数值分析第五版习题答案清华大学出版社
- 格式:docx
- 大小:1.54 MB
- 文档页数:87
数值分析第五版课后答案2篇数值分析第五版课后答案(一)第一章1.1 机器精度的数值为2^-52 ≈2.22 × 10^-16。
1.2 Example 1.2设f(x) = (1 - cosx)/sinx,则f(0)的分母为0,无法进行数值计算。
1.3 Example 1.3设f(x) = (1 - cosx)/sinx,则f(0)的分子为0,因此有f(0) = 0。
1.4 Example 1.4(a) 将x的值从1.8改为1.799,则f(x)的值由-0.000000000000159为0.000000000000313,差值为0.000000000000472。
(b) 我们有f'(x) = sinx/(1 - cosx) - 1/sin^2x。
将x的值从1.8改为1.799,利用f(x)和f'(x)的值可以得到下面的近似式:f(x + Δx) ≈ f(x) + f'(x)Δx = -0.000000000000159 + 0.449787416887455×0.001 = -0.000000000000137。
与(a)中的结果相近。
1.5 Example 1.5(a) 当x很接近于0时,函数值的符号取决于cosx的符号,其中cosx接近于1。
因此,函数值为正。
(b) 当x很接近于π时,函数值的大小趋于无穷大,因为分母趋向于0,而分子不为0。
1.6 Example 1.6(a) 因为函数在x = 0处是奇函数,所以它的导数为偶函数。
(b) 首先,我们有f''(0) = -2,因此x = 0是最大值。
其次,我们有f''(x) = -2 - 8sin^2x。
由于-f''(x)在x = 0处是正的,我们有当x越接近0时,f''(x)越小,也就意味着函数在x = 0处是严格的最大值。
1.7 Example 1.7(a) 我们有f(x) = x^3 - 2x^2 - 5x + 6,f'(x) =3x^2 - 4x - 5和f''(x) = 6x - 4。
数值分析第五版课后答案(ii )2/(x ) = Imr0.40.50.60.7 0.8 lar一 0.916 291 一 0.693 147 一 0・ 510826-0. 356 675-0.223 144用线性插值及二次插值计算InO. 54的近似值•解 依据插值误差估计式选距离0. 54较近的点为插值节点,并建立差商 表如下:一 0.693 147-0.510 826 - 0.916 291写出Newton 插值多项式M(H ) =- 0.693 147 + 1.823 210Q — 0.5)N2)= M (_r) + (—0.204 115〉(工一0. 5)匕一0・6)计算近似值Ni (0. 54) =一 0.693 147+ 1.823 210(0. 54 — 0. 5) =—0.620 218 6弘(0.54) = N 】(0.54) — 0.204 115(0. 54 - 0.5X0. 54-0.6) =-0.616 8394・设门为互异节点(j = 0.1 ■…山).求证:A(I )三卫(上=0, 1 ■…,Q;n(ii )心一工)铅(门三o 仏=1. 2. •••■" 证明 (i )令fS 』工X 若插值节点为X/7 - 0,1 则/<x )的n次播值多项武为["(工)=工球丿3插值余项为R”(王〉=/(X )— L n (X )= /—(/)(n + 1)!/X—Ti-CkXVZ又因为k < 所以严)(0 = 0,R 心)二 0x 0 = 0. 5 X] = 0. 6工2 = 0. 4二> -0.204 1151.823 2102. 027 325所以丿・0 1 -n L'? /xsr ("卜;(_"“(/〉 r —0 丿•()L ' r / SCOg ( . ) (一 x)k -'x' =(彳一 Qi 三 05.设 /(x) 6 C 2[a, 6]且 /(a) = fib) = 0.求证: max | f(x) £(b —a),max | /z (j) \ a^r^ib .O心疋6证明 令x = a 和工=人以此为插值节点•则插值多项式为Li (工)= /(a) -—; + f(b) Y —- 三 0<2—o b — a应用插值余项公式有y*7(^) (X — a)(.x — 6) Wmax | /(g) I max | (x — a)(x — b) | / Wb a<jfCZ> _(6 — a )2 max | fXx ) | O aM 临 b6.在一 4<x<4上给出r (T )= e 『的等距节点函数表,若用分段二次插值求e 「的近似值,要使截断误差不超过10一&,问使用函数表的步长h 应取多少?解 若插值节点为IT , r 和工沖则分段二次插值多项式的插值余项为式中Ml = Xi — h,工沖=$ +札\R :(r) l^ye 1max | (文—刀_)) (_r —兀)〈工—J7°j )丨 0插值点个数< W 6 得 A < 0.006 5&是奇数,故实际可采用的函数值表步长7•若必=2S 求及解 根据向前差分算子和中心差分算子的定义进行求解£(:)(-】〉1巧” =£(:)(-1)-皿=孑y” = (F? — F~T )°y” = (E"r )*(E — IYy n =「2$% = L (%) = g = 2—8.如果fl 工、是刃次多项式,记= f (j--T-h ) —/(T ).证明/(x )的 &阶差分Nfa )(0W 是rn-k 次多项式,并且A^7(T> = 0(/为正 蔓牧).证明 对加次多项式/(才)应用Taylor 公式有A/(x ) = /(z + A ) —/(j ) = /( J )A H- rr/^x ) + ••• 4- Jf"' (x )Z! 初!即△/(/)为m- 1次的多项式・= △(△/&)),对加一 1 > 0次多项式应用上述推理过程知 △(△/(工))=庄只工)是加一2次的多项式.依此过程递推,知A7<^X0<Xr<r«)为m-k 次多项武. 所以必工)为常数,故 s = 0(/为正整数).9. 证明 A (/*g* ) = /* Ag* 4-A/*.证明 A/igJ = /n-ign-i ~ Ag* = /n-igHi - fkgkn 十/*gi - fkgk = gtrl (人+1 — 人> + fk(g^l 一创)=g 屮+ 介厶®15.证明两点三次Hermite 摘值余项是尺3(刃='‘4 ;目(工—九)'(H —)?, E €(N ,才屮)并由此求出分段三次Henniw 猶值的课差限・证明 若工W [工―文屮]・且插值多项式满足条件円3 {竝)=/(竝几 H3(X H -1)=产(工屮)H ; ( Z* ) = f (x> ) * H3' (J T H -I )=(.r*41)1 4-(- 4) 十 0. 006 581 268 冬 1 217 旦 N4 —(—4) F T8T2162 0. 006 579知插值余项RQ) = /(文)一耳(工> 有二重零点g和文卄故设R(攵)=以文)0 —比)?(文一攵申〃确定函数恥才几当JC = X*或工屮时來工)取任何有限值均可I当才H忑,J•屮时“&(仏°文屮),构造关于变量t的函数g(r) == /([)—丹3(『)一总(才)(〔一=*)2((— X*+l )2 显然有g(文▲)= 0. g(i?) = 0. ) = og'(r*.〉= 0, £心屮)=0在S ,工]和Dr, z*+l J上对g(T)使用Rolle定理,存在® €(无,才〉及少W (w, x*-ti)使得&'(》)=0, g'(%)= 0在a ,巾),Cyl *罪),<72« x*+i)上对g'(=)使用Rolle定理,存在供| € 5,巾),巾?€(6,%)和阻屮6(%,XHI)使得g"(知)=g"(?!2)= g"(少.屮)=0再依次对g(0和g"(“使用Rolle定理,知至少存在(比,工屮)使得gW(E)=而g⑷⑺=一虹小4!,将"弋入•得到£€5 •工屮)推导过程表明W依赖于工点,及=•综合以上过程可知R(T)= “(&(a■一忑)2(工一卫^)2下面建立分段三次Hermite插值的谋差限.记h (小为/Cr)在[a,刃上的基于等距节点的分段三次Hermite插值函数.x k = a+kh 4 = 0, !••• ♦ n), h = b — a■n在小区间[去,/小]上有I /(x)— /A<x)| —右 | 严(£)|(X— X*)-(X— XH-1)2 <7f max \尸4)(力))max (_r —业)?(工一z屮尸而最值0 才=十妙 ]max (工一及)■(工一 z>+! 「L l 「• , maxs"(5 ― l )2h 4 = r k n<<<! 16进而得误差估计1 /(文)-越空简|八(如】6・求一个次数不离于4次的多项式PCr 〉•使它满足P(0) = P(0) = 0, P(l) =P71) = HP(2) = 1.解法一 利用Hermite 插值可得到次数不高于4的多项式几== 1;为==打 W f > = 0 •加I = 1H 3(X )=(才)+ /(文)◎(才)=(1 一 2 三「卫■)(才二空)2 =(1 + 2刃1)2氐—XI 竝一 4G&) = (1-2 J ~-r| )( - )2 = (3 — 2&)疋Jj —竝 XI — To仇(工)=兀(工一 1)?向=(工一 1)JT 2所以Hj (2) = (3 — 2x )x 2 + (1* — 1 )J -? =— T 3 + 2z~设 = H 3(X )4-A (T -^)2(J —T ))2,其中・A 为待定常数,令 F (2)=1得于是P3十一尸这样可写岀Newton 插值公式P (x ) = 0 + 0(乂一0)十 1(工一0)? — 1(広一0)?(工一 1) +— 0)'($ — l )? =— 1) + 4-工?(&一 1)?=解法二(带重节点的Newton 插值法)建立如下差商表:-124 4J-x 2 (r ~ 3): 417 •设f (.C 二厂丄g 在一 5€工€5上取"=10•按等矩节点求分施线1 f JT性插值函数ha )・计算各节点间中点处Z A (J -)与/(x >的值,并佑计课差.解 若 = 5,r lc = 5,则步长 A = ------------- ---- -- -- = I =— 5+ ih = — 5 +n2(ow?w 10).在区间Cx-上•分段线性插值瓯数为/1°(X )= /(X,)工汁】一広+工一 rTT7T F+不分段线性插值函数定义如下:各节点间中点处函数值及插值函数值如下所示:估计谋差:在区间[乙,刀+门上lf (jr )—击厂(。
李庆扬数值分析第五版习题答案清华大学出版社Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少解:球体体积为343V R π= 则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈ 6.设028Y =,按递推公式1n n Y Y -=(n=1,2,…) 计算到100Y27.982≈(5位有效数字),试问计算100Y 将有多大误差解:1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =,若取27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
第1章绪论内容提要#〜误差度量1数值分析研究两类误差:舍入误差和截断误差,由于计算机字长的有限性,对相关数据进行存储表示时便产生舍入误差,计算机必须在有限的时间内得到运行结果,于是无穷的运算过程必须截断为有限过程,由此产生截断误差,2,误差的度量分式有:绝对误差(限)、相对误差(限〗和有效数字,设?是真值工的一个近似,绝对误差为一:!相对误差为& ,绝对误差限〉和相对误X X差限6^ 〉分别是〉 |和^(:^ ^|的上限,3^对于非零近似值^的如下规格化标准形式X^ ^ 10^ X0#!1X2'&X&,&!' ?X I ^0 〈1. 1〉如果存在尽可能大的&,使得〉| & ^乂10"-",则称?有"位有效数字.进而当&^》时,称X,是有效数.4,有效数字和相对误差的关系定理1. 1 如果形如式〈1. V的有&位有效数字,则定理1.2如果形如式〈1. 0的:^的相对误差满足^|《"二" X化1-"则纟^至少有&位有效数字,二、浮点数系统对于5+ ^ + 2位的浮点数系0表示二进制阶码数值的二进制位数〃表示尾数的二进制位数,其他两位表示阶码和尾数的符号〉,机器数绝对值的范围是2-21〜22'-、实数表示的相对舍入误差限是2-'.当数据的绝对值大于22'-1时,计算机非正常停机,称之为上溢,当非零数据的绝对值小于2-2',用机器零表示,精度损失,称之为下溢,、误差传播如果在运算过程中舍入误差能够得到控制,或者舍入误差的增长不影响产生可靠的结果则纟称该算法是数值稳定的,函数值绝对误差传播公式如下^/(^" 丫) ## /(;:)〉 1 2〉^(/(^" ^-^:》#亡"";二…、^ 〉(丄门)!.^^")〉#| /'(?) |〈1.4〉、数值稳定性不同的教材对数值方法稳定性的定义有所不同,有的要求随计算过程的深入误差不增长,有的则要求误差增长速度不能太快^只要不影响产生具有有效数字的近似值即认为是稳定的,读者应注意教材中的定义.随着学习的深入,会针对各种具体算法给出稳定性的确切定义,^ 2 ^典型例题与解题技巧【例1】求!&的近似值,使其绝对误差限精确到1乂1。
数值分析第一次作业及参考答案1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1),(1)用Lagrange 插值求二次插值多项式。
(2)构造差商表。
(3)用Newton 插值求二次插值多项式。
解:(1)Lagrange 插值基函数为0(1)(2)1()(1)(2)(01)(02)2x x l x x x +-==-+-+-同理 1211()(2),()(1)36l x x x l x x x =-=+故2202151()()(1)(2)(2)(1)23631i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑(2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为0112155(1)[,]4,[,]20(1)12f x x f x x ---==-==-----0124(2)[,,]102f x x x ---==-22()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?解:()40000(),(),[4,4],,,, 1.xk x f x e fx e e x x h x x h x x th t ==≤∈--+=+≤考察点及(3)200044343()()[(()]()[()]3!(1)(1)(1)(1)3!3!2.(4,4).6fR x x x h x x x x ht t tet h th t h e heξξ=----+-+≤+⋅⋅-=≤∈-则436((1)(1)100.006.t t th h--+±<<在点取到极大值令 得3.求2()f x x=在[a,b]上的分段线性插值函数()hI x,并估计误差。