x 轴,AB 方向为y 轴,1AA 方向为z 轴,建立如图所示的空间直角坐标系,有11(0,0,2),(0,2,0),(2,0,0),(0,2,3),(2,0,3)P B C B C --设平面11PB C 的一个法向量为(,,)n x y z =,有1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020x z y z +=⎧⎨+=⎩, 令2z =-,得(1,1,2)n =- ,同理可得平面PBC 的一个法向量为(1,1,1)m =,可得0m n ⋅=,所以平面PBC 与平面11PB C 所成角为直二面角,大小为90︒.(12分)20.(本小题满分12分)【命题意图】本小题考查椭圆的标准方程的求取,直线和椭圆的位置关系及函数最值的求法,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1) 设点P 的坐标为(,)x y ,由题意可知14PA PB k k ⋅=-,即1224y y x x ⋅=-+-,因此点P 的轨迹方程为2214x y +=(2)x ≠±. (5分) (2) 由题意知OD EF ⊥,设:EF y kx =(0)k <,1:OD y x k=-设111122(,),(,),(,),E x y F x y D x y --由2214x y y kx⎧+=⎪⎨⎪=⎩,消去y 得22(14)4k x +=,所以1||2|EF x ==同理可得2x =,||OD ==所以1||||2DEF S OD EF ∆===当21112k =+,即21,1k k ==-时,DEF S ∆取最小值,此时(55D . (12分) 21.(本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,以及函数图像的判定,考查学生解决问题的综合能力.【试题解析】解:(1) ()1xf x e ax =--,()xf x e a '=-,当0a ≤时,()0f x '>,则()f x 在R 上单调递增;当0a >时,令()0x f x e a '=-=,得ln x a =,则()f x 在(,ln ]a -∞上单调递减,在(ln ,)a +∞上单调递增. (4分) (2) 不妨先证明0()g x x <<(0)x >,即0ln(1)ln x e x x <--<, 先证ln(1)ln 0x e x -->,即1xe x >+,显然成立. 再证ln(1)ln x e x x --<,只需证1xxe xe -<,设()1x x h x xe e =-+,则()0x x x x h x e xe e xe '=+-=>, 即()(0)0h x h >=,0()g x x <<得证.由当0a ≤时,则()f x 在R 上单调递增,可知(())()f g x f x <,当01a <≤时,ln 0a ≤,又()f x 在(ln ,)a +∞上单调递增,(())()f g x f x <, 当1a >时,()f x 在(0,ln )a 上单调递减,(())()f g x f x >与条件不符.综上1a ≤. (12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】 (1) 因为AC AB =,所以ABC ACB ∠=∠,又因为BC BE =,所以BEC ECB ∠=∠,所以BEC ABC ∠=∠,所以2A EBC F ∠=∠=∠. (5分)(2) 由(1)可知ABC ∆∽BEC ∆,从而EC BCBC AC=,由1,2,3AE EC AC ===,得BC .(10分)23.(本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用曲线的参数方程的几何意义求解曲线上点到直线的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1) 曲线C 的普通方程为2213x y +=,直线l 的直角坐标方程为40x y +-=. (5分)(2) 设点P坐标为,sin )θθ,点P 到直线l的距离)3d πθ==+所以点P 到直线l距离的最大值为 (10分)24.(本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想.【试题解析】 (1) 由于()|||5||5|f x x a x a =-+-≥-,所以()3|5|3f x a ≥⇔-≥,解得2a ≤或8a ≥.(5分)(2) 72,2()|2||5|3,2527,5x x f x x x x x x -<⎧⎪=-+-=≤≤⎨⎪->⎩,原不等式等价于2272815x x x x <⎧⎨-≥-+⎩,或2253815x x x ≤≤⎧⎨≥-+⎩,或2527815x x x x >⎧⎨-≥-+⎩2016长春一模理科 第 11 页 共 11 页解得25x ≤≤{|25x x ≤≤. (10分)。
2016年某某省某某实验中学高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.54.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.47.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣210.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=111.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为.16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△ABC的面积为6,求边c的值.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.2016年某某省某某实验中学高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅【考点】集合的包含关系判断及应用.【分析】根据对数函数的单调性便可解出A={x|x>1},利用被开方数大于等于0,求出B,从而找出正确选项.【解答】解:A={y|y=log3x,x>3}={y|y>1},B={x|y=}={x|x≥1},∴A⊆B,故选:A.2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:原式==﹣4﹣3i,故选:A.3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.5【考点】解三角形.【分析】由S==2,得a=1,再直接利用余弦定理求得b.【解答】解:由S===2,得a=1又由余弦定理得b2=a2+c2﹣2accosB=1+32﹣2×=25,所以b=5故选D4.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种【考点】计数原理的应用.【分析】先不考虑学生甲,乙不能同时参加同一学科竞赛,从4人中选出两个人作为一个元素,同其他两个元素在三个位置上排列,其中有不符合条件的,即甲乙两人在同一位置,去掉即可.【解答】解:从4人中选出两个人作为一个元素有C42种方法,同其他两个元素在三个位置上排列C42A33=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同的参赛方案共有 36﹣6=30,故选:B5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假【考点】平面与平面之间的位置关系.【分析】根据平面平行的判断方法,我们对已知中的两个命题p,q进行判断,根据判断结合和复合命题真值表,我们对四个答案逐一进行判断,即可得到结论.【解答】解:∵当α⊥β,β⊥γ时,α与γ可能平行与可能垂直故命题p为假命题又∵若α上不共线的三点到β的距离相等时α与β可能平行也可能相交,故命题q也为假命题故命题“p且q”为假,命题“p或¬q”为真,命题“p或q”为假,命题“¬p且¬q”为真故选C6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.4【考点】简单线性规划.【分析】首先作出其可行域,再由题意讨论目标函数在哪个点上取得最值,解出k.【解答】解:作出其平面区域如右图:A(1,2),B(1,﹣1),C(3,0),∵目标函数z=kx﹣y的最小值为0,∴目标函数z=kx﹣y的最小值可能在A或B时取得;∴①若在A上取得,则k﹣2=0,则k=2,此时,z=2x﹣y在C点有最大值,z=2×3﹣0=6,成立;②若在B上取得,则k+1=0,则k=﹣1,此时,z=﹣x﹣y,在B点取得的应是最大值,故不成立,故选B.7.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】相互独立事件的概率乘法公式;离散型随机变量的期望与方差.【分析】根据题意,首先求出X=1、2、3时的概率,进而可得EX的表达式,由题意EX>1.75,可得p2﹣3p+3>1.75,解可得p的X围,结合p的实际意义,对求得的X围可得答案.【解答】解:根据题意,学生发球次数为1即一次发球成功的概率为p,即P(X=1)=p,发球次数为2即二次发球成功的概率P(X=2)=p(1﹣p),发球次数为3的概率P(X=3)=(1﹣p)2,则Ex=p+2p(1﹣p)+3(1﹣p)2=p2﹣3p+3,依题意有EX>1.75,则p2﹣3p+3>1.75,解可得,p>或p<,结合p的实际意义,可得0<p<,即p∈(0,)故选C.8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.【考点】简单空间图形的三视图.【分析】画出几何体的图形,根据三视图的特征,推出左视图的形状,然后求解即可.【解答】解:在三棱锥C﹣ABD中,C在平面ABD上的射影为BD的中点,左视图的面积等于,故选:D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣2【考点】定积分在求面积中的应用;几何概型.【分析】根据积分的几何意义求出阴影部分的面积,利用几何概型的概率公式即可得到结论.【解答】解:由x=0,y=0,x=及y=cosx围成区域内围成的区域面积S==sinx|,由x=0,y=sinx及y=cosx围成的区域面积S==(sinx+cosx)|=,∴根据根据几何概型的概率公式可得所求的概率P=,故选:B.10.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=1【考点】直线和圆的方程的应用;向量的共线定理;数量积判断两个平面向量的垂直关系.【分析】由A,B,C是圆x2+y2=1上不同的三个点,可得,又,所以对两边平方即可得到结论.【解答】解:∵,两边平方得:∵∴λ2+μ2=1故选A11.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.【考点】数列递推式.【分析】设b n=nS n+(n+2)a n,由已知得b1=4,b2=8,从而b n=nS n+(n+2)a n=4n,进而得到是以为公比,1为首项的等比数列,由此能求出.【解答】解:设b n=nS n+(n+2)a n,∵数列{a n}的前n项和为S n,且a1=a2=1,∴b1=4,b2=8,∴b n=b1+(n﹣1)×(8﹣4)=4n,即b n=nS n+(n+2)a n=4n当n≥2时,∴,即,∴是以为公比,1为首项的等比数列,∴,∴.故选:A.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3【考点】函数的值域;函数的定义域及其求法.【分析】得出,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根得出mn=,只需△=a2(a+3)(a﹣1)>0,a>1或a<﹣3,利用函数求解n﹣m==,n﹣m取最大值为.此时a=3,【解答】解:设[m,n]是已知函数定义域的子集.x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数f(x)=﹣在[m,n]上单调递增,则,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根∵mn=∴m,n同号,只需△=a2(a+3)(a﹣1)>0,∴a>1或a<﹣3,n﹣m==,n﹣m取最大值为.此时a=3,故选:D二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是12 .【考点】程序框图.【分析】从程序框图中得到实验数的定义,找出区间中被3整除的数;找出被12整除的数;找出不能被6整除的数得到答案.【解答】解:由程序框图知实验数是满足:能被3整除不能被6整除或能被12整除的数,在[30,80]内的所有整数中,所有的能被3整除数有:30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78共有17个数,在这17个数中能被12 整除的有36,48,60,72,共4个数,在这17个数中不能被6 整除的有33,39,45,51,57,63,69,75,共计8个数,所以在[30,80]内的所有整数中“试验数”的个数是12个.故答案为:12.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值\frac{9}{2} .【考点】基本不等式;平面向量共线(平行)的坐标表示.【分析】由∥,可得:n+2m=4.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵∥,∴4﹣n﹣2m=0,即n+2m=4.∵m>0,n>0,∴+=(n+2m)=≥=,当且仅当n=4m=时取等号.∴+的最小值是.故答案为:.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为\sqrt{7} .【考点】双曲线的简单性质.【分析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【解答】解:根据双曲线的定义,可得|BF1|﹣|BF2|=2a,∵△ABF2是等边三角形,即|BF2|=|AB|∴|BF1|﹣|BF2|=2a,即|BF1|﹣|AB|=|AF1|=2a又∵|AF2|﹣|AF1|=2a,∴|AF2|=|AF1|+2a=4a,∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°∴|F1F2|2=|AF1|2+|AF2|2﹣2|AF1|•|AF2|cos120°即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解之得c=a,由此可得双曲线C的离心率e==故答案为:16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为12 .【考点】等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n 项和.【分析】设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的X围,取上限的整数部分即可得答案.【解答】解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△A BC的面积为6,求边c的值.【考点】正弦定理;三角函数中的恒等变换应用.【分析】(1)利用降幂公式,两角和与差的余弦函数公式,三角形内角和定理,诱导公式化简已知等式,可求cosC的值,结合C的X围可求C的值.(2)利用三角形面积公式可求a的值,结合余弦定理即可求得c的值.【解答】解:(1)sin2+sinAsinB=.⇒,⇒,⇒,⇒,⇒,⇒,⇒,(2)∵,,∴,∵c2=a2+b2﹣2abcosC=10,∴.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【分析】(1)设A i表示事件“此人于2月i日到达该市”依题意知p(A i)=,设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,由此能求出此人到达当日空气质量重度污染的概率.(2)由题意可知,ξ的所有可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列和ξ的期望.【解答】解:(1)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,12).依题意知,p(A i)=,且A i∩A j=Φ(i≠j).设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,所以P(B)=(A1∪A2∪A3∪A7∪A12)=P(A1)+P(A2)+P(A3)+P(A7)+P(A12)=.即此人到达当日空气质量重度污染的概率为.(2)由题意可知,ξ的所有可能取值为0,1,2,3,P(ξ=0)=P(A4∪A8∪A9)=P(A4)+P(A8)+P(A9)=,P(ξ=2)=P(A2∪A11)=P(A2)+P(A11)=,P(ξ=3)=P(A1∪A12)=P(A1)+P(A12)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=2)﹣P(ξ=3)=1﹣=,∴ξ的分布列为:ξ0 1 2 3P故ξ的期望Eξ=.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【分析】(1)由余弦定理得BD=,由勾股定理,得BD⊥AD,由线线面垂直得BD⊥PD,从而BD⊥平面PAD,由此能证明PA⊥BD.(2)以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,分别求出平面APB的法向量和平面PBC的法向量,由此能求出二面角A﹣PB﹣C的余弦值.【解答】(1)证明:因为∠DAB=60°,AB=2,AD=1,由余弦定理得BD==,∴BD2+AD2=AB2,故BD⊥AD,∵PD⊥底面ABCD,BD⊂平面ABCD,∴BD⊥PD,又AD∩PD=D,∴BD⊥平面PAD,又PA⊂平面PAD,∴PA⊥BD.(2)解:以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,由已知得A(1,0,0),P(0,0,1),B(0,,0),C(﹣1,,0),=(1,0,﹣1),=(0,,﹣1),=(﹣1,,﹣1),设平面APB的法向量=(x,y,z),则,取y=,得=(3,,3),设平面PBC的法向量=(a,b,c),则,取b=,得=(0,,3),设二面角A﹣PB﹣C的平面角为θ,由图象知θ为钝角,∴cosθ=﹣|cos<>|=﹣||=﹣||=﹣.∴二面角A﹣PB﹣C的余弦值为﹣.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.【考点】椭圆的简单性质.【分析】(1)设B(x0,y0),则C(﹣x0,﹣y0),代入椭圆方程,运用直线的斜率公式,化简即可得到所求值;(2)联立直线AB的方程和圆方程,求得P的坐标;联立直线AB的方程和椭圆方程,求得B 的坐标,再求直线PQ,和直线BC的斜率,即可得到结论;(3)讨论直线PQ的斜率不存在和存在,联立直线PQ的方程和椭圆方程,求得Q的坐标,可得AQ的斜率,即可得证.【解答】解:(1)设B(x0,y0),则C(﹣x0,﹣y0),,所以;(2)联立得,解得,联立得,解得,所以,,所以,故存在常数,使得.(3)证明:当直线PQ与x轴垂直时,,则,所以直线AC必过点Q.当直线PQ与x轴不垂直时,直线PQ方程为:,联立,解得,所以,故直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).【考点】导数在最大值、最小值问题中的应用.【分析】(1)当a=1且x>1时,构造函数m(x)=lnx+﹣2,利用函数单调性和导数之间的关系即可证明:f(x)>3﹣;(2)根据函数最值和函数导数之间的关系将不等式恒成立问题进行转化,某某数a的取值X 围;(3)根据函数的单调性的性质,利用放缩法即可证明不等式.【解答】(1)证明:要证f(x)>3﹣,即证lnx+﹣2>0,令m(x)=lnx+﹣2,则m'(x)=,∴m(x)在(1,+∞)单调递增,m(x)>m(1)=0,∴lnx+﹣2>0,即f(x)>3﹣成立.(2)解法一:由f(x)>x且x∈(1,e),可得a,令h(x)=,则h'(x)=,由(1)知lnx﹣1+>1+=,∴h'(x)>0函数,h(x)在(1,e)单调递增,当x∈(1,e)时,h(x)<h(e)=e﹣1,即a≥e﹣1.解法二:令h(x)=alnx+1﹣x,则h'(x)=,当a>e时,h'(x)>0,函数h(x)在(1,e)上是增函数,有h(x)>h(1)=0,当1<a≤e时,∵函数h(x)在(1,a)上递增,在(a,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,即a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当a≤1时,函数h(x)在(1,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,而h(e)=a+1﹣e<0,不合题意,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上得对∀x∈(1,e),f(x)>x恒成立,a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣】【解法三:由f(x)>x且x∈(1,e)可得由于表示两点A(x,lnx),B(1,0)的连线斜率,由图象可知y=在(1,e)单调递减,故当x∈(1,e)时,,∴0,即a≥e﹣1.(3)当a=时,f(x)=,则f(i)=ln(n+1)!+n,要证f(i)>2(n+1﹣),即证lni>2n+4﹣4,由(1)可知ln(n+1)>2﹣,又n+2=(n+1)+1>2>,∴,∴ln(n+1)>2﹣,∴ln2+ln3+…+ln(n+1)=2n+4﹣4,故f(i)>2(n+1﹣).得证.[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)做出辅助线连接ON,根据切线得到直角,根据垂直得到直角,即∠ONB+∠BNP=90°且∠OBN+∠BMO=90°,根据同角的余角相等,得到角的相等关系,得到结论.(Ⅱ)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即BM•MN=CM•MA,代入所给的条件,得到要求线段的长.【解答】(Ⅰ)证明:连接ON,因为PN切⊙O于N,∴∠ONP=90°,∴∠ONB+∠BNP=90°∵OB=ON,∴∠OBN=∠ONB因为OB⊥AC于O,∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN,PM=PN∴PM2=PN2=PA•PC(Ⅱ)∵OM=2,BO=2,BM=4∵BM•MN=CM•MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【考点】直线的参数方程;点到直线的距离公式;柱坐标刻画点的位置.【分析】(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,求出t1+t2和t1•t2,根据|AB|=•|t1﹣t2|=5,运算求得结果.(Ⅱ)根据中点坐标的性质可得AB中点M对应的参数为=.由t的几何意义可得点P到M的距离为|PM|=•||,运算求得结果.【解答】解:(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,设A,B对应的参数分别为 t1和t2,则 t1+t2=,t1•t2 =﹣.所以|AB|=•|t1﹣t2|=5 =.(Ⅱ)易得点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为=.所以由t的几何意义可得点P到M的距离为|PM|=•||=.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.【考点】带绝对值的函数;绝对值不等式.【分析】(Ⅰ)不等式即|x﹣1|+|x﹣4|≥5,等价于,或,或,分别求出每个不等式组的解集,再取并集即得所求.(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,由题意可得|a﹣1|≥4,与偶此解得 a的值.【解答】解:(Ⅰ)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,,或,或.解得:x≤0或x≥5.故不等式f(x)≥5的解集为{x|x≤0,或x≥5 }.…(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.…由题意得:|a﹣1|≥4,解得a≤﹣3,或a≥5.…。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1。
设集合}log ,3{2a P =,{}b a Q ,=,若}0{=Q P ,则=Q P ( )A.{}0,3B.{}2,0,3C.{}1,0,3 D 。
{}2,1,0,3【答案】C 。
考点:集合间的基本运算;2。
已知向量(,1)a λ→=,(2,1)b λ→=+,若a b a b →→→→+=-,则实数λ的值为( )A .1B .2C .﹣1D .﹣2【答案】C . 【解析】试题分析:因为向量(,1)a λ→=,(2,1)b λ→=+,所以(22,2)a b λ→→+=+,(2,0)a b →→-=-,于是由a b a b →→→→+=-22(22)22λ++=,解之得1λ=-,故应选C 。
考点:平面向量的坐标运算;【方法点晴】本题主要考查平面向量的坐标运算和平面向量的模的概念,属于容易题。
解题时一定要注意正确的计算平面向量的坐标运算,并准确地运用平面向量模的概念建立等式关系,否则很容易导致计算错误。
作为一道选择题还可以选择代值法,逐一进行验证每个选项是否满足已知条件,若不是,则排除之;若是,即为所求的答案。
3。
设等差数列{}na 的前n 项和为nS ,若469,11aa ==,则9S 等于( )A .180B .90C .72D .10【答案】B 。
考点:1、等差数列;2、等差数列的前n 项和;4。
下列函数中,既是偶函数又在(),0-∞上单调递增的函数是( ) A .2y x = B .2xy = C 。
21logy x= D .sin y x =【答案】C 。
【解析】试题分析:对于选项A ,函数2y x =为偶函数但在(),0-∞上单调递减的函数,不符合题意;对于选项B ,函数2xy =为偶函数但在(),0-∞上单调递减的函数,不符合题意;对于选项C ,函数21logy x=为偶函数且在(),0-∞上单调递增的函数,符合题意;对于选项D ,函数sin y x =为奇函数,不符合题意,故应选C 。
长春市普通高中2017届高三质量监测(一) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. D4. C5. B6. C7. A8. C9. C 10. D 11. B 12. A 简答与提示:1. 【命题意图】本题考查复数的实部和虚部运算与复数与平面内点的对应关系.【试题解析】B 题意可知,21cos 32π=-,2sin 3π=,则1z 2=-,对应的点在第二象限. 故选B.2. 【命题意图】本题考查集合中元素的计算与交集的运算.【试题解析】C 由已知{}|23A x x =-<<,则{}0,1,2A N = ,故选C. 3. 【命题意图】本题考查平面向量的几何表示中的加、减、数乘、数量积运算.【试题解析】D 由已知,ABC ∆的边长为1,21AB a == ,所以12a = ,AC AB BC =+,则1BC b == ,因为2,3a b π<>= ,故选D.4. 【命题意图】本题主要抽样中的用样本去估计总体.【试题解析】C 由已知,抽得样本中含谷27粒,占样本的比例为271=2168,则由此估计总体中谷的含量约为11512=1898⨯石. 故选C.5. 【命题意图】本题是对逻辑问题中的特称命题的否定进行考察.【试题解析】B 由已知,命题的否定为0x ∀>,2(1x x a ⋅-≤使),故选B. 6. 【命题意图】本题考查直到型循环结构程序框图运算.【试题解析】C 有已知,1,0k s ==,1,2s s k k =+==,3,4s k ==,7,8s k ==,15,16s k ==,31,32s k ==,符合条件输出,故选C.7. 【命题意图】本题考查等差数列和等比数列的基本量的求取.【试题解析】A 由已知,3121a a d =+=-,2416()a a a =-即2111(3)(5)a d a a d +=--,且{}n a 为递减数列,则11,1d a =-=.有714S =-,故选A.8. 【命题意图】本题主要考查三视图的还原,还涉及体积的求取.【试题解析】C 由题意,此模型为柱体,底面大小等于主视图面积大小,即几何体体积为211(122)322V π=⋅+⨯⨯⨯,故选C.9. 【命题意图】本题主要考查相离两圆的公切线的相关知识.【试题解析】C 由已知,直线l 满足到原点的距离为1,到点(2的距离为2,满足条件的直线l即为圆221x y +=和圆22(2)(4x y -+=的公切线,因为这两个圆有两条外公切线和一条内公切线. 故选C.10. 【命题意图】本题背景基于经典国学故事,考查图像对函数特点的描述.【试题解析】D 由故事内容不难看出,最终由乌龟先到达终点,故选D. 11. 【命题意图】本题考查双曲线的定义及渐近线的相关知识.【试题解析】B 由已知1a =,18PF = ,则26PF = .又因为120PF PF ⋅=,则1210F F =,即5c =.则渐近线方程为y =±,故选B.12. 【命题意图】本题是考查导数的几何意义,但因为函数隐含在里面,不容易分离出来.【试题解析】A 因为ln(1)+30b a b +-=,则=3ln(1)a b b -+,即3ln(1)y x x =-+因为20d c -=,则2c d =2y x =要求取的表达式的本质就是曲线上的点到直线距离的最小值. 因为132311x y x x +'=-=++,则2y '=,有0x =,0y =,即过原点的切线方程为2y x =. 最短距离为1d ==. 故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.151614. 3 15.16. ])94(1[54nn S -=简答与提示:13. 【命题意图】本题考查二项展开式系数问题.【试题解析】常数项为422456115()()216T C x x =-=.14. 【命题意图】本题考查线性可行域的画法及线性目标函数的最值求法.【试题解析】由已知可得,线性可行域如图所示,则线性目标函数在点3,0()取最小值3. 15. 【命题意图】本题考查三棱锥的外接球问题,特别涉及到了三棱锥和长方体的外接球之间的关系.【试题解析】由已知,可将三棱锥S ABC -放入正方体中,其长宽高分别为2,则到面ABC 距离最大的点应该在过球心且和面ABC 垂直的直径上,因为正方体的外接球直径和正方体的体对角线长相等,则2r =则到面ABC 距离的最大值为222)333r ==(. 16. 【命题意图】本题通过三角形为背景考查归纳推理及数列的相关知识,对学生的逻辑推理能力提出很高要求,是一道较难题.【试题解析】数列{a n }构成以94为首项,以94为公比的等比数列,故])94(1[54n n S -=.三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的化简以及恒等变换公式的应用,还有解三角形的内容,如正弦定理等.【试题解析】(1) 由题可知1()sin 2cos2)2f x x x =+sin(2)3x π=-, 令222232k x k πππππ--+≤≤,k ∈Z ,即函数()f x 的单调递增区间为5[,]1212k k ππππ-+,k ∈Z . (6分)(2) 由()f A =,所以sin(2)3A π-=3A π=或2A π=(舍)又因为3AB AC AD +=,则D 为△ABC 的重心,以AB 、AC 为邻边作平行四边形ABEC ,因为2AD =,所以6AE =,在△ABE 中,AB =120ABE ∠= .=,解得1sin 4AEB ∠=且cos AEB ∠=.因此11sin sin()324BAD AEB π∠=-∠=⋅=(12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1) 由已知,⎩⎨⎧=⨯+⨯+⨯+⨯=+++45515.06001005004.04001003001)0040.0015.0(100b a b a ,即⎩⎨⎧=+=+05.250030045.0)(100b a b a ,有⎩⎨⎧==0035.0001.0b a .(6分) (2)由(1)结合直方图可知当年产量为kg 300时,其年销售额为6000元;当年产量为kg 400时,其年销售额为6000元; 当年产量为kg 500时,其年销售额为7500元; 当年产量为kg 600时,其年销售额为6000元; 则估计年销售额的期望为652515.0600035.075004.060001.06000=⨯+⨯+⨯+⨯(元).(12分)19. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题通过分层设计,考查了线面角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力.)0,0,0(A ,【试题解析】解:(1)如图所示建立空间直角坐标系,由已知)0,0,2(B ,)1,0,0(P ,)0,1,0(D ,)0,1,2(C .令PC PM λ=,因为)1,1,2(-=PC ,所以),,2(λλλ-=PM ,则)1,,2(λλλ-M . 因为ADM BP 面⊥且)1,0,2(-=.所以⎪⎩⎪⎨⎧=⋅+-==⋅0150AD BP λ,则51=λ. 即PM 的长为56.(6分)(2)因为)54,51,52(M ,则)54,51,52(-=,因为面ABP 的一个法向量)0,1,0(=,令MD 与面ABP 成角为θ, 则322516251625454sin =++=θ,故35cos =θ.(12分)ABCDPMyz20. (本小题满分12分)【命题意图】本小题考查椭圆的几何意义以及标准方程,直线和椭圆的位置关系及定值的求法,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)由题意可知两焦点为(与,且26a =,因此椭圆的方程为22196x y +=. (4分)(2) ① 当MN 不与x 轴重合时,设MN的方程为x my =B,2)C -联立椭圆与直线MN 2223180x y x my ⎧+-=⎪⎨=+⎪⎩消去x可得22(23)120m y ++-=,即12y y +=,1221223y y m -=+ 设11(,)M x y ,22(,)N x y则BM:2y x -= ①CN:2y x += ②②-①得4(x =1221212(2)(2)4(my y my y x m y y +--=1212224(y y x my y +=2234(23m x m +=-+43x =则x =x =②当MN 与x 轴重合时,即MN 的方程为0x =,即(3,0)M ,(3,0)N -.即BM:2y x -=① CN:2y x +=- ②联立①和②消去y可得x =.综上BM 与CN的交点在直线x =. (12分) 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,以及函数图像的判定,考查学生解决问题的综合能力.【试题解析】(1) 当2a =时,2()23f x x x =+-()22f x x '=+,则(1)4f '=,又(1)0f =,所以()f x 在1x =处的切线方程为44y x =-,又因为()f x 和()g x 的图像在1x =处的切线相同,2(1ln )()k x g x x-'= 所以(1)4g k '==. (4分)(2) 因为()()()F x f x g x =-有零点所以24ln ()30x F x x ax x=+--= 即324ln 3x x x a x-+=有实根. 令3224ln 34ln 3()x x x x h x x x x x-+==-+342348ln 348ln 3()1x x x x x xh x x x x----'=--= 令3()48ln 3x x x x ϕ=---则28()330x x xϕ'=---<恒成立,而(1)0ϕ=,所以当1x >时,()0x ϕ<,当(0,1)x ∈时,()0x ϕ>. 所以当1x >时,()0h x '<,当(0,1)x ∈时,()0h x '>.故()h x 在(1,)+∞上为减函数,在(1,0)上为增函数,即max (1)2h h ==.当x →+∞时,()h x →-∞,当0x +→时,()h x →-∞.根据函数的大致图像可知2a ≤. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】 (1) 由已知连接DE ,因为ABE AED ∠=∠且BAE ∠公用,所以AEB ADE ∆∆∽即AB AD AE ⋅=2(5分)(2) 因为 AB AD AE ⋅=2,所以16)(42=+=BD AD AD因为CE BC =,所以222AB BC AC +=,即222)(6)64(DB AD ++=+2)(36100DB AD ++=,则8=+BD AD ,故6,2==BD AD , 所以半径是3. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到参数方程与平面直角坐标方程的互化、把曲线的参数方程和曲线的极坐标方程联立求交点等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1) 曲线1C 的普通方程为22(2)1x y -+= (5分)(2) 由已知2:()6C R πθρ=∈,即x y 33=, 因为⎪⎩⎪⎨⎧=+-=1)2(3322y x x y ,有034342=+-x x ,则23,23==y x , 故交点的极坐标为)6,3(π(10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想.【试题解析】 (1) 由于3,(1)()31,(11)3,(1)x x f x x x x x --≥⎧⎪=---<<⎨⎪+≤-⎩,所以max ()(1)2k f x f ==-=.(5分)(2) 由已知22222=++b c a ,有4)()(2222=+++c b b a , 因为ab b a 222≥+(当b a =取等号),bc c b 222≥+(当c b =取等号), 所以)(24)()(2222bc ab c b b a +≥=+++,即2≤+bc ab ,故[]2)(max =+c a b (10分)。