高三上第一次月考--数学理
- 格式:doc
- 大小:175.98 KB
- 文档页数:7
郑州市宇华实验学校2024—2025学年高三上学期第一次月考数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,0,2παβ⎛⎫∈ ⎪⎝⎭,则“1cos()4αβ-<”是“1cos sin 4αβ+<”的( )A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知实数x ,y ,z 满足e ln e y x x y =且1e lne z x z x =,若01y <<,则( )A .x y z >> B .x z y >> C .y z x >>D .y x z >>3.已知函数2||,(),x m x m f x x x m +≤⎧=⎨>⎩,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则实数m 的取值范围是()A .(0,2) B .(,2)(0,2)-∞-C .(2,0)-D .(2,0)(2,)-+∞ 4.定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在棱长为1的正方体1111ABCD A B C D -中,直线BD 与1CB 的距离为( )A .1BC .12D5.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC △的面积为S ,若22cos bc A b c +=+,则sin cos cos A B C=+( )A B .12C D6.已知z 为复数,且||1z =,则|3i |z -的取值范围是()A .[]2,3B .[]3,4C .[]2,4D .4⎡⎤⎣⎦7.若样本空间Ω中的事件123,,A A A 满足()()()()()223113231221,,,4356P A P A A P A P A A P A A =====∣∣∣,则()13P A A =( )A .114 B .17 C .27 D .5288.已知a ,b 均为正实数,若直线y x a =-与曲线ln(2)y x b =+相切,则2a b ab ab ++的最小值是( )A .8 B .9 C .10 D .11二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.下列函数()f x 的最小值为2的是()A .2()21f x x x =--+B .()23()log 210f x x x =++C .()22x x f x -=+D .1()32x f x -=+10.如图,在棱长为的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足13PD PB +=+,则下列结论正确的是( )A .1B D PB ⊥B .直线1B P 与平面11A BC 所成角为定值C .点P 的轨迹的周长为D .三棱锥11P BB C -体积的最大值为11.对于函数3()()ln ,()f x f x x x g x x ==,则下列说法正确的是( )A .()g x 在x =12eB .(2)g g >C .()g x 只有一个零点D .若方程2()kf x x =恰好只有一个实数根,则0k <三、填空题:本大题共3个小题,每小题5分,共15分.12.一批小麦种子的发芽率是0.7,每穴只要有一粒发芽,就不需补种,否则需要补种.则每穴至少种_________粒,才能保证每穴不需补种的概率大于97%.()lg 30.48≈13.已知函数2()2sin cos 0)222xxxf x ωωωω=-+>的最小正周期为T ,若223T ππ<<,且3π是()f x 的一个极值点,则ω=_________.14.过点P 作斜率为k 的直线l 交圆22:8E x y +=于,A B 两点,动点Q 满足||||||||PA QA PB QB =,若对每一个确定的实数k ,记||PQ 的最大值为max d ,则当k 变化时,max d 的最小值为_________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)各项都为整数的数列{}n a 满足272,4a a =-=,前6项依次成等差数列,从第5项起依次成等比数列.(1)求数列{}n a 的通项公式;(2)求出所有的正整数m ,使得1212m m m m m m a a a a a a ++++++=.16.(15分)如图,正方体111ABCD A B C D -.(1)求证:1A B ⊥面1A BC ;(2)若E 为线段1AC 的中点,求平面ABE 与平面BCE 所成锐二面角的大小.17.(15分)书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数x (单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)若年轻人每天阅读时间X 近似地服从正态分布(,100)N μ,其中μ近似为样本平均数x ,求(6494)P X <≤;(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70),[80,90)的年轻人中抽取10人,再从中任选3人进行调查,求抽到每天阅读时间位于[80,90)的人数ξ的分布列和数学期望.附参考数据:若,则①()0.6827P X μδμδ-<≤+=;②(22)0.9545P X μδμδ-<≤+=;③(33)0.9973P X μδμδ-<≤+=.18.(17分)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设不经过点Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为2-,直线AB 是否过定点,若过定点,写出定点坐标.19.(17分)已知函数()ln f x x x =.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)若对于任意1,x e e ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-,求实数a 的取值范围.数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B 【解析】,0,2παβ⎛⎫∈ ⎪⎝⎭,则0cos 1,0sin 1βα<<<<,所以cos()cos cos sin sin cos sin αβαβαβαβ-=+<+,所以由1cos()4αβ-<不能推出1cos sin 4αβ+<,充分性不成立;反之,11cos sin cos()44αβαβ+<⇒-<成立,即必要性成立;,0,2παβ⎛⎫∴∈ ⎪⎝⎭,则“1cos()4αβ-<”是“1cos sin 4αβ+<”的必要不充分条件.故选:B .2.【答案】A【解析】由e ln e y xx y =得ln e ex y x y =,由1e ln e z x z x =得ln e e x z x z -=,因此e ey z y z -=,又01y <<,所以0e e z y z y =-<,又e 0z >,所以0z <,利用01y <<得ln 0e ex y x y =>,又e 0x >,所以ln 0x >,即1x >,所以10x y z >>>>,即x y z >>.故选A .3.【答案】B【解析】分情况讨论,当0m >时,要使()f x b =有三个不同的根,则2|2|020m m m m ⎧>⇒<<⎨>⎩;当0m <时,要使()f x b =有三个不同的根,同理可知,需要2|2|20m m m m ⎧>⇒<-⎨<⎩.当0m =时,两个分段点重合,不可能有三个不同的根,故舍去.所以m 的取值范围是(,2)(0,2)-∞- .故选B .4.【答案】D【解析】设M 为直线BD 上任意一点,过M 作1MN CB ⊥,垂足为N ,可知此时M 到直线1CB 距离最短,设111,DM DB DA DC CN CB DA DA DD λλλμμμμ==+===+ ,1(1)()MN DN DM DC CN DM DC DA DD λμλμ=-=+-=-+-+ ,11CB DA DD =+ ,因为1MN CB ⊥,所以10MN CB ⋅= ,即()11(1)()0DC DA DD DA DD λμλμ⎡⎤-+-+⋅+=⎣⎦ ,所以0μλμ-+=,即=2λμ=,所以1(12)MN DC DA DD μμμ=--+ ,所以||MN === ,所以当13μ=时,||MN,所以直线BD 与1CB.故选:D .5.【答案】D【解析】由22cos bc A b c +=+22sin cos A bc A b c +=+,22cos 2sin 6b c b c A A A bc c b π+⎛⎫+=⇒+=+ ⎪⎝⎭,由于2,2sin 26b c A c b π⎛⎫+≥+≤ ⎪⎝⎭,当且仅当b c c b =,以及62A ππ+=时,等号成立,结合2sin 6b c A c b π⎛⎫+=+ ⎪⎝⎭,因此2sin 26b c A c b π⎛⎫+=+= ⎪⎝⎭,且b c c b =,以及3A π=,故3B C π==,因此sin cos cos A B C ==+故选D .6.【答案】C【解析】因为复数z 满足||1z =,不妨设cos isin ,R z θθθ=+∈,则|3i ||cos i(sin 3)|z θθ-=+-==.因为sin [1,1]θ∈-,所以[2,4],所以|3i |z -的取值范围是[2,4].故选:C .7.【答案】A【解折】因为()()()()()113223231221,,,4356P A P A A P A P A A P A A =====∣∣∣,所以()()()()()2323323P A P A P A A P A P A A =+∣∣()()()()()3233231P A P A A P A PA A =+-∣∣,解得()357P A =,()()31311P A A P A A =-∣∣()()()()()133131111P A A P A P A A P A P A =-=-∣()()()13311P A A P A A P A =∣()()()1133115144714P A P A A P A =-=-⨯=∣.故选:A .8.【答案】C 【解析】由于直线y x a =-与曲线ln(2)y x b =+相切,设切点为(,)m n ,而12y x b '=+,故112ln(2)m b m b m a⎧=⎪+⎨⎪+=-⎩,解得m a =,故21,,a b a b +=均为正实数,故22122(2)16610a b ab a b a b ab b a ba ++⎛⎫=+++=++≥+= ⎪⎝⎭,当且仅当22a b b a =,结合21a b +=,即得13a b ==时等号成立,故2a b ab ab ++的最小值是10,故选:C .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.【答案】BC【解析】对于A,由二次函数性质可知,()f x 无最小值,A 错误;对于B,令22210(1)99t x x x =++=++≥,因为3log y t =单调递增,所以3()log 92f x ≥=,当1x =-时等号成立,所以min ()2f x =,B 正确;对于C,因为20x >,所以1()222x x f x =+≥,当且仅当122x x =,即0x =时,等号成立,所以min ()2f x =,C 正确;对于D,由指数函数性质可知,130x ->,所以1()322x f x -=+>,D 错误.故选:BC .10.【答案】ABD【解析】对于A,连接11B D ,因为四边形1111A B C D 为正方形,则1111A C B D ⊥,因为1DD ⊥平面111111,A B C D A C ⊂平面1111A B C D ,则111A C DD ⊥,因为111111,B D DD D B D = 、1DD ⊂平面11B DD ,所以11A C ⊥平面11B DD ,1B D ⊂平面11B DD ,所以111B D A C ⊥,同理可得11B D A B ⊥,因为1111111,A C A B A A C A B =⊂ 、平面11A BC ,所以1B D ⊥平面11A BC ,因为PB ⊂平面11A BC ,所以1B D PB ⊥,故A 正确;对于C,由A 选项知1B D ⊥平面11A BC ,设1B D 平面11A BC E =,即1B E ⊥平面11,A BC DE ⊥平面11A BC ,因为1111111116,A B BC AC A B BB B C ======,所以三棱锥111B A BC -为正三棱锥,因为1B E ⊥平面11A BC ,则E 与正11A BC △的中心,则12sin 3A BBE π==,所以1B E ==,因为1B D ==所以DE =,因为13PD PB +=+,3=+,3+=+(3=+-,两边平方化简可得0)PE PE =>,因为E 点到等边三角形11A BC 的边的距离为163PE ==,所以点P 的轨迹是在11A BC △内,且以E所以点P 的轨迹的周长为,故C 错误;对于B,由选项C 可知,点P 的轨迹是在11A BC △内,且以E 的圆,EP =1B E =1B E ⊥平面11A BC ,所以1B PE ∠就是直线1B P 与平面11A BC 所成角,所以11tan B E B PE PE ∠===102B PE π<∠<,所以直线1B P 与平面11A BC 所成角为定值,故B 正确;对于D,因为点E 到直线1BC点P 到直线1BC =,故1BPC △的面积的最大值为162⨯=,因为1B E ⊥平面11A BC ,则三棱锥11B BPC -体积的最大值为13⨯=,故D 正确.故选:ABD .11.【答案】AC【解新】对于A ,函数32()ln ()ln ,()f x xf x x xg x x x===,则24312ln 12ln (),0x x xxx g x x x x⨯--'==>,令()0g x '=,即12ln 0x -=,解得x =当0x <<时,()0g x '>,故函数()g x在上为单调递增函数,当x >时,()0g x '<,故函数()g x在)+∞上为单调递减函数,故()g x在x =处取得极大值12eg =,故选项A 正确;对于B,当x >()0g x '<,故函数()g x在)+∞上为单调递减函数,所以(2)g g <,故选项B 错误;对于C,令函数()0g x =,则ln 0x =,解得1x =,所以函数()g x 只有一个零点,故选项C 正确;对于D,易知1x =不是方程的解;当1x ≠时,()0f x ≠,方程2()kf x x =恰好只有一个实数根,等价于y k =和()ln xh x x=只有一个交点,则2ln 1(),0(ln )x h x x x -'=>且1x ≠,令()0h x '=,即ln 10x -=,解得e x =,当e x >时,()0h x '>,故函数()h x 在(e,)+∞上为单调递增函数,当01,1e x x <<<<时,()0h x '<,故函数()h x 在(0,1),(1,e)上均单调递减,1x =是一条渐近线,当01x <<时,()0h x <,当1e x <<时,()0h x >,故()h x 在e x =处取得极小值(e)e h =,结合条件可知k e =或0k <,故选项D 错误;故选:AC.三、填空题:本大题共3个小题,每小题5分,共15分.12.【答案】3【解析】记事件A 为“种一粒种子,发芽”,则()0.7,(0.3P A P A ==设每穴种n 粒,则相当于做了n 次独立重复实验,记事件B 为“每穴至少有一粒发芽”,则00()C 0.7(10.7)0.3,()1()10.3n n n n P B P B P B =-==-=-若保证每穴不需补种的概率大于97%,则10.30.97n ->即0.30.03n <,两边取对数得,lg 0.3lg 0.03n <,即(lg 31)lg 32n -<-又lg 30.48≈,则lg 322.92lg 31n ->≈-,又n 为整数,则每穴至少种3粒,才能保证每穴不需补种的概率大于97%.故答案为:3.13.【答案】72【解析】2()2sincossin 2sin 2223xxxf x x x x ωωωπωωω⎛⎫=-+==+ ⎪⎝⎭所以()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭的最小正周期为2T πω=,于是2223πππω<<,解得34ω<<,因为3π是()f x 的一个极值点,则,Z 332k k πππωπ+=+∈,解得13,2k k Z ω=+∈,所以1k =时,7(3,4)2ω=∈.故答案为:72.14.【答案】2【解析】由题设1348+=<,即P 在圆22:8E x y +=内,令||||P APA PB P Bλ'=='且1λ≠,显然P 是A ,B 内分比点,若P '为外分比点,则||||P APA PB P Bλ'==',此时PP '的中点C 为P ,Q 所在阿氏圆的圆心,对于每一个确定的实数,||k PQ 最大值为max d PP '=,即,Q P '重合时max d 为对应圆直径,根据圆的对称性,如上图,讨论1λ>的情况,而||2OP =,当AB为直径时,max ||3||PA PB λ===+,3=+可得4P B '=-故||PQ 的最大值为max ||2d PP P B PB ''==+=;当AB不为直径时134||AB λ<<+<<,且,||AB λ增减趋势相同,由||P A P B AB P B P Bλ''+=='',得||1AB P B λ'=-,显然||1AB P B λ'=-接近于1时P B '趋向无穷大,此时||PQ 的最大值为max d 趋向无穷大.综上,max d 的最小值是2.故答案为:2.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)【答案】(1)()*54,14N 2,5n n n n a n n --≤≤⎧=∈⎨≥⎩;(2){1,3}【解析】(1)设前6项的公差为d ,所以2151612,4,5a a d a a d a a d =+=-=+=+,所以()()12112445a d a d a d +=-⎧⎪⎨+⨯=+⎪⎩,化简可得(43)(1)0d d --=,所以1d =或34,又因为{}n a 各项均为整数,所以d 为整数,所以1d =,当*14,n n ≤≤∈N 时,2(2)4n a a n d n =+-=-,当*5,N n n ≥∈时,555621,2,121n n n a a a --⎛⎫===⨯= ⎪⎝⎭,综上所述,()*54,14N 2,5n n n n a n n --≤≤⎧=∈⎨≥⎩;(2)当1m =时,1231236,6a a a a a a ++=-=-,满足条件;当2m =时,2342343,0a a a a a a ++=-=,不满足条件;当3m =时,3453450,0a a a a a a ++==,满足条件;当4m =时,4564562,0a a a a a a ++==,不满足条件;当5m ≥时,52n n a -=,若1212m m m m m m a a a a a a ++++++=,则有22111m m m m m m a a a a a a ++++++=,则5311222m m -+-++=,所以28722m -=,所以2727m -=,又因为273m -≥,所以2728m -≥,所以2727m -=无解,综上所述,m 的取值为{1,3}.16.(15分)【答案】(1)证明见解析;(2)3π【解析】(1)因为正方体1111ABCD A B C D -,所以四边形11ABB A 是正方形,所以11AB BA ⊥,又BC ⊥平面111,ABB A AB ⊂平面11ABB A ,所以1BC AB ⊥,又111,,AB BA BA BC ⊥是平面1A BC 内的两条相交直线,所以1AB ⊥面1A BC(2)如图,以A 为原点,以1,,AB AA AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体1111ABCD A B C D -的边长为a ,又E 为线段1AC 的中点,则(0,0,0),(,0,0),(,,0),,,222a a a A B a C a a E ⎛⎫⎪⎝⎭,所以(,0,0),,,,(0,,0),,,222222a a a a a a AB a AE BC a BE ⎛⎫⎛⎫====- ⎪ ⎪⎝⎭⎝⎭,设平面ABE 的法向量为(,,)m x y z =,则0000222ax m AB a a ax y z m AE ⎧=⎧⋅=⎪⎪⇒⎨⎨++=⋅=⎪⎪⎩⎩,令1y =,则0,1x z ==-,所以(0,1,1)m =- ,设平面BCE 的法向量为()111,,n x y z =,11110000222ay n BC a a a x y z n BE ⎧=⎧⋅=⎪⎪⇒⎨⎨-++=⋅=⎪⎪⎩⎩,令1111,0x z y ===,所以(1,0,1)n = ,设平面ABE 与平面BCE 所成锐二面角的大小为θ.所以1cos ||||2m n m n θ⋅== ,又0,2πθ⎛⎫∈ ⎪⎝⎭,所以3πθ=17.(15分)【答案】(1)74;(2)0.8186;(3)分布列见解析;期望为65【解析】(1)根据频率分布直方图得:(550.01650.02750.045850.02950.005)1074x =⨯+⨯+⨯+⨯+⨯⨯=.(2)由题意知~(74,100)X N ,即74,10μσ==,所以0.68270.9545(6494)(2)0.81862P X P X μδμδ+<≤=-<≤+==.(3)由题意可知[50,60),[60,70)和[80,90)的频率之比为:1:2:2,故抽取的10人中[50,60),[60,70)和[80,90)分别为:2人,4人,4人,随机变量ξ的取值可以为0,1,2,3,321664331010C C C 11(0),(1)C 6C 2P P ξξ======,123644331010C C C 31(2),(3)C 10C 30P P ξξ======,故ξ的分布列为:ξ0123P1612310130所以11316()01236210305E ξ=⨯+⨯+⨯+⨯=.18.(17分)【答案】(1)221(2)43x y x +=≠-;(2)直线l 过定点.【解析】(1)设动圆P 的半径为r ,因为动圆P 与圆M 外切,所以||1PM r =+,因为动圆P 于圆N 外切,所以||3PN r =-,则||||(1)(3)4||2PM PN r r MN +=++-=>=,由椭圆的定义可知,曲线C 是以(1,0),(1,0)M N -为左、右焦点,长轴长为4的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则2,1a c ==,故2223b a c =-=,所以曲线C 的方程为221(2)43x y x +=≠-.(2)①当直线l斜率存在时,设直线:,l y kx m m =+≠联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得()()222438430k x kmx m +++-=,则()()222(8)164330km k m ∆=-+->,化简得22430k m -+>.设()()1122,,,A x y B x y ,则()12221228434343km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩.由题意可知,因为2QA QB k k +=-.2==-,所以)1221121220x y x y x x x x +-++=,所以()())1221121220x kx m x kx m x x x x +++++=,即()1212(22)(0k x x m x x ++-+=,()222438(22)(04343m km k m k k -⎛⎫+⋅+⋅-= ⎪++⎝⎭,即()2(1)3(0k m km m +--=,即(1)]0m m k -++=.因为m ≠,所以1)0m k +=,即m =所以直线l的方程为(y kx k x =-=-,所以直线l过定点.②当直线l 斜率不存在时,设直线:(0)l x t t =≠,且(2,2)t ∈-,则点,,A t B t ⎛⎛ ⎝⎝.所以k 2QA QBk k +=+==-,解得t =,所以直线l的方程为x =也过定点.综上所述,直线l过定点.19.(17分)【答案】(1)1y x =-(2)()f x 的单调递增区间是1,e⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫ ⎪⎝⎭(3)1a e ≥-.【解析】(1)因为函数()ln f x x x =,所以1()ln ln 1,(1)ln111f x x x x f x''=+⋅=+=+=.又因为(1)0f =,则切点坐标为(1,0),所以曲线()y f x =在点(1,0)处的切线方程为1y x =-.(2)函数()ln f x x x =定义域为(0,)+∞,由(1)可知,()ln 1f x x '=+.令()0f x '=解得1x e=.()f x 与()f x '在区间(0,)+∞上的情况如下:x10,e ⎛⎫ ⎪⎝⎭1e1,e ⎛⎫+∞ ⎪⎝⎭()f x -0+()f x '↘极小值↗所以,()f x 的单调递增区间是1,e⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫⎪⎝⎭.(3)当1x e e ≤≤时,“()1f x ax ≤-”等价于“1ln a x x≥+”.令22111111()ln ,,,(),,x g x x x e g x x e x e x x x e -⎡⎤⎡⎤'=+∈=-=∈⎢⎥⎢⎥⎣⎦⎣⎦.令()0g x '=解得1x =,当1,1x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在区间1,1e ⎛⎫ ⎪⎝⎭单调递减.当(1,)x e ∈时,()0g x '>,所以()g x 在区间(1,)e 单调递增.而111ln 1 1.5,()ln 1 1.5g e e e g e e e e e⎛⎫=+=->=+=+< ⎪⎝⎭.所以()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为11g e e ⎛⎫=- ⎪⎝⎭.所以当1a e ≥-时,对于任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-.。
大联考2024届高三月考试卷(一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182xx ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.【详解】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3 B.2C.-2D.-3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d =⎧⎨+=⎩即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=-的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.函数sin exx x y =的图象大致为()A.B.C.D.【答案】D 【解析】【分析】分析函数sin exx x y =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项.【详解】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-2【答案】B 【解析】【分析】由题知=1x -为方程220x kx m +-=的一个根,由韦达定理即可得出答案.【详解】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是()A.若2sin 23α=,则21cos 46πα⎛⎫+= ⎪⎝⎭B.函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度得到函数()2sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象C.函数()2sin cos cos 26f x x x x π⎛⎫=+- ⎪⎝⎭的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.()22tan 1tan xf x x =-的最小正周期为2π【答案】AC 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα⎛⎫+⎪⎝⎭,知A 正确;根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确;利用特殊值判断D 错误.【详解】对于A ,21cos 21sin 212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,A 正确;对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π⎛⎫-= ⎪⎝⎭,即()2sin 2g x x =,B 错误;对于C ,()13sin 2cos 2sin 222222226f x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭,则由222262k x k πππππ-+≤+≤+,Z k ∈得:36k x k ππππ-+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C 正确;对于D ,()π002f f ⎛⎫= ⎪⎝⎭,无意义,∴2π不是函数的周期,D 错误.故选:AC.10.如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A -组成,12AB BC AC AA ====,则下列说法正确的是()A.若AD AC ⊥,则1AD A C⊥B.若平面11AC D 与平面ACD 的交线为l ,则AC //l C.三棱柱111ABC A B C -的外接球的表面积为143πD.当该几何体有外接球时,点D 到平面11ACC A 的最大距离为3-【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解.【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC ,但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11AC D ,平面11AC D ⋂平面ACD l =,所以//AC l ,所以B 正确;对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO 的中点为该三棱柱外接球的球心,所以外接球的半径3R ==,所以外接球的表面积为22843R ππ=,所以C 不正确;对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A 的距离为3,点D 到平面11ACC A 的最大距离为33R -=,所以D 正确.故选:BD11.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是()A.a b =是函数()f x 为偶函数的充分不必要条件;B.0a b +=是函数()f x 为奇函数的充要条件;C.如果0ab <,那么()f x 为单调函数;D.如果0ab >,那么函数()f x 存在极值点.【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误;对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>,当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值.若0,0a b <<,当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确.故答案为:BCD.12.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a -⋅-<,则下列选项正确的是()A.{}n a 为递减数列B.202220231S S +<C.2022T 是数列{}Tn 中的最大项D.40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为nT 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a -⋅-<可得:20221a -和20231a -异号,即202220231010a a ->⎧⎨-<⎩或202220231010a a -<⎧⎨->⎩.而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1.对于A :公比202320221a q a =<,因为11a >,所以11n n a a q -=为减函数,所以{}n a 为递减数列.故A 正确;对于B :因为20231a <,所以2023202320221a S S =-<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确;对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ⨯=()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(3,1)a b λ=-=,若()a b b +⊥ ,则a = ______.【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=-= ,可得(1,1)a b λ+=+,又因为()a b b +⊥,可得()(1,1)(3,1)310b b a λλ=+⋅=++=⋅+ ,解得4λ=-,所以(2,4)a =--,所以a ==故答案为:14.已知函数51,2()24,2xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,则函数()()g x f x =-的零点个数为______.【答案】3【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =,可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点,故答案为:3.15.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【答案】4【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D -中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边长为2,所以其面积为26424S ⎛⎫=⨯= ⎪ ⎪⎝⎭.故答案为:4.16.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y '',则20n n n y y ='=∑______.(参考数据:取221.18.14=.)【答案】914【解析】【分析】根据题意可得1, 1.1n n n y n y '=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y '=+=,则()202011920011.111.12 1.120 1.1211.1n n n n n y y n =='=+=⨯+⨯++⨯+⨯∑∑L ,可得2012202101.111.12 1.120 1.1211.1nn n yy ='⨯=⨯+⨯++⨯+⨯∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =-'-⨯=+++-⨯=-⨯-∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1-+⨯⨯++====----,所以20914nn n yy ='=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.【答案】(1)证明见解析(2)11【解析】【分析】(1)利用线面平行的判定定理证明;(2)利用等体积法求解.【小问1详解】连接1BC 交1B C 于点N ,连接MN ,则有N 为1BC 的中点,M 为AB 的中点,所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM ,所以1//AC 平面1B CM .【小问2详解】连接1AB ,因为2CA CB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ⋂=,所以CM ⊥平面11ABB A ,又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC是等腰直角三角形,112CM AB MB ====,所以1112222CMB S CM MB =⋅=△,1111222ACM ACB S S CA CB ==⨯⋅=△△,设点A 到平面1B CM 的距离为d ,因为11A B CM B ACM V V --=,所以111133B CM ACM S d S AA ⨯⨯=⨯⨯ ,所以1132211ACM B CM S AA d S ⨯== .18.记锐角ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin()sin()cos cos A B A C B C--=.(1)求证:B C =;(2)若sin 1a C =,求2211a b+的最大值.【答案】(1)见解析;(2)2516.【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12b a C R A b A R === ,然后等量代换出2211a b+,再运用降次公式化简,结合内角取值范围即可求解.【小问1详解】证明:由题知sin()sin()cos cos A B A C B C--=,所以sin()cos sin()cos A B C A C B -=-,所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=-,所以cos sin cos cos sin cos A B C A C B =因为A 为锐角,即cos 0A ≠,所以sin cos sin cos B C C B =,所以tan tan =B C ,所以B C =.【小问2详解】由(1)知:B C =,所以sin sin B C =,因为sin 1a C =,所以1sin C a=,因为由正弦定理得:2sin ,sin 2b a R A B R==,所以sin 2sin sin 12ba C R Ab A R===,所以1sin A b=,因为2A B C C ππ=--=-,所以1sin sin 2A C b==,所以222211sin sin 2a bC C +=+221cos 2(1cos 2)213cos 2cos 222CC C C -=+-=--+因为ABC 是锐角三角形,且B C =,所以42C ππ<<,所以22C ππ<<,所以1cos 20C -<<,当1cos 24C =-时,2211a b+取最大值为2516,所以2211a b+最大值为:2516.19.甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算.【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立,由题意得:()1111233P A ⎛⎫=⨯-= ⎪⎝⎭,()1111224P B ⎛⎫=⨯-= ⎪⎝⎭,甲的得分X 的可能取值为1,0,1-,()()()()11111346P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭()()()()11111344P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭,所以X 的分布列为:X 1-01p1671214()1711101612412E X =-⨯+⨯+⨯=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ⎛⎫== ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C 4632P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P ⎛⎫=⨯⨯= ⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20.已知数列{}n a 中,10a =,()12n n a a n n N*+=+∈.(1)令11n n n b a a +=-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(1)证明见解析;(2)3n =.【解析】【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +-+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c --=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=,11n n n b a a +=-+ ,则12112b a a =-+=,则()()()111112211212n n n n n n n n b a a a n a n a a b ++--=-+=+-+-+=-+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b -=⨯=;(2)由(1)可知,2nn b =即121n n n a a +-=-,可得2123211212121n n n a a a a a a ---=-⎧⎪-=-⎪⎨⎪⎪-=-⎩,累加得()()()()1211212222112112n n n n a a n n n ----=+++--=--=--- ,21n n a n ∴=--.213n n n n c --∴=,()111112112233n n n n n n n c +++++-+---==,11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=,令()212nf n n =+-,则()11232n f n n ++=+-,所以,()()122nf n f n +-=-.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =-<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> .所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n 1-项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n 1-项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1b m k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n N *∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.21.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22.设函数()()2cos 102x f x x x =-+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i i i A g i n n ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =-,证明:1217 (6)n k k k n -+++>-.【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.(2)见解析【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥-≥,结合二倍角的正弦可证:2271162i i k +>-⨯,结合等比数列的求和公式可证题设中的不等式.【小问1详解】()sin f x x x '=-+,设()sin s x x x =-+,则()cos 10s x x '=-+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数,故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥-≥,证明:设()3sin ,06x u x x x x =-+≥,则()2cos 1()02x u x x f x '=-+=≥(不恒为零),故()u x 在[)0,∞+上为增函数,故()()00u x u ≥=即3sin (0)6x x x x ≥-≥恒成立.当*N i ∈时,11111111222sin sin 112222i i i i i i i i g g k ++++⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭⎝⎭==- ⎪⎝⎭-11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++⎛⎫⎛⎫=-=⨯- ⎪ ⎪⎝⎭⎝⎭由(1)可得()2cos 102x x x ≥->,故12311cos 1022i i ++≥->,故111112311112sin 2cos 12sin 2112222i i i i i i ++++++⎡⎤⎛⎫⎛⎫⨯-≥-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦1112213322111112sin121222622i i i i i i i +++++++⎛⎫⎛⎫⎛⎫=⨯-≥-- ⎪ ⎪⎪⨯⎝⎭⎝⎭⎝⎭2222224422117111711111622626262i i i i i +++++⎛⎫⎛⎫=--=-⨯+⨯>-⨯ ⎪⎪⨯⎝⎭⎝⎭,故1214627111...16222n n k k k n -⎛⎫+++>--+++ ⎪⎝⎭ 41111771112411166123414n n n n -⎛⎫- ⎪⎛⎫⎝⎭=--⨯=--⨯ ⎪⎝⎭-771797172184726n n n n =--+⨯>->-.。
数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。
2022-2023学年度第一学期高三年级第一次月考数学(理科)宏志班试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( ) A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.定义在R 上的函数()f x 满足对任意的12x x ,(12x x ≠)恒有11122122()()()()0x f x x f x x f x x f x --+>,若(0)a f =,(1)b f =,(2)c f =,则( ) A .c b a << B .a b c << C .c a b <<D .a c b <<3.下列判断错误..的是( ) A .“22am bm <”是“a b <”的充分不必要条件B .命题“x R ∀∈,3210x x --≤”的否定是“x R ∃∈,3210x x -->”C .若,p q 均为假命题,则p q ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 4.已知22111()x x f x x x++=+,则f (x )等于()A .x 2-x +1,x ≠0 B .2211x x x++,x ≠0C .x 2-x +1,x ≠1D .1+211x x+,x ≠1 5.sin1a =,lgsin1b =,sin110c =,则( ) A .a b c << B .b a c <<C .b c a <<D .c b a <<6.函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关总 分 值: 150分 试题范围:一轮复习第一章一第二章考试时间:120分钟7.函数e e ()x xf x x-+=的图象大致为( )A .B .C .D .8.已知(1)f x -是定义为R 上的奇函数,f (1)=0,且f (x )在[1,0)-上单调递增,在[0,)+∞上单调递减,则不等式()230xf -<的解集为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1)(2,)-∞⋃+∞9.解析数论的创始人狄利克雷在数学领域成就显著,对函数论、位势论和三角级数论都有重要贡献.以他名字命名的狄利克雷函数()1,,0,,x D x x ⎧=⎨⎩为有理数为无理数 以下结论错误的是( ) A .)()21D D <B .函数()y D x =不是周期函数C .()()1D D x =D .函数()y D x =在(),-∞+∞上不是单调函数10.设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1)x ∈-时,2()1f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上是减函数D .方程()lg 0f x x +=仅有6个实数解11.定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .612.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( ) A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
上海理工大附中高三(上)第一次月考数学试卷(理科)一.填空题(每题4分,共56分)1.集合A={x|1≤x≤3},B={x|x≤a},若A∩B=A,则a的取值范围为.2.所有棱长都相等的正三棱锥的侧棱和底面所成角的大小为.3.kx2﹣kx+2>0恒成立,则k的取值范围是.4.已知函数f(x)=log2(x2+1)(x≤0),则f﹣1(2)=.5.设a∈{﹣2,﹣},已知幂函数y=x a为偶函数,且在(0,+∞)上递减,则a的所有可能取值为.6.函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值比最小值大,则a 的值为.7.不等式≥1的解集为.8.已知不等式组的解集是关于x的不等式2x2+ax﹣9<0解集的一个子集,则实数a的取值范围为.9.方程|lgx|+x﹣3=0实数解的个数是.10.一个圆锥的侧面展开图是圆心角为,半径为6cm的扇形,则此圆锥的体积为.11.设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1),,则函数f(x)在(1,2)上的解析式是.12.如图,在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O 到平面ABC的距离是,则B、C两点的球面距离是.13.已知f(x)为定义在R上的奇函数,且当x>0时,f(x)=log x,则不等式f(x)≤2的解集是.14.试用列举法表示集合M={x|x∈R,x>﹣1且∈Z}=.二.选择题(每题4分,共16分)15.“f(0)=0”是“函数f(x)是奇函数”的()A.仅充分条件B.仅必要条件C.充要条件D.非充分非必要条件16.从空间一点出发的三条射线PA,PB,PC均成60°角,则二面角B﹣PA﹣C的大小为()A.B.C.D.17.设定义域为R的函数f(x)=,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为()A.0 B.1 C.﹣1 D.不能确定18.某同学在研究函数f(x)=(x∈R)时,分别给出下面几个结论:①等式f(﹣x)+f(x)=0在x∈R时恒成立;②函数 f (x)的值域为(﹣1,1);③若x1≠x2,则一定有f (x1)≠f (x2);④函数g(x)=f(x)﹣x在R上有三个零点.其中正确结论的序号是()A.①②B.①②③C.①③④D.①②③④三、解答题(10分+12分+12分+12分+16分+16分,共78分)19.已知a,b∈R,求证:a2﹣ab+b2≥0.20.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.21.如图,在正三棱柱ABC﹣A1B1C1中,底面边长为2,异面直线A1B与B1C1所成角的大小为.(1)求侧棱AA1的长.(2)求A1B与平面A1ACC1所成角的大小(结果用反三角函数表示).22.某单位用铁丝制作如图所示框架,框架的下部是边长分别为x、y(单位:米)的矩形,上部是一个半圆形,要求框架所围成的总面积为8m2(1)将y表示成x的函数,并求定义域;(2)问x、y分别为多少时用料最省?(精确到0.001m).23.(16分)设f(x)=为奇函数,a为常数.(1)求a的值;并判断f(x)在区间(1,+∞)上的单调性;(2)若对于区间(3,4)上的每一个x的值,不等式f(x)>恒成立,求实数m的取值范围.24.(16分)已知函数f(x),(x∈D),若同时满足以下条件:①f(x)在D上单调递减或单调递增②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域是[a,b],那么称f(x)(x ∈D)为闭函数.(1)求闭函数f(x)=﹣x3符合条件②的区间[a,b];(2)判断函数y=2x+lgx是不是闭函数?若是请找出区间[a,b];若不是请说明理由;(3)若y=k+是闭函数,求实数k的取值范围.上海理工大附中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一.填空题(每题4分,共56分)1.集合A={x|1≤x≤3},B={x|x≤a},若A∩B=A,则a的取值范围为a≥3.【分析】由A与B的交集为A,得到A为B的子集,根据A与B,求出a的范围即可.解:∵A={x|1≤x≤3},B={x|x≤a},且A∩B=A,∴A⊆B,则a的取值范围为a≥3,故答案为:a≥3.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.所有棱长都相等的正三棱锥的侧棱和底面所成角的大小为arccos.【分析】由所有棱长都相等的正三棱锥,令S在底面ABC上的投影为O,则O 为正三角形ABC的中心,则∠SAO即为侧棱SA与底面ABC所成角,根据等边三角形的性质,求出AO后,解三角形SAO,即可求出答案.解:∵三棱锥S﹣ABC为正三棱锥,∴S在底面ABC上的投影为ABC的中心O连接SO,AO,则∠SAO即为侧棱SA与底面ABC所成角设AB=AC=BC=SA=SB=SC=3∴AO=,在Rt△SAO中,cos∠SAO==∴∠SAO=arccos.故答案为:arccos.【点评】本题考查的知识点是直线与平面所成角,其中根据正三棱锥的几何牲,构造出∠SAO即为侧棱SA与底面ABC所成角,是解答本题的关键.3.kx2﹣kx+2>0恒成立,则k的取值范围是[0,8).【分析】讨论k是否为0,当k不等于0时,根据判别式与系数的关系得到不等式恒成立的等价条件.解:①k=0时,不等式为2>0恒成立,故满足题意;②k≠0时,x∈R时,kx2﹣kx+2>0恒成立,等价于,解得0<k<8;综上x∈R时,kx2﹣kx+2>0恒成立,k的取值范围是0≤k<8;故答案为:[0,8).【点评】本题考查了一元二次不等式恒成立时求参数范围;首先要考虑二次项系数是否为0,然后根据判别式与系数的关系得到关于k的不等式解之.4.已知函数f(x)=log2(x2+1)(x≤0),则f﹣1(2)=﹣.【分析】本题考查的知识点是:原函数的定义域是反函数的值域,只要会这个概念解题较简单,也可以直接求出反函数,再求值!解:f(x)=log2(x2+1)(x≤0),要求f﹣1(2)的值,可以使log2(x2+1)=2,即22=x2+1,解得x=或x=﹣,由x≤0,得出x=﹣f﹣1(2)=﹣【点评】此题提供的解法是最优解,学生还可以根据反函数的定义,求出反函数再代入求值也可以,但是要求注意原函数的定义域!5.设a∈{﹣2,﹣},已知幂函数y=x a为偶函数,且在(0,+∞)上递减,则a的所有可能取值为﹣2,.【分析】先判断偶函数的幂函数,然后判断函数在(0,+∞)上递减的幂函数即可.解:a∈{﹣2,﹣},幂函数y=x a为偶函数,所以a∈{﹣2,,2},即y=x﹣2,y=x2,y=x,在(0,+∞)上递减,有y=x﹣2,y=x,所以a的可能值为:﹣2,.故答案为:﹣2,.【点评】本题考查幂函数的基本性质,函数必须满足两个条件,是解题的关键.6.函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值比最小值大,则a 的值为或.【分析】当a>1时,函数f(x)在区间[1,2]上单调递增,由f(2)﹣f(1)=,解得a的值.当0<a<1时,函数f(x)在区间[1,2]上单调递减,由f (1)﹣f(2)=,解得a的值,综合可得结论.解:由题意可得:∵当a>1时,函数f(x)在区间[1,2]上单调递增,∴f(2)﹣f(1)=a2﹣a=,解得a=0(舍去),或a=.∵当0<a<1时,函数f(x)在区间[1,2]上单调递减,∴f(1)﹣f(2)=a﹣a2=,解得a=0(舍去),或a=.综上可得,a=,或a=.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.7.不等式≥1的解集为{x|} .【分析】由已知得,从而得到或,由此能求出不等式≥1的解集.解:∵≥1,∴﹣1=,∴或,解得.∴不等式≥1的解集为{x|}.故答案为:{x|}.【点评】本题考查不等式的解法,是基础题,解题时要认真审题,注意等价转化思想的合理运用.8.已知不等式组的解集是关于x的不等式2x2+ax﹣9<0解集的一个子集,则实数a的取值范围为(﹣∞,﹣3] .【分析】先解出不等式组的解集,再由题设中的包含关系得出参数a的不等式组解出其范围.解:由即,解得,2<x<3.不等式2x2+ax﹣9<0相应的函数图象开口向上,令f(x)=2x2+ax﹣9,故欲使不等式组的解集是关于x的不等式2x2+ax﹣9<0解集的一个子集,只需,即有即,解得,a≤﹣3.故答案为:(﹣∞,﹣3]【点评】本题考查一元二次不等式的解法以及已知一元二次不等式的解集求参数,综合考查了一元二次函数的图象与性质.9.方程|lgx|+x﹣3=0实数解的个数是2.【分析】方程|lgx|+x﹣3=0的实数解的个数,即函数y=|lgx|与函数y=3﹣x的交点的个数,结合图象得出结论.解:方程|lgx|+x﹣3=0的实数解的个数,即函数y=|lgx|与函数y=3﹣x的交点的个数,如图所示:函数y=|lgx|与函数y=3﹣x的交点的个数为2,故答案为2.【点评】本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题.10.一个圆锥的侧面展开图是圆心角为,半径为6cm的扇形,则此圆锥的体积为cm3.【分析】由于圆锥侧面展开图是一个圆心角为,半径为6cm的扇形,可知圆锥的母线长,底面周长即扇形的弧长,由此可以求圆锥的底面的半径r,求出底面圆的面积,求出圆锥的高,然后代入圆锥的体积公式求出体积.解:∵圆锥侧面展开图是一个圆心角为半径为6cm的扇形∴圆锥的母线长为l=6,底面周长即扇形的弧长为×6=8π,∴底面圆的半径r=4,可得底面圆的面积为π×r2=16π又圆锥的高h===2故圆锥的体积为V=×8π×2=,(cm3).故答案为:cm3.【点评】本题考查弧长公式及旋转体的体积公式,解答此类问题关键是求相关几何量的数据,本题考查了空间想像能力及运用公式计算的能力.11.设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1),,则函数f(x)在(1,2)上的解析式是y=.【分析】设x∈(1,2),则x﹣2∈(﹣1,0),2﹣x∈(0,1),由已知表达式可求得f(2﹣x),再由f(x)为周期为2的偶函数,可得f(x)=f(x﹣2)=f(2﹣x),从而得到答案.解:设x∈(1,2),则x﹣2∈(﹣1,0),2﹣x∈(0,1),所以f(2﹣x)==,又f(x)为周期为2的偶函数,所以f(x)=f(x﹣2)=f(2﹣x)=,即y=,故答案为:y=.【点评】本题考查函数解析式的求解及函数的周期性、奇偶性,考查学生灵活运用所学知识解决问题的能力,属中档题.12.如图,在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O 到平面ABC的距离是,则B、C两点的球面距离是π.【分析】欲求B、C两点的球面距离,即要求出球心角∠BOC,将其置于三角形BOC中解决.【解答】解答:解:∵AC是小圆的直径.所以过球心O作小圆的垂线,垂足O’是AC的中点.O’C=,AC=3 ,∴BC=3,即BC=OB=OC.∴,则B、C两点的球面距离=.故答案为:π.【点评】点评:高考中时常出现与球有关的题目的考查,这类题目具有一定的难度.在球的问题解答时,有时若能通过构造加以转化,往往能化难为易,方便简洁.解有关球面距离的问题,最关键是突出球心,找出数量关系.13.已知f(x)为定义在R上的奇函数,且当x>0时,f(x)=log x,则不等式f(x)≤2的解集是{x|﹣4≤x≤0,或x≥} .【分析】根据奇函数的性质即可得到结论.解:∵f(x)为定义在R上的奇函数,∴f(0)=0,此时满足不等式f(x)≤2,此时x=0,当x>0时,由f(x)=log x≤2,解得x≥,当x<0,﹣x>0,则f(﹣x)=log(﹣x)=﹣f(x),解得f(x)=﹣log(﹣x),x<0,此时由﹣log(﹣x)≤2,即log(﹣x)≥﹣2解得﹣x≤4,即﹣4≤x<0,综上﹣4≤x≤0,或x≥综上不等式的解集为{x|﹣4≤x≤0,或x≥},故答案为:{x|﹣4≤x≤0,或x≥}【点评】本题主要考查不等式的求解,根据减函数的性质求出函数的解析式是解决本题的关键.14.试用列举法表示集合M={x|x∈R,x>﹣1且∈Z}={2﹣,2+,1,,2,} .【分析】根据基本不等式,可求出∈(0,],解方程求出满足条件的x值,可得答案.解:∵x>﹣1,∴≥2,∴=∈(0,],若∈Z,则=1,或=2,或=3,解得:x=2﹣,或x=2+,或x=1,或x=,或x=2,或x=,故M={2﹣,2+,1,,2,},故答案为:{2﹣,2+,1,,2,}【点评】本题考查的知识点是集合表示法,基本不等式,是集合和不等式的综合应用,难度中档.二.选择题(每题4分,共16分)15.“f(0)=0”是“函数f(x)是奇函数”的()A.仅充分条件B.仅必要条件C.充要条件D.非充分非必要条件【分析】函数值等于0,不能判定函数的奇偶性,函数是一个奇函数也不一定使得在x=0处的函数值等于0,有的函数在x=0处没有意义.得到既不充分又不必要条件.解:函数值等于0,不能判定函数的奇偶性,函数是一个奇函数也不一定使得在x=0处的函数值等于0,有的函数在x=0处没有意义,故前者不能推出后者,后者也不能推出前者,故选:D.【点评】本题主要考查了函数奇偶性的判断,以及必要条件、充分条件与充要条件的判断,属于基础题.16.从空间一点出发的三条射线PA,PB,PC均成60°角,则二面角B﹣PA﹣C的大小为()A.B.C.D.【分析】取PA=PB=PC=2,PE=1,连接BE,CE,运用题目的条件得出∠BEC为二面角B﹣PA﹣C的平面角,△BEC中,BE=CE=,BC=2,运用余弦定理求解即可.解:取PA=PB=PC=2,PE=1,连接BE,CE∵∠BPE=∠CPE=60°,∴△PBE≌△PCE,∴BE=CE,根据余弦定理得出:BE=CE=,∴根据勾股定理判断出BE⊥PE,CE⊥PE,∠BEC为二面角B﹣PA﹣C的平面角,∵△BEC中,BE=CE=,BC=2,∴cos∠BEC==,∠BEC=.故选:D.【点评】本题考查的知识点是二面角的平面角及求法,其中求出二面角的平面角转化为三角形中求解是解答本题的关键.17.设定义域为R的函数f(x)=,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为()A.0 B.1 C.﹣1 D.不能确定【分析】作函数f(x)=的图象,从而可得方程x2+bx+c=0有2个不同的实数解1,x1,从而解得.解:作函数f(x)=的图象,∵关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,∴方程x2+bx+c=0有2个不同的实数解1,x1,∴1+x1=﹣b,1•x1=c,故b+c=﹣1﹣x1+x1=﹣1,故选:C.【点评】本题考查了函数方程的转化思想和数形结合的思想应用及根与系数的关系应用,属于中档题.18.某同学在研究函数f(x)=(x∈R)时,分别给出下面几个结论:①等式f(﹣x)+f(x)=0在x∈R时恒成立;②函数 f (x)的值域为(﹣1,1);③若x1≠x2,则一定有f (x1)≠f (x2);④函数g(x)=f(x)﹣x在R上有三个零点.其中正确结论的序号是()A.①②B.①②③C.①③④D.①②③④【分析】可以先研究函数的奇偶性,然后做出函数的图象,据此求解.解:易知函数的定义域为R,且f(﹣x)=﹣f(x),故函数为奇函数.故①正确;当x>0时,f(x)==,该函数在(0,+∞)上递增,且x→0时,f(x)→0;当x→+∞时,f(x)→1.结合奇偶性,作出f(x)的图象如下:易知函数的值域是(﹣1,1),故②正确;结合函数为定义域内的增函数,所以③正确;又x≥0时,g(x)=f(x)﹣x=,令f(x)﹣x=0得x=0,故此时g(x)只有一个零点0,g(x)显然是奇函数,故该函数只有一个零点,所以④错误.故正确的命题是①②③.故选:B.【点评】本题考查了函数的性质.一般先研究定义域,然后判断函数的奇偶性、单调性等性质作为突破口,有一些要结合函数的图象加以分析,注意数形结合的思想的应用.三、解答题(10分+12分+12分+12分+16分+16分,共78分)19.已知a,b∈R,求证:a2﹣ab+b2≥0.【分析】运用配方法可得,a2﹣ab+b2=(a﹣)2+b2,再由非负数的思想,即可得证.【解答】证明:a2﹣ab+b2=a2﹣ab+b2+b2=(a﹣)2+b2,由(a﹣)2≥0,b2≥0,可得(a﹣)2+b2≥0,当a=b=0时,取得等号.即有a2﹣ab+b2≥0.【点评】本题考查不等式的证明,注意运用配方的思想方法,以及非负数的概念,属于基础题.20.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.【分析】先求出集合B,C,需要分类讨论,再根据集合相等即可求出a的值.解:∵A={x|﹣1≤x≤a},(a>﹣1),∴B={y|y=x+1,x∈A}=[0,a+1],当﹣1<a≤1时,C={y|y=x2,x∈A}=[0,1],∵B=C,∴a+1=1,解得a=0;当a>1时,C={y|y=x2,x∈A}=[0,a2],∵B=C,∴a+1=a2,解得a=(舍去),a=;综上所述a的值为0,或.【点评】本题考查了集合相等的应用问题,也考查了解方程的应用问题,是基础题目.21.如图,在正三棱柱ABC﹣A1B1C1中,底面边长为2,异面直线A1B与B1C1所成角的大小为.(1)求侧棱AA1的长.(2)求A1B与平面A1ACC1所成角的大小(结果用反三角函数表示).【分析】(1)设AA1=a,求侧棱AA1的长,需要找到与它有关的方程,由题设条件及图形知,∴∠A1BC就是异面直线A1B与B1C1所成的角,由于此角余弦值已知,且△A1BC的边A1B,A1C的长度都可以用侧棱AA1的长度a表示出来,由此可以利用余弦定理建立关于AA1的方程.(2)作出直线与平面所成角,利用三角形的解法求解角的大小即可.解:(1)∵B1C1∥BC,∴∠A1BC就是异面直线A1B与B1C1所成的角,…设AA1=a,则在△A1BC中,A1B=A1C=,BC=2,…于是cos∠A1BC==,…解得a=4.….所以,侧棱AA1的长为4.…(2)做BO⊥AC于O,连结A1O,几何体是正三棱柱ABC﹣A1B1C1中,底面边长为2,可知AO=1,BO=,并且BO⊥AA1,BO⊥平面A1ACC1,A1B与平面A1ACC1所成角就是∠BA1O,A1O==,A1B与平面A1ACC1所成角的大小为θ,tanθ===,θ=arctan.…【点评】本题考查空间的距离求法,直线与平面所成角的求法,此类题求解时,技巧是转换角度,且点所对的多边形的面积易求,若这些条件不满足,则此法不好用,学习一种典型题的解法,要注意它的适用范围,适时总结.22.某单位用铁丝制作如图所示框架,框架的下部是边长分别为x、y(单位:米)的矩形,上部是一个半圆形,要求框架所围成的总面积为8m2(1)将y表示成x的函数,并求定义域;(2)问x、y分别为多少时用料最省?(精确到0.001m).【分析】(1)通过对xy+•π•=8变形、计算即得结论;(2)通过(1)可知框架用料l=(2+)x+,进而利用基本不等式计算即得结论.解:(1)依题意,xy+•π•=8,整理得:y==﹣•x,定义域为:0<x<;(2)由(1)可知框架用料l=2x+2y+•2π•=2x+2(﹣•x)+•x=(2+)x+≥2=4,当且仅当(2+)x=,即x=时取等号,此时x≈2.397m,y=﹣=≈2.397m,故当x=y≈2.397m时用料最省.【点评】本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.23.(16分)设f(x)=为奇函数,a为常数.(1)求a的值;并判断f(x)在区间(1,+∞)上的单调性;(2)若对于区间(3,4)上的每一个x的值,不等式f(x)>恒成立,求实数m的取值范围.【分析】(1)由奇函数的定义域关于原点对称可求得a值,根据单调性的定义及复合函数单调性的判定方法可判断f(x)的单调性;(2)不等式f(x)>恒成立,等价于f(x)﹣>m恒成立,构造函数g(x)=f(x)﹣,x∈(3,4),转化为求函数g(x)在(3,4)上的最值问题即可解决.解:(1)∵f(x)是奇函数,∴定义域关于原点对称,由,得(x﹣1)(1﹣ax)>0.令(x﹣1)(1﹣ax)=0,得x1=1,x2=,∴=﹣1,解得a=﹣1.令u(x)==1+,设任意x1<x2,且x1,x2∈(1,+∞),则u(x1)﹣u(x2)=,∵1<x1<x2,∴x1﹣1>0,x2﹣1>0,x2﹣x1>0,∴u(x1)﹣u(x2)>0,即u(x1)>u(x2).∴u(x)=1+(x>1)是减函数,又为减函数,∴f(x)=在(1,+∞)上为增函数.(2)由题意知﹣>m,x∈(3,4)时恒成立,令g(x)=﹣,x∈(3,4),由(1)知在[3,4]上为增函数,又﹣在(3,4)上也是增函数,故g(x)在(3,4)上为增函数,∴g(x)的最小值为g(3)=﹣=﹣,∴m≤﹣,故实数m的范围是(﹣∞,﹣].【点评】本题考查函数的单调性、奇偶性及函数恒成立问题,奇偶性、单调性问题常用定义解决,而函数恒成立问题则常转化为最值问题处理.24.(16分)已知函数f(x),(x∈D),若同时满足以下条件:①f(x)在D上单调递减或单调递增②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域是[a,b],那么称f(x)(x ∈D)为闭函数.(1)求闭函数f(x)=﹣x3符合条件②的区间[a,b];(2)判断函数y=2x+lgx是不是闭函数?若是请找出区间[a,b];若不是请说明理由;(3)若y=k+是闭函数,求实数k的取值范围.【分析】(1)由y=﹣x3在R上单减,可得,可求a,b(2)由函数y=2x+lgx在(0,+∞)单调递增可知即,结合对数函数的单调性可判断(3)易知y=k+在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程x=k+至少有两个不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.结合二次方程的实根分布可求k 的范围另解:(1)易知函数f(x)=﹣x3是减函数,则有,可求(2)取特值说明即可,不是闭函数.(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,结合函数的图象可求解:(1)∵y=﹣x3在R上单减,所以区间[a,b]满足解得a=﹣1,b=1(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个交点故不存在满足条件的区间[a,b],函数y=2x+lgx是不是闭函数(3)易知y=k+在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程x=k+至少有两个不同的解即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.∴得,即所求.另解:(1)易知函数f(x)=﹣x3是减函数,则有,解得,(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个根,所以,函数y=2x+lgx是不是闭函(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,令k+则有k=x﹣=,(令t=),如图则直线若有两个交点,则有k.【点评】本题主要考查了函数的单调性的综合应用,方程的解与函数的交点的相互转化关系的应用,综合应用了函数的知识及数形结合思想、转化思想.。
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则(){}{}2230,1,2,3,4A x x x B =-->=∣A B ⋂=A.B.C.D.{}1,2{}1,2,3{}3,4{}42.下列函数在其定义域内单调递增的是()A.B.1y x =-2ln y x=C. D.32y x =e xy x =3.已知等差数列满足,则(){}n a 376432,6a a a a +=-=1a =A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为A ()2:20C y px p =>A A x 4,则( )p =A.1或2 B.2或4 C.2或8 D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“()23f x -[]2,3()f x (),21x A f -B ”是“”的( )x A ∈x B ∈A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x 是奇函数,则的最小值为()()h x ()f x A. B.C.D.e2e7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为()51x ⎫+⎪⎭A. B. C. D.253513238.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径221:220C x y x y +--=x y M N 2C为,且与圆相外切,则的最大值为()1C22C M C N ⋅A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )X ,m n X 20242025Pm nA. B.服从两点分布1m n +=X C.D.()20242025E X <<()D X mn=10.已知函数,下列说法正确的是( )()()214log 21f x ax ax =-+A.的定义域为,当且仅当()f x R 01a <<B.的值域为,当且仅当()f x R 1a C.的最大值为2,当且仅当()f x 1516a =D.有极值,当且仅当()f x 1a <11.设定义在上的可导函数和的导函数分别为和,满足R ()f x ()g x ()f x '()g x ',且为奇函数,则下列说法正确的是()()()()()11,3g x f x f x g x --=''=+()1g x +A.B.的图象关于直线对称()00f =()g x 2x =C.的一个周期是4 D.()f x 20251()0k g k ==∑三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.()0,0(0x y a a =>1)a ≠13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩ 123,,x x x 123x x x <<()()()123f x f x f x ==则的最大值为__________.()()()112233x f x x f x x f x ++四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形n n n a 中实心区域的面积为.nb (1)写出数列和的通项公式;{}n a {}n b (2)设,证明.121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,111A B C ABC -111A B C ABC 为线段的中点,为线段上的点.111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC HBC (1)若点为线段的中点,求证:平面;H BC 1A B ∥1C GH (2)若平面分三棱台所成两部分几何体的体积比为,求二面角1C GH 111A B C ABC -2:5的正弦值.11C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点()2222:10,0x y M a b a b -=>>2222:12x y N m m -=M 的焦距为.()2,2,N (1)分别求和的方程;M N (2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D ,,判断l M ,A B N C ABCD=直线与圆的位置关系.l 222:O x y a +=18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分[)[)[)[)[]0,20,20,40,40,60,60,80,80,100布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠22⨯0.01α=产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;P (ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人P 注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.X ()E X ()P X k =k参考公式:(其中为样本容量)()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++参考数据:α0.1000.0500.0100.005x α2.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.3sin33sin 4sinθθθ=-3cos34cos 3cos θθθ=-根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.()323f x x ax a =-+123,,x x x 123x x x <<(i )求的取值范围;a (ii )若,证明:.1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=2.对于A 选项,的定义域为,该函数在和上单调递增,在定义1y x =-()(),00,∞∞-⋃+(),0∞-()0,∞+域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在2ln y x =()(),00,∞∞-⋃+(),0∞-上单调递增,在定义域内不单调;对于C 选项,的定义域为,该函数在定()0,∞+32y x==[)0,∞+义域上单调递增;对于D 选项,的定义域为,当时,;当e x y x =().1e xy x =+'R (),1x ∞∈--0y '<时,,在上单调递减,在上单调递增,因此该函数在定()1,x ∞∈-+0y '>xe y x ∴=(),1∞--()1,∞-+义域内不单调,故选C.3.,故选B.53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= 4.设点,则整理得,解得或,故选C.()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =5.的定义域为.当时,的定义域为,()23f x - []2,323x ()1233,x f x -∴ []1,3即.令,解得的定义域为,即.[]1,3A =1213x- ()12,21x x f ∴- []1,2[]1,2B =“”是“”的必要不充分条件,故选B.,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x x f x -=+,当且仅当,即时,等号成立,()3e2e xxf x -=+3e 2e x x -=12ln 23x =C.min ()f x ∴=7.设的二项展开式的通项公式为,51x ⎫+⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有3,4,50,2,4k =1,3,5k =理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.223326C C 2C 5+=8.由题,,即圆心为,且,为的221:(1)(1)2C x y -+-=()11,1C()()2,0,0,2M N MN 1C 直径.与相外切,由中线关系,有1C 2C 12C C ∴==,当且()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=仅当时,等号成立,所以的最大值为20,故选A.22C M C N=22C M C N⋅二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 对于D 选项,令,则服从两点分布,,2024Y X =-Y ()()1D Y n n mn=-=,正确,故选ACD.()()()2024D X D Y D Y mn∴=+==10.令,对于A 选项,的定义域为或()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R ,故A 错误;对于B 选项,的值域为在定义域内的值域为0,01Δ0a a >⎧⇔<⎨<⎩ ()f x ()g x ⇔R ,故B 正确;对于C 选项,的最大值为在定义域内的最小值()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩ ()f x ()2g x ⇔为,故C 正确;对于D 选项,有极值在定义域内有极值()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔且,故D 选项错误,故选BC.()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠11.对于A 选项,因为为奇函数,所以,又由,可得()1g x +()10g =()()11g x f x --=,故A 错误;对于B 选项,由可得()()()101,01g f f -==-()()3f x g x '=+'为常数,又由,可得,则()()3,f x g x C C=++()()11g x f x --=()()11g x f x --=,令,得,所以,所以()()131g x g x C --+-=1x =-()()221g g C --=1C =-的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,()()()13,g x g x g x -=+2x =()1g x +所以,所以,所以()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=是一个周期为4的周期函数,,()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以()f x ()1g x +,又,又是周期为4的周期函数,所以()()()()10,204g g g g ==-=-()()310g g ==()g x ,故D 正确,故选BCD.20251()(1)0k g k g ===∑三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案e14433e 6-【解析】12.设切点坐标为切线方程为.将代入得,可得(),,ln ,txt a y a a ='∴ ln xy a a x =⋅(),tt a ln t ta a t a ⋅=切点纵坐标为.1log e,ln a t a ==∴elog e t a a a==13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其22A 13C 余元素共有种排法,故共有种不同的方案.44A 214234A C A 144⋅⋅=14.设,由的函数图象知,,又,()()()123f x f x f x t===()f x 23t < 1232,ln x x x t +=-=.令()()()3112233e ,2e t tx x f x x f x x f x t t =∴++=-+在上单调递增,则()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴ (]2,3,的最大值为.()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;{}n a 11133n n n a --=⨯=数列是首项为1,公比为的等比数列,因此,.{}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭(2)证明:由(1)可得1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-因为,2114314411334n n n nn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦所以,所以.413n n c a <43n n na c a < 16.(本小题满分15分)(1)证明:如图1,连接,设,连接,1A C 11A C C G O⋂=1,HO A G三棱台,则,又,111A B C ABC -11A C ∥AC 122CG AC ==四边形为平行四边形,∴11A C CG 则.1CO OA =点是的中点,H BC .1BA ∴∥OH 又平面平面,OH ⊂11,C HG A B ⊄1C HG 平面.1A B ∴∥1C HG (2)解:因为平面分三棱台所成两部分几何体的体积比为,1C GH 111A B C ABC -2:5所以,11127C GHC AB V V B C ABC-=-即,()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅++⋅ 化简得,12GHC ABC S S =此时点与点重合.H B ,1190C CA BCC ∠∠== 且都在平面,则平面,11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC 又为等腰直角三角形,则.ABC BG AC ⊥又由(1)知,则平面,1A G ∥1CC 1A G ⊥ABC 建立如图2所示的坐标系,G xyz -则,()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --设平面的法向量,1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 则令,解得,220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 设平面的法向量,1B GH ()()1,,,1,1,2m a b c GB ==- 则令,解得.20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 设二面角的平面角为,11C GH B --θ,cos cos ,m n m n m n θ⋅=<>=== 所以,sin θ==所以二面角.11C GH B --17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为N =解得,即双曲线.21m =22:12y N x -=因为双曲线与双曲线的离心率相同,M N 不妨设双曲线的方程为,M 222y x λ-=因为双曲线经过点,所以,解得,M ()2,242λ-=2λ=则双曲线的方程为.M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为l l ,()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+联立消去并整理得22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=此时可得,()()222222Δ44220,20,2k t k t t k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <当时,由韦达定理得;2λ=212122224,22kt t x x x x k k --+==--当时,由韦达定理得,1λ=234342222,22kt t x x x x k k --+==--则,ABCD====化简可得,222t k +=由(1)可知圆,22:2O x y +=则圆心到直线的距离,Ol d ====所以直线与圆相切或相交.l O 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);[)0,200.00252020010⨯⨯=在)内有(只);[20,400.006252020025⨯⨯=在)内有(只);[40,600.008752020035⨯⨯=在)内有(只);[60,800.025********⨯⨯=在内有(只)[]80,1000.00752020030⨯⨯=由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),10253570++=所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.0H 根据列联表中数据,得.220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.0.01α=(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”A =B =,事件“小白鼠注射2次疫苗后产生抗体”.C =记事件发生的概率分别为,则,,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====.()1P C =-()()10.20.50.9P A P B =-⨯=所以一只小白鼠注射2次疫苗后产生抗体的概率.0.9P =(ii )由题意,知随机变量,()100,0.9X B ~所以.()1000.990E X np ==⨯=又,设时,最大,()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =所以00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩解得,因为是整数,所以.089.990.9k 0k 090k =19.(本小题满分17分)(1)若选①,证明如下:()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-若选②,证明如下:()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--.()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,()233f x x a =-'当时,恒成立,所以在上单调递增,至多有一个零点;0a ()0f x ' ()f x (),∞∞-+当时,令,得;令,得0a >()0f x '=x =()0f x '<x <<令,得()0f x '>x <x>所以在上单调递减,在上单调递增.()f x ((),,∞∞-+有三个零点,则即解得,()fx (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<当时,,04a <<4a +>且,()()()()32224(4)3445160f a a a a a a a a a+=+-++=++++>所以在上有唯一一个零点,()fx )4a +同理()2220,g a -<-=-=-<所以在上有唯一一个零点.()f x (-又在上有唯一一个零点,所以有三个零点,()f x (()f x 综上可知的取值范围为.a ()0,4(ii )证明:设,()()()()321233f x x ax a x x x x x x =-+=---则.()212301f a x x x ==-=又,所以.04a <<1a =此时,()()()()210,130,110,230f f f f -=-<-=>=-<=>方程的三个根均在内,3310x x -+=()2,2-方程变形为,3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭令,则由三倍角公式.ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=因为,所以.3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==所以222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。
2024-2025学年福建省福州市高新一中高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x ∈Z|x(x−3)<0},B ={−1,2,3},则A ∩B =( )A. {2}B. {2,3}C. {−1,1,2,3}D. ⌀2.已知α∈(π2,π),sinα=35,则tan (α+π4)=( )A. −17B. 7C. 17D. −73.“lna >lnb ”是“ a >b ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数f(x)=xcosxe |x|−1的图象大致为( )A. B.C. D.5.实数x ,y 满足2x +y =−1,x >0,则x−yx 的最小值为( )A. 1B. 2C. 3D. 46.已知函数f(x)=log 0.5(x 2−ax +3a)在(2,+∞)上单调递减,则实数a 的取值范围( )A. (−∞,4]B. [4,+∞)C. [−4,4]D. (−4,4]7.已知定义域为R 的函数f(x),其导函数为f′(x),且满足f′(x)−f(x)<0,f(0)=1,则( )A. ef(−1)<1B. f(1)>eC. f(12)<eD. f(1)>e f(12)8.已知f(x)={|ln (−x)|,x <0x 2−4x +5,x ≥1,若方程f(x)=m(m ∈R)有四个不同的实数根x 1,x 2,x 3,x 4,则x 1⋅x 2⋅x 3⋅x 4的取值范围是( )A. (3,4)B. (2,4)C. [0,4)D. [3,4)二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.下列选项中,与sin5π6的值相等的是( )A. cos2π3B. cos18°cos42°−sin18°sin42°C. 2sin15°sin75°D. tan30°+tan15°1−tan30∘tan15∘10.已知a>0,b>0,a+2b=1,下列结论正确的是( )A. 1a +2b的最小值为9 B. a2+b2的最小值为15C. log2a+log2b的最小值为−3D. 2a+4b的最小值为2211.设函数f(x)与其导函数f′(x)的定义域均为R,且f′(x+2)为偶函数,f(1+x)−f(1−x)=0,则( )A. f′(1+x)=f′(1−x)B. f′(3)=0C. f′(2025)=0D. f(2+x)+f(2−x)=2f(2)三、填空题:本题共3小题,每小题5分,共15分。
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
广东省实验中学高三第一次月考(数学理)一、选择题(本答题共8小题,每小题5分,满分40分在每小题.给出的四个选项中,只有一项是符合题目要求的)1、如图所示的韦恩图中,A ,B 是非空集合,定义集合A #B 为阴影部分表示的集合.若x,y ∈R,A={x|y=22x x -},B={y|y=3x ,x>0},则A #B=( )A {x|0<x<2}B {x|1<x ≤2}C {x|0≤x ≤1或x ≥2}D {x|0≤x ≤1或x>2}2、集合{,},{1,0,1}A a b B ==-,从A 到B 的映射f A→B 满足()()0f a f b +=,那么这样的映射f A→B 的个数有( ) A .2个B .3个C .5个D .8个3、对某种产品市场产销量情况如图所示,其中:L 1表示产品各年年产量的变化规律;L 2表示产品各年的销售情况。
下列叙述:(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增。
较合理的是( ).A (1) (2)B (2) (3)C (3) (4)D (1)(4)4.已知非零向量AC AB ,和BC 满足0(=⋅+BC ACAB ,且21=BCBC ACAC ,则△ABC 为( )A.等边三角形B. 等腰非直角三角形C.非等腰三角形D.等腰直角三角形 5.下列四个函数中,在区间(0,41)上为减函数的是( )A xxe y -= B xy )21(-= C y= xlog 2x D 31x y =6.已知()),则9.020101.1(1)(f a x x f =-=,=b )9.0(1.1f ,)9.0(log 1.1f c =的大小关系是( )(A )c b a >> (B ) c a b >>(C ) b c a >> (D ) a b c >>7. 已知定义在R 上的函数f(x)满足f(1-x)=f(1+x),f(4-x)=f(x),且当x ∈[)1,0时f(x)是增函数,且f(x)<1,BAx(年份) L 1L 2 o y(万吨)f(0)=0, 则方程f (x )=|lgx|的解的个数最多可为( ) A.11 B.10 C.9 D.88.给出下列四个函数图像:它们对应的函数表达式分别满足下列性质中的至少一条:①对任意实数x,y 都有f(xy)=f(x)f(y)成立; ②对任意实数x,y 都有)y (f )x (f )y x (f =+成立; ③对任意实数x,y 都有 f(x+y)=f(x)+f(y)成立; ④对任意实数x 都有f(x+2)=f(x+1)-f(x)成立. 则下列对应关系最恰当的是( )A. a 和①,d 和②,c 和③,b 和④B.c 和①,b 和②,a 和③,d 和④C. c 和①,d 和②,a 和③,b 和④D.b 和①,c 和②,a 和③,d 和④二、填空题(本答题共6小题,每小题5分,共30分) 9.已知实数x 满足12121=--xx,则_____1=+xx 10.将函数x y 2log =的图像按平移向量a 平移后得到函数21log 2-=x y 的图像,则该平移向量a=_______.11.若向量b a ,满足:4)2()(-=+⋅-b a b a ,且4,2==b a,则a 与b 的夹角等于_____.12.我们知道,两个互为反函数的函数y=2x 与y=log 2x 的图像关于直线y=x 成轴对称,利用这一性质,若x 1和x 2分别是2x +x+a=0和log 2x+x+a=0的两根,则x 1+x 2的值为直线y=x 与直线y =-x -a 的交点的横坐标的2倍,即x 1+x 2=-a; 由函数y=x 3与函数3x =y 互为反函数,我们可以得出:若方程x 3+x-3=0的根为x 1,方程(x-3)3+x=0的根为x 2,则x 1+x 2=_______. 13.已知一三角形ABC 用斜二测画法画出的直观图是面积为3的正三角形C B A '''(如图),则三角形ABC 中边长与正三角形C B A '''的边长相等的边上的高为_______.14.已知定义在R 上的奇函数)(x f 的图象关于直线1=x 对称,1)1(=-f ,则++)2()1(f f )2009()3(f f ++ 的值为________x o yx o yx o yxo ya b c dy ’ x ’A ’B ’C ’O ’三、解答题(本答题共6小题,满分80分。
2024-2025学年河北省省级联测高三(上)月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={−1,2,3,4},B ={x ∈Z|y =ln (9−x 2)},则A ∩B =( )A. {1,2,3}B. {−1,2}C. {2,3}D. {0,1,2,3,4}2.已知复数z 1=a 2−3a +3i ,z 2=2+(a 2−4a)i ,a ∈R ,若z 1+z 2为纯虚数,则a =( )A. 1或2B. 1C. 2D. 33.已知向量a ,b 满足|a |=2,b =(2,0),且|a +b |=2,则a 在b 上的投影向量的坐标为( )A. (−1,0)B. (1,0)C. (−2,0)D. (2,0)4.已知cos (α+π2)=2cos(α+3π),则sin 2α+12sin2αcos 2α=( )A. −14 B. 34 C. 2D. 65.某中学开展劳动实习,学习制作模具,有一个模具的毛坏直观图如图所示,它是由一个圆柱体与一个半球对接而成的组合体,已知该几何体的下半部分圆柱的轴截面(过圆柱上、下底面圆的圆心连线的平面)ABCD 是面积为16的正方形,则该几何体的体积为( )A. 16π3B. 16πC. 64π3D. 72π6.设S n 为正项等比数列{a n }的前n 项和,3S 2=a 1+2a 3,a 3=8,则数列{a n +2n−1}的前5项和为( )A. 55B. 57C. 87D. 897.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,将函数f(x)的图象先向右平移π4个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数g(x)的图象,若关于x 的方程g(x)−m =0在x ∈[−π12,π6]上有两个不等实根,则实数m 的取值范围为( )A. (−2,2]B. (−2,− 3]C. [ 3,2]D. (− 3, 3]8.已知定义域为R的函数f(x)不是常函数,且满足f(x+y)+f(x−y)=f(x)f(y),f(1)=0,则∑2026i=1f (i)=( )A. −2B. 2C. −2026D. 2026二、多选题:本题共3小题,共18分。
第一次月考数学理试题【新课标Ⅰ版】一、选择题(本大题共12小题,每小题5分,共60分)1、已知集合}1log 0|{4<<=x x A ,}2|{≤=x x B ,则=B C A R ( ) A .(]12, B .)4,2[ C .)4,2( D .)4,1(2、下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =- C .1y x= D .||y x x = 3.如图,阴影部分的面积是( )A .23B .2-3 C.323 D.3534、设()f x 为定义在R 上的奇函数,当0x 时,()32()x f x x a aR , 则(2)f ( )A.-1B.-4C.1D.4 5、下列各组函数中表示同一函数的是( ) A .()f x x = 与()()2g x x =B .()f x x = 与()33g x x =C .()f x x x = 与()()()2200x x g x x x ⎧ >⎪=⎨- <⎪⎩D .()211x f x x -=- 与()()11g x x x =+ ≠6、不等式10x x->成立的一个充分不必要条件是( ) A .10x -<<或1x > B .1x <-或01x << C .1x >- D .1x > 7、奇函数)(x f 满足对任意R x ∈都有,0)()4(=-++x f x f 且,9)1(=f 则)2013()2012()2011(f f f ++的值为( )A.6B.7C.8D.08、已知函数()f x 是定义在区间[22]-,上的偶函数,当[]0,2x ∈时,()f x 是减函数,假如不等式()()1f m f m -<成立,求实数m 的取值范围.( )A .1[1,)2- B .[1]2, C .[]1-,0 D .(11,2-) 9、已知函数⎪⎩⎪⎨⎧≤---=)1()1(,5)(2x >xa x ax x x f 是R 上的增函数,则a 的取值范围是( )A 、3-≤a <0B 、3-≤a ≤2-C 、a ≤2-D 、a <0 10、函数的图象大致是( )A B C D11.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f e C 、(2011)f >2(2009)f e D 、不能确定12.若函数()32f x x ax bx c =+++有极值点12,x x ,且()11f x x =,则关于x 的方程()()()2320f x af x b ++=的不同实根的个数是( )A .3B .4C .5D .6二、填空题(本大题共4小题,每小题5分,共20分) 13、函数1()123xf x x =-++的定义域为 . 14、对任意两个实数12,x x ,定义()11212212,,,,.x x x max x x x x x ≥⎧=⎨<⎩若()22f x x =-,()g x x =-,则()()(),max f x g x 的最小值为 .15、设是定义在上的偶函数,对任意的,都有,且当时,()f x Rx ∈R)2()2(+=-x f x f [2,0]x ∈-,若关于的方程(1)a 在区间内恰有三个不同实根,则实数的取值范围是 .16、定义在R 上的函数f (x )满足f (x )+f (x+5)=16,当x ∈(-1,4]时,f (x )=x 2-2x ,则函数f (x )在[0,2021]上的零点个数是______.三、解答题(本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤.)17、(12分)已知集合}187{2--==x x y x A ,集合)}34ln({2x x y x B --==,集合}322{-<<+=m x m x C .(Ⅰ)设全集R U =,求()U C A B ;(Ⅱ)若(C A)R C =∅,求实数的取值范围.18、(12分)已知()f x 是定义在[—1,1]上的奇函数,且(1)1f =,若m 、[]1,1n ∈-,且0m n +≠ 时有()().0>++nm n f m f (1)推断()f x 在[—1,1]上的单调性,并证明你的结论; (2)解不等式:⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛+1121x f x f ; (3)若()f x ≤122+-at t 对全部x ∈[—1,1],a ∈[—1,1]恒成立,求实数t 的取值范围.19、(12分)对于函数)(x f ,若存在x 0∈R ,使方程00)(x x f =成立,则称x 0为)(x f 的不动点,已知函数2()(1)1f x ax b x b =+++-(a ≠0).(1)当2,1-==b a 时,求函数)(x f 的不动点;(2) 当2,1-==b a 时,求()f x 在,1t t 上的最小值(t)g .(3)若对任意实数b ,函数)(x f 恒有两个相异的不动点,求a 的取值范围;20、(12分)已知函数f(x)=aln x-ax-3(a ∈R). (1)若a=-1,求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g(x)=x 3+x 2·[f '(x)+2m]在区间(t,3)上总不是单调函数,求m 的取值范围; (3)若x 1,x 2∈[1,+∞),比较ln(x 1x 2)与x 1+x 2-2的大小.21、(12分)设函数f(x)=ln x+mx,m ∈R. (Ⅰ)当m=e(e 为自然对数的底数)时,求f(x)的微小值;(Ⅱ)争辩函数g(x)=f '(x)-3x零点的个数; (Ⅲ)若对任意b>a>0,()()f b f a b a<1恒成立,求m 的取值范围.请考生在第22、23、24题中任选择一题作答,假如多做,则按所做的第一部分,做答时请写清题号。
大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈⎥⎝⎦11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.销售量千张经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛..参考公式:()()()1122211ˆˆ,n ni i i ii in ni ii ix x y y x y nx ya y bxx x x nx====---==---∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b +在向量b 上的投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是⎛ ⎝.故选:B8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x ⎛⎫+= ⎪⎝⎭ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2x f x h x =e ,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】⎡⎢⎣【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ⎛ ⎝,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()1cos ,sin 1,02θθλμ⎛=+⎝,整理得1cos sin 2λμθθ+==,解得cos λμθ==,则ππcos cos ,0,33λμθθθθθ⎛⎫⎡⎤+==+=+∈ ⎪⎢⎥⎝⎭⎣⎦,ππ2ππ,,sin 3333θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎥⎣⎦⎝⎭⎦所以λμ⎡+∈⎢⎣.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB的中点时,k λμ=+==,所以λμ⎡+∈⎢⎣故答案为:⎡⎢⎣四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.【答案】(1)2π3C = (2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.【小问2详解】因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.【小问2详解】由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在(1,+∞)上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅====整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111222PQ PE ≥-=-=≥,所以当232ι=时,线段PQ.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b-=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=..同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43259 2.682.76 2.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni i i i i i n n ii i i x x y y x y nx y ay bx x x x nx ====---==---∑∑∑∑.【答案】(1)673220710001200y t =+ (2)433774n n P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.4 2.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a =-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故143)74n n P --=-,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
蒲城中学2024—2025学年上学期高三第一次月考数学注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本试卷命题范围:集合与逻辑、不等式、函数.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 已知集合{}13,5A =,,{}1,2,3B =,则A B = ( )A. {}3 B. {}1,2,5 C. {}1,2,3,5 D. {}1,2,3,4,5【答案】C【解析】【分析】根据并集的知识求得正确答案.【详解】依题意,A B = {}1,2,3,5.故选:C2. 已知命题2024:R,20230x p x x ∀∈+>,则p 的否定是( )A. 2024R,20230x x x ∀∈+≤ B. 2024R,20230x x x ∃∈+<C. 2024R,20230x x x ∃∈+≤ D. 2024R,20230x x x ∃∈+≠【答案】C【解析】【分析】根据全称命题的否定即可得到结果.【详解】先变量词,再否结论,而“202420230x x +>”的否定是“202420230x x +≤”,故p 的否定是:2024R,20230x x x ∃∈+≤.故选:C.3. 不等式304x x+≥-的解集为( )A. []3,4- B. [)3,4-C. ()(),33,∞∞--⋃+ D. (](),34,-∞-+∞ 【答案】B【解析】【分析】转化为一元二次不等式,求出解集.【详解】304x x +≥-等价于()()34040x x x ⎧+-≥⎨-≠⎩,解得[)3,4x ∈-.故选:B4. 函数211x y x -=+-的定义域是( )A. [)4,-+∞ B. ()4,-+∞C. [)()4,00,-+∞ D. [)()4,11,-+∞ 【答案】D【解析】【分析】根据给定条件,利用函数有意义列出不等式组求解即得.【详解】函数211x y x -=-有意义,则4010x x +≥⎧⎨-≠⎩,解得4x ≥-且1x ≠,所以所求定义域为[)()4,11,-+∞ .故选:D5. 函数()21ex x f x +=的大致图象为( )A. B.C. D.【答案】A【解析】【分析】利用导数研究函数的单调性,即可确定.【详解】()()()2222212e (1)e 21210e e e e x xx x x x x x x x x x x f x --+-+--+'===-=-≤恒成立,所以函数()21ex x f x +=在定义域R 上单调递减,且对任意R x ∈,都有210,e 0x x +>>,所以对任意R x ∈,都有()0f x >,所以结合选项可知A 满足,故选:A.6. 已知120232023202212024,log 2022,log 2023a b c ===,则,,a b c 的大小关系是( )A. a b c>> B. b a c >>C. c a b>> D. a c b>>【答案】A【解析】【分析】根据指数函数、对数函数的单调性确定范围即可比较大小.【详解】依题意102023202420241a =>=,2023202320230log 1log 2022log 20231<<<=,202220221log log 102023c =<=,所以a b c >>.故选:A7. 函数()f x =[]1,1-上单调递减,则a 的取值范围为( )A. 1a ≤- B. 1a <- C. 31a -≤≤- D. 31a -<<-【答案】C【解析】【分析】令()272t x ax x =+-,由题意可得()t x 需满足在区间[]1,1-上单调递减,且()min 0t x ≥,由此列出不等式,求得答案.【详解】令()272t x ax x =+-,则()f t =由题意可得()272t x ax x =+-需满足在区间[]1,1-上单调递减,且()min 0t x ≥,而()272t x ax x =+-图象开口向下,对称轴为t a =,故1a ≤-且()1620t a =+≥,即31a -≤≤-,故选:C8. 设0a >,0b >,则下列不等式中不恒成立的是( ).A. 12a a +≥ B. 222(1)a b a b +≥+-C. ≥D. 3322a b ab +≥【答案】D【解析】【详解】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误.详解:332222()()a b ab a b a ab b +-=-+-,a b <<有3322a b ab <+,故D项错误,其余恒成立:1122,a a a a+≥=⇒+≥2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时0a b a b a b a b ---+≥---+=⇒-当a b <0>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在其定义域上既是奇函数又是增函数的是( )A. 1y x = B. e e x xy -=-的C. 3y x = D. 2log y x=【答案】BC【解析】【分析】根据解析式直接判断奇偶性与单调性即可求解.【详解】选项A :1y x =为奇函数不是增函数,选项B :e e x x y -=-,为奇函数和增函数,选项C :3y x =为奇函数和增函数,选项D :2log y x =不是奇函数.故选:BC.10. 下列四个命题中正确的是( )A. 若,a b c d >>,则a d b c->- B. 若22a m a n >,则m n >C. 若110a b <<,则2b ab > D. 若a b >,则11a b a>-【答案】ABC【解析】【分析】根据不等式的性质判断ABC ,举反例排除D ,从而得解.【详解】A.由条件可知,a b >,d c ->-,所以a d b c ->-,故A 正确;B.因为22a m a n >,所以20a >,所以m n >,故B 正确;C.因为110a b<<,所以0b a <<,所以2b ab >,故C 正确;D.因为a b >,取1,0a b ==,则111a b a ==-,故D 错误.故选:ABC11. 下列说法正确的是( )A. “万事俱备,只欠东风”,则“东风”是“赤壁之战东吴打败曹操”的必要不充分条件B. 若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件C. 方程20ax x a ++=有唯一解的充要条件是12a =±D. []x 表示不超过x 的最大整数,x 表示不小于x 的最小整数,则“[]ab =”是“a b ≥”的充要条件【答案】AB【解析】【分析】根据充分条件和必要条件的定义依次判断各选项即可.【详解】对于A ,“东风”是“赤壁之战东吴打败曹操”的必要条件,但不是充分条件,故A 正确;对于B ,若p 是q 的必要不充分条件,则q p ⇒,p q ¿;若p 是r 充要条件,则p r ⇒,r p ⇒;则有q r ⇒,r q ¿,即q 是r 的充分不必要条件,故B 正确;对于C ,当0a =时,方程20ax x a ++=可化为0x =,也满足唯一解的条件,故C 错误;对于D ,依题意,得[]a a ≥,b b ≥,所以“[]a b =”⇒“a b ≥”,即充分性成立;反之不成立,如3.1 1.5≥,[3.1]3=,1.52=,不能推出“[3.1] 1.5=”,即必要性不成立,故D 错误.故选:AB .三、填空题:本大题共3小题,每小题5分,共15分.12. 已知函数()()16log ,2,21,2x x f x f x x ≤⎧=⎨->⎩则(4)f =______.【答案】1【解析】【分析】根据自变量确定代入哪段,结合对数性质计算即可.【详解】因为()()()42342f f f ==,()1612log 24f ==,所以()()4421f f ==.故答案为:113. 若“x ∃∈R ,使得2210x mx -+<”是假命题,则实数m 的取值范围是______.【答案】⎡⎣-【解析】【分析】根据特称命题的定义和一元二次不等式的恒成立问题求解.【详解】因为“x ∃∈R ,使得2210x mx -+<”是假命题,所以“x ∀∈R ,使得2210x mx -+≥”是真命题,所以280m ∆=-≤,解得m ⎡∈-⎣,故答案为: ⎡⎣-.14. 已知函数e ()1x mx f x x =+-是偶函数,则m =__________.【答案】2【解析】【分析】求出f(x)定义域,根据f(x)是偶函数,可取定义域内任意x ,根据f(-x)=f(x)即可求得m 的值.【详解】由e 10x -≠得e ()1x mx f x x =+-的定义域为{}|0x x ≠,则∵e ()1x mx f x x =+-是偶函数,故f(-1)=f(1),即111e 1e 1m m ---+=+--,解得m=2.此时()1(e )e 1e 21x x x x x f x x +=+=--,而()()e (1e 1)x x xf x f x ---+-==-,故()f x 确为偶函数,故m=2.故答案为:2.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 设集合{}52A x x =-<.{}121B x x m =<<+.(1)若A B =∅ ,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数m 的取值范围.【答案】(1)1m ≤;(2)[)3,+∞.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论即可;(2)由题得A 是B 的真子集,根据集合间的基本关系求解即可.【小问1详解】{}{}{}5225237A x x x x x x =-<=-<-<=<<,当B =∅时,121m ≥+,解得0m ≤当B ≠∅时,由A B =∅ 得:0213m m >⎧⎨+≤⎩,解得01m <≤;综上,1m ≤;【小问2详解】由题得,A 是B 的真子集,所以31721m ≥⎧⎨≤+⎩,且等号不同时成立,解得3m ≥,所以实数m 的取值范围为[)3,+∞.16. 已知函数()21x b f x ax +=+,点()1,5A ,()2,4B 是()f x 图象上的两点.(1)求a ,b 的值;(2)求函数()f x 在[]1,3上的最大值和最小值.【答案】(1)18a b =⎧⎨=⎩(2)max ()5f x =,min 7()2f x =【解析】【分析】(1)把图象上的两点代入函数解析式,由方程组求a ,b 的值;(2)定义法求函数单调性,由单调性求最值.【小问1详解】因为点()1,5A ,()2,4B 是()f x 图象上的两点,所以2514421b a b a +⎧=⎪⎪+⎨+⎪=⎪+⎩,解得18a b =⎧⎨=⎩.【小问2详解】设1213x x ≤<≤,则()()()()()2112121212628281111x x x x f x f x x x x x -++-=-=++++,因为1213x x ≤<≤,所以210x x ->,()()12110x x ++>,则()()120f x f x ->,即()()12f x f x >,所以函数()281x f x x +=+在[]1,3上单调递减.故()max ()15f x f ==,()min 7()32f x f ==.17. 已知函数()2109f x x x =-+.(1)求不等式()0f x >的解集;(2)若0x >,不等式()f x ax ≥恒成立,求a 的取值范围.【答案】(1){1x x <或}9x >;(2)(],4-∞-【解析】【分析】(1)直接解不等式21090x x -+>即可;(2)转化问题转化为()9100x a x x +-≥>恒成立,然后利用基本不等式求出910x x +-的最小值即可.【小问1详解】不等式()0f x >,即为21090x x -+>,则有()()190x x -->,解得1x <或9x >,所以不等式()0f x >的解集为{1x x <或}9x >.【小问2详解】不等式()()0f x ax x ≥>,即为2109x x ax -+≥,所以()9100x a x x +-≥>,只需910x x+-的最小值大于或等于a 即可,因为910104x x +-≥-=-,当且仅当9x x =即3x =时取等号.所以910x x+-的最小值为4-,所以4a ≤-,故a 的取值范围是(],4-∞-18. 若定义在R 上的奇函数()f x 满足()()2=f x f x -,当[]0,1x ∈时,()22f x x x =-.(1)求()2024f 值;(2)当[]3,4x ∈时,求函数()f x 的解析式.【答案】(1)0 (2)()268x x f x =-+-的【解析】【分析】(1)根据函数的奇偶性、周期性等知识求得正确答案.(2)根据函数解析式的求法求得正确答案.小问1详解】定义在R 上的奇函数()f x 满足()()2=f x f x -,()()f x f x ∴-=-,()()()2+==f x f x f x --,()()4f x f x ∴+=,即函数()f x 是以4为周期的周期函数()()()2024450600f f f ∴=⨯==.【小问2详解】当[]0,1x ∈时,()22f x x x =-,∴当[]1,0x ∈-时,[]0,1x -∈,()()()22()22f x f x x x x x ⎡⎤=--=----=--⎣⎦,又当[]3,4x ∈时,[]41,0x -∈-,()()()224(4)2468f x f x x x x x ∴=-=----=-+-.19. 已知()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=.(1)求()f x ,()g x ;(2)若方程2()[()]29mf x g x m =++有解,求实数m 的取值范围.【答案】(1)()()22,22x x x xf xg x --=+=- (2)10m ≥【解析】【分析】(1)根据函数的奇偶性列方程组来求得()(),f x g x .(2)利用分离常数法、构造函数法,结合基本不等式求得正确答案【小问1详解】依题意,()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=,所以11()()2()()2x x f x g x f x g x -+⎧-=⎨---=⎩,则11()()2()()2xx f x g x f x g x -+⎧-=⎨+=⎩,解得()()22,22x x x x f x g x --=+=-.【.【小问2详解】若方程2()[()]29mf x g x m =++有解,即()()2222229x x x xm m --+-=++有解,即()()222222722225x x x x x x m ---⎡⎤-=++=++⎣⎦+,对于方程()()2222522x x x x m --⎡⎤-=++⎣⎦+①,当0x =时,方程左边为0,右边为9,所以0x =不是①的解.当0x ≠时,令22x x t -=+,由于222x x -+>=,所以2t >,20t ->,则方程①可化()()()2222429525,22t t t t m t m t t -+-++-=+==--9244102t t =-++≥+=-,当且仅当92,52t t t -==-时等号成立,所以10m ≥.【点睛】方法点睛:对于奇函数,有()()f x f x -=-,对于偶函数,有()()f x f x -=.当题目所给条件中包括奇函数或偶函数时,首先应想到运用上述两个式子来对问题进行求解.求方程有解的问题,可以考虑利用分离参数法来进行求解.为。
2015-2016学年某某省某某市北票高中高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U是自然数集,M={1,2,3,4},N={y|y=2x,x∈M},则如图中的阴影部分表示的集合是( )A.(2,4)B.{2,4} C.{8,16} D.{2,4,8,16}2.已知i是虚数单位,则=( )A.﹣i B.﹣i C.+i D.+i3.命题“∀x∈R,x2﹣2x+4≤0”的否定为( )A.∀x∈R,x2﹣2x+4≥0B.∃x∈R,x2﹣2x+4>0C.∀x∉R,x2﹣2x+4≤0D.∃x∉R,x2﹣2x+4>04.如图所示的程序框图表示求算式“2×3×5×9×17”之值,则判断框内可以填入( )A.k≤10B.k≤16C.k≤22D.k≤345.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=( )A.58 B.88 C.143 D.1766.函数f(x)=ln(x﹣)的图象是( )A.B.C.D.7.如图所示,在一个边长为1的正方形AOBC内,曲y=x2和曲线y=围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.B.C.D.8.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.c>b>a B.b>c>a C.a>b>c D.b>a>c9.已知函数f(x)=sinωx﹣cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于,若将函数y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为( )A.(﹣,0)B.(﹣,) C.(0,)D.(,)10.已知函数则满足不等式f(3﹣x2)<f(2x)的x的取值X围为( )A.(﹣3,﹣)B.(﹣3,0)C.[﹣3,0)D.(﹣3,1)11.已知定义域为R的奇函数f(x)的图象是一条连续不断的曲线,当x∈(1,+∞)时,f′(x)<0;当x∈(0,1)时,f′(x)>0,且f(2)=0,则关于x的不等式(x+1)f(x)>0的解集为( )A.(﹣2,﹣1)∪(0,2)B.(﹣∞,﹣2)∪(0.2)C.(﹣2,0)D.(1,2)12.函数f(x)=2sinπx与函数f(x)=的图象所有交点的横坐标之和为( ) A.8 B.9 C.16 D. 17二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.)13.若的展开式中前三项的系数依次成等差数列,则展开式中x4项的系数为__________.14.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点,若•=1,则BD的长为__________.15.已知a>0,b>0,函数f(x)=x2+(ab﹣a﹣4b)x+ab是偶函数,则f(x)的图象与y 轴交点纵坐标的最小值为__________.16.已知实数x,y满足,且目标函数z=2x+y的最大值为6,最小值为1,其中b≠0,则的值为__________.三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.已知函数f(x)=﹣sin(2x+)+(2+4)sinxcosx﹣2cos2 x+1,x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的单调区间及最大值和最小值.18.△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcos C+csin B.(1)求B;(2)若b=4,求△ABC面积的最大值.19.公车私用、超编配车等现象一直饱受诟病,省机关事务管理局认真贯彻落实党中央、国务院有关公务用车配备使用管理办法,积极推进公务用车制度改革.某机关单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.为配合用车制度对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5,该地区汽车限行规定如下:车尾号0和5 1和6 2和7 3和8 4和9限行日星期一星期二星期三星期四星期五现将汽车日出车频率理解为日出车概率,且A,B两车出车情况相互独立.(1)求该单位在星期一恰好出车一台的概率;(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E (X).20.已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间上[1,+∞)是增函数,某某数a的取值X围;(2)若x=﹣是f(x)的极值点,求f(x)在[﹣1,a]上的最大值和最小值.21.设函数f(x)=ax﹣(a+1)ln(x+1),其中a>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>0时,证明不等式:;(Ⅲ)设f(x)的最小值为g(a),证明不等式:﹣.一、选做题:请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.22.曲线C1的参数方程为(θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ﹣2sinθ)=6.(1)求曲线C2和直线l的普通方程;(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.23.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值X围.2015-2016学年某某省某某市北票高中高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U是自然数集,M={1,2,3,4},N={y|y=2x,x∈M},则如图中的阴影部分表示的集合是( )A.(2,4)B.{2,4} C.{8,16} D.{2,4,8,16}【考点】Venn图表达集合的关系及运算.【专题】集合.【分析】由于M={1,2,3,4},N={y|y=2x,x∈M},可得N={2,4,8,16},又全集U是自然数集,即可得出图中的阴影部分表示的集合=(C U M)∩N.【解答】解:∵M={1,2,3,4},N={y|y=2x,x∈M},∴N={2,4,8,16},又全集U是自然数集,∴图中的阴影部分表示的集合=(C U M)∩N={8,16}.故选:C.【点评】本题考查了指数的运算性质、交集、补集的运算,属于基础题.2.已知i是虚数单位,则=( )A.﹣i B.﹣i C.+i D.+i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数化简即可.【解答】解:化简可得===故选:B【点评】本题考查复数的代数形式的乘除运算,属基础题.3.命题“∀x∈R,x2﹣2x+4≤0”的否定为( )A.∀x∈R,x2﹣2x+4≥0B.∃x∈R,x2﹣2x+4>0C.∀x∉R,x2﹣2x+4≤0D.∃x∉R,x2﹣2x+4>0【考点】全称命题;命题的否定.【专题】计算题.【分析】本题中的命题是一个全称命题,其否定是特称命题,依据全称命题的否定书写形式写出命题的否定即可.【解答】解:∵命题“∀x∈R,x2﹣2x+4≤0”,∴命题的否定是“∃x∈R,x2﹣2x+4>0”故选B.【点评】本题考查命题的否定,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.4.如图所示的程序框图表示求算式“2×3×5×9×17”之值,则判断框内可以填入( )A.k≤10B.k≤16C.k≤22D.k≤34【考点】程序框图.【专题】图表型.【分析】由程序运行的过程看这是一个求几个数的乘积的问题,验算知2×3×5×9×17五个数的积故程序只需运行5次.运行5次后,k值变为33,即可得答案.【解答】解:由题设条件可以看出,此程序是一个求几个数的连乘积的问题,第一次乘入的数是2,由于程序框图表示求算式“2×3×5×9×17”之值,以后所乘的数依次为3,5,9,17,2×3×5×9×17五个数的积故程序只需运行5次,运行5次后,k值变为33,故判断框中应填k<33,或者k≤22.故选C.【点评】本题考查识图的能力,考查根据所给信息给循环结构中判断框填加条件以使程序运行的结果是题目中所给的结果.5.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=( )A.58 B.88 C.143 D.176【考点】等差数列的性质;等差数列的前n项和.【专题】计算题.【分析】根据等差数列的定义和性质得 a1+a11=a4+a8=16,再由S11=运算求得结果.【解答】解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.【点评】本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.6.函数f(x)=ln(x﹣)的图象是( )A.B.C.D.【考点】函数的图象.【专题】计算题;函数的性质及应用.【分析】由x﹣>0,可求得函数f(x)=ln(x﹣)的定义域,可排除A,再从奇偶性上排除D,再利用函数在(1,+∞)的递增性质可排除C,从而可得答案.【解答】解:∵f(x)=ln(x﹣),∴x﹣>0,即=>0,∴x(x+1)(x﹣1)>0,解得﹣1<x<0或x>1,∴函数f(x)=ln(x﹣)的定义域为{x|﹣1<x<0或x>1},故可排除A,D;又f′(x)=>0,∴f(x)在(﹣1,0),(1+∞)上单调递增,可排除C,故选B.【点评】本题考查函数的图象,着重考查函数的奇偶性与单调性,属于中档题.7.如图所示,在一个边长为1的正方形AOBC内,曲y=x2和曲线y=围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.B.C.D.【考点】几何概型;定积分.【专题】计算题.【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式易求解.【解答】解:可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S(Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S(A)==.所以P(A)=.故选C.【点评】本题综合考查了对数的性质,几何概型,及定积分在求面积中的应用,是一道综合性比较强的题目,考生容易在建立直角坐标系中出错,可多参考本题的做法.8.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.c>b>a B.b>c>a C.a>b>c D.b>a>c【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数与对数函数的单调性即可得出.【解答】解:∵a=log20.3<0,b=20.3>1,0<c=0.30.2<1,∴b>c>a.故选:B.【点评】本题考查了指数与对数函数的单调性,属于基础题.9.已知函数f(x)=sinωx﹣cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于,若将函数y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为( )A.(﹣,0)B.(﹣,) C.(0,)D.(,)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由已知可求出函数f(x)的解析式,进而根据函数图象的平移变换法则得到函数y=g (x)的解析式,根据正弦函数的性质分析出函数的单调性后,比照四个答案即可得到结论.【解答】解:∵函数f(x)=sinωx﹣cosωx=2sin(ωx﹣),又∵函数f(x)=sinωx﹣cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于=,故函数的最小正周期T=π,又∵ω>0,∴ω=2,故f(x)=2sin(2x﹣),将函数y=f(x)的图象向左平移个单位可得y=g(x)=2sin[2(x+)﹣]=2sin2x的图象,令+2kπ≤2x≤+2kπ,即+kπ≤x≤+kπ,k∈Z,故函数y=g(x)的减区间为[+kπ,+kπ],k∈Z,当k=0时,区间[,]为函数的一个单调递减区间,又∵(,)⊆[,],故选:D.【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,两角和与差的正弦函数,正弦函数的单调性,熟练掌握正弦型函数的图象性质及变换法则是解答本题的关键,属于中档题.10.已知函数则满足不等式f(3﹣x2)<f(2x)的x的取值X围为( )A.(﹣3,﹣)B.(﹣3,0)C.[﹣3,0)D.(﹣3,1)【考点】函数的图象与图象变化.【专题】函数的性质及应用.【分析】分3﹣x2和2x一正一负、都是负数三种情况,分别求出x的取值X围,再取并集,即得所求.【解答】解:当时,应满足2>x2﹣3+2,此时不等式无解.当时,应满足2<﹣2x+2,解得.当时,应满足3﹣x2>2x,解得.综上可知,x的X围为(﹣3,0),故选B.【点评】本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,属于基础题.11.已知定义域为R的奇函数f(x)的图象是一条连续不断的曲线,当x∈(1,+∞)时,f′(x)<0;当x∈(0,1)时,f′(x)>0,且f(2)=0,则关于x的不等式(x+1)f(x)>0的解集为( )A.(﹣2,﹣1)∪(0,2)B.(﹣∞,﹣2)∪(0.2)C.(﹣2,0)D.(1,2)【考点】利用导数研究函数的单调性.【专题】函数的性质及应用;导数的综合应用.【分析】根据奇函数图象关于原点对称的特点,容易判断函数f(x)在R上的单调性,分别在各个单调区间内解不等式(x+1)f(x)>0,并把0变成f(0),或f(2),f(﹣2),从而根据函数f(x)在单调区间上的单调性解出f(x)>0,或f(x)<0,从而解出原不等式在该区间的解,把原不等式在各个单调区间的解求并集即得原不等式的解.【解答】解:根据奇函数的图象关于原点对称,通过已知条件知道:函数f(x)在(﹣∞,﹣1),(1,+∞)上单调递减;在[﹣1,1]上单调递增;又f(0)=0,f(2)=f(﹣2)=0;∴若﹣1<x<1时:x+1>0,∴由原不等式得f(x)>0=f(0),根据函数f(x)在(﹣1,1)上单调递增得0<x<1;若x≥1,x+1>0,∴由原不等式得f(x)>0=f(2),根据函数f(x)在 [1,+∞)上单调递减得1≤x<2;若x<﹣1,x+1<0,∴由原不等式得f(x)<0=f(﹣2),根据函数f(x)在(﹣∞,﹣1)上单调递减得﹣2<x<﹣1;∴原不等式的解集为:(0,2)∪(﹣2,﹣1).故选:A.【点评】考查奇函数图象的对称性,对称区间上的单调性,根据函数单调性解不等式的方法.12.函数f(x)=2sinπx与函数f(x)=的图象所有交点的横坐标之和为( )A.8 B.9 C.16 D.17【考点】函数的零点与方程根的关系;正弦函数的图象.【专题】函数的性质及应用.【分析】根据函数的对称性,利用数形结合即可得到结论.【解答】解:函数f(x)=关于点(1,0)对称,而f(x)=2sinπx也关于点(1,0)对称,由=2,解得x=9,由=﹣2,解得x=﹣7,作出两个函数的图象,由图象可知两个图象共有17个交点,除(1,0)外,其余16个交点分别关于(1,0)对称,设对称的两个交点的横坐标分别为x1,x2,则x1+x2=2,则所有交点的横坐标之和为2×8+1=17,故选:D【点评】本题主要考查函数零点的应用,根据方程和函数之间的关系,利用数形结合,结合函数的对称性是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.)13.若的展开式中前三项的系数依次成等差数列,则展开式中x4项的系数为7.【考点】二项式定理;等差数列的性质.【专题】计算题.【分析】依题意,+=2×,可求得n,由二项展开式的通项公式即可求得x4项的系数.【解答】解:∵的展开式中前三项的系数依次成等差数列,∴+=2×,即1+=n,解得n=8或n=1(舍).设其二项展开式的通项为T r+1,则T r+1=•x8﹣r••x﹣r=••x8﹣2r,令8﹣2r=4得r=2.∴展开式中x4项的系数为•=28×=7.故答案为:7.【点评】本题考查二项式定理,通过等差数列的性质考查二项展开式的通项公式,考查分析与计算能力,属于中档题.14.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点,若•=1,则BD的长为.【考点】平面向量数量积的运算.【专题】计算题;转化思想;数形结合法;平面向量及应用.【分析】利用向量的三角形法则和平行四边形法则和数量积得运算即可得出【解答】解:如图,∵.∴===1,化简得,,所以=,∵,∴=1+﹣2×=,所以=.故答案为:.【点评】本题考查了平面向量的三角形法则以及利用数量积求线段的长度;熟练掌握向量的三角形法则和平行四边形法则和数量积得运算是解题的关键.15.已知a>0,b>0,函数f(x)=x2+(ab﹣a﹣4b)x+ab是偶函数,则f(x)的图象与y 轴交点纵坐标的最小值为16.【考点】奇偶函数图象的对称性.【专题】计算题;函数的性质及应用.【分析】由题意可知函数的对称轴x=0,从而可得a+4b=ab,a>0,b>0,由基本不等式可得,ab=a+4b可求ab的最小值【解答】解:∵函数f(x)=x2+(ab﹣a﹣4b)x+ab是偶函数∴函数的对称轴x==0∴ab﹣a﹣4b=0∴a+4b=ab,a>0,b>0由基本不等式可得,ab=a+4b(当且仅当a=4b时取等号)∴ab∴ab≥16∵f(x)=x2+ab令x=0可得交点的纵坐标y=ab≥16,即交点的纵坐标的最小值为16故答案为:16【点评】本题综合考查了偶函数的性质的应用及基本不等式在求解最值中的应用,属于知识的简单综合应用16.已知实数x,y满足,且目标函数z=2x+y的最大值为6,最小值为1,其中b≠0,则的值为4.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,即可得到结论.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最小,此时z最小.由,解得,即B(1,﹣1),由,解得,即A(2,2),∵点A,B也在直线ax+by+c=0上,∴,即,两式相减得4b=c,解得=4.故答案为:4.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤.17.已知函数f(x)=﹣sin(2x+)+(2+4)sinxcosx﹣2cos2 x+1,x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的单调区间及最大值和最小值.【考点】两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性得出结论.(2)由条件利用正弦函数的单调性求得f(x)在区间[0,]上的单调区间,再利用定义域和值域求得f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=﹣sin(2x+)+(2+4)sinxcosx﹣2cos2 x+1=﹣sin2xcos﹣cos2xsin+(1+2)sin2x﹣cos2x=2sin2x﹣2cos2x=4sin(2x﹣),故f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,k∈Z,故函数在区间[0,]上的增区间为[0,].由x∈[0,],可得2x﹣∈[﹣,],故当2x﹣=﹣时,函数f(x)=4sin(2x﹣)求得最小值为﹣2;当2x﹣=时,函数f(x)=4sin(2x﹣)求得最大值为4.【点评】本题主要考查三角恒等变换,正弦函数的周期性、单调性,定义域和值域,属于中档题.18.△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcos C+csin B.(1)求B;(2)若b=4,求△ABC面积的最大值.【考点】正弦定理.【专题】解三角形;不等式的解法及应用.【分析】(1)依据正弦定理化简已知可得sinBcosC+cosBsinC=sinBcosC+sinCsinB,可得tanB=1,又0<B<π,即可求B的值.(2)由余弦定理及基本不等式可得:ac≤16+8,根据三角形面积公式即可得解.【解答】解:(1)依据正弦定理得:sinA=sinBcosC+sinCsinB,…∵sinA=sin(B+C),∴si nBcosC+cosBsinC=sinBcosC+sinCsinB,由sinC≠0,化简可得:tanB=1…又0<B<π∴B=.…(2)∵b=4,∴由余弦定理可得:16=a2+c2﹣2accosB=≥2ac﹣,解得:ac≤16+8,∴(16+8)×=4…【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式的应用,考查了三角形内角和定理及两角和的正弦函数公式的应用,熟练掌握和灵活应用相关公式定理是关键,属于基本知识的考查.19.公车私用、超编配车等现象一直饱受诟病,省机关事务管理局认真贯彻落实党中央、国务院有关公务用车配备使用管理办法,积极推进公务用车制度改革.某机关单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.为配合用车制度对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5,该地区汽车限行规定如下:车尾号0和5 1和6 2和7 3和8 4和9限行日星期一星期二星期三星期四星期五现将汽车日出车频率理解为日出车概率,且A,B两车出车情况相互独立.(1)求该单位在星期一恰好出车一台的概率;(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E (X).【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式.【专题】概率与统计.【分析】(1)设A车在星期出车的事件为A i,B车在星期出车的事件为B i,i=1,2,3,4,5.由已知可得P(A i)=0.6,P(B i)=0.5,设该单位在星期一恰好出一台车的事件为C,因为A,B两车是否出车相互独立,且事件,互斥,由此能求出该单位在星期一恰好出一台车的概率.(2)X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列及其数学期望E(X).【解答】解:(1)设A车在星期出车的事件为A i,B车在星期出车的事件为B i,i=1,2,3,4,5.由已知可得P(A i)=0.6,P(B i)=0.5,设该单位在星期一恰好出一台车的事件为C,因为A,B两车是否出车相互独立,且事件,互斥,…所以P(C)=P(+)=P()+P()=0.6×(1﹣0.5)+(1﹣0.6)×0.5=0.5,…所以该单位在星期一恰好出一台车的概率为0.5.…(2)X的可能取值为0,1,2,3,…P(X=0)=P()P()=0.4×0.5×0.4=0.08,P(X=1)=P(C)P()+P()P(A2)=0.5×0.4+0.4×0.5×0.6=0.32,P(X=2)=P(A1B1)P(P+P(C)P(A2)=0.6×0.5×0.4+0.5×0.6=0.42,P(X=3)=P(A1B1)P(A2)=0.6×0.5×0.6=0.18.…所以X的分布列为X 0 1 2 3P 0.08 0.32 0.42 0.18EX=0×0.08+1×0.32+2×0.42+3×0.18=1.7.…【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.20.已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间上[1,+∞)是增函数,某某数a的取值X围;(2)若x=﹣是f(x)的极值点,求f(x)在[﹣1,a]上的最大值和最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(1)f(x)在区间上[1,+∞)是增函数,转化为导函数大于等于0在[1,+∞)恒成立解;(2)根据是f(x)的极值点,求出a的值,然后求在[﹣1,a]上的最大值和最小值.【解答】解:(1)函数f(x)=x3﹣ax2﹣3x,求导得f′(x)=3x2﹣2ax﹣3,f(x)在区间上[1,+∞)是增函数,则f′(x)=3x2﹣2ax﹣3≥0在[1,+∞)恒成立,即在[1,+∞)恒成立,,在[1,+∞)为增函数,则,∴a≤0(2)f′(x)=3x2﹣2ax﹣3,是f(x)的极值点,则,解得a=4,f(x)=x3﹣4x2﹣12,,x,f(x),f′(x)变化如下表:x ﹣1 3 (3,4) 4f′(x)+ 0 ﹣0 +f(x)﹣2 增函数减函数﹣18 增函数﹣12所以,f(x)min=f(3)=﹣18.【点评】本题考查函数的导数的综合应用,考查函数的单调性以及函数的最值的求法,考查计算能力.21.设函数f(x)=ax﹣(a+1)ln(x+1),其中a>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>0时,证明不等式:;(Ⅲ)设f(x)的最小值为g(a),证明不等式:﹣.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【专题】综合题;导数的综合应用.【分析】(Ⅰ)由f(x)=ax﹣(a+1)ln(x+1),其中a>0,知函数f(x)的定义域为(﹣1,+∞),且,由f′(x)=0,得x=.列表讨论,能求出f(x)的单调区间.(Ⅱ)设∅(x)=ln(x+1)﹣,x∈[0,+∞),则∅′(x)==.由此能够证明.(Ⅲ)由(Ⅰ)知,,将代入,得,由此能够证明﹣.【解答】(Ⅰ)解:∵f(x)=ax﹣(a+1)ln(x+1),其中a>0,∴函数f(x)的定义域为(﹣1,+∞),且,由f′(x)=0,得x=.当x变化时,f′(x),f(x)的变化情况如下表:x(﹣1,)(,+∞)f′(x)﹣ 0 +f(x)↓极小值↑由上表知,当x∈(﹣1,)时,f′(x)<0,函数f(x)在(﹣1,)内单调递减;当x∈()时,f′(x)>0,函数f(x)在()内单调递增.∴函数f(x)的增区间是(),减区间是(﹣1,).(Ⅱ)证明:设∅(x)=ln(x+1)﹣,x∈[0,+∞),对∅(x)求导,得∅′(x)==.当x≥0时,∅′(x)≥0,所以∅(x)在[0,+∞)内是增函数.∴∅(x)>∅(0)=0,即ln(x+1)﹣>0,∴.同理可证ln(x+1)<x,∴.(Ⅲ)由(Ⅰ)知,,将代入,得,即1,∴,故﹣.【点评】本题考查函数的单调区间的求法,考查不等式的证明,考查推理论证能力,考查运算推导能力,考查等价转化思想,考查分类讨论思想.解题时要认真审题,仔细解答,注意导数性质的综合应用.一、选做题:请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.22.曲线C1的参数方程为(θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ﹣2sinθ)=6.(1)求曲线C2和直线l的普通方程;(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.【考点】简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(Ⅰ)把C2的参数方程利用同角三角函数的基本关系消去参数,化为直角坐标方程;把直线l的极坐标方程根据x=ρcosθ、y=ρsinθ化为直角坐标方程.(Ⅱ)设点P(2cosθ,sinθ),由点到直线的距离公式得点P到直线l的距离为d=[6+4sin(θ﹣)],根据正弦函数的值域求得点P到直线l的距离的最大值和最小值.【解答】解:(Ⅰ)由题意可得C2的参数方程为(θ为参数),即C2:+=1,直线l:ρ(cosθ﹣2sinθ)=6,化为直角坐标方程为 x﹣2y﹣6=0.(Ⅱ)设点P(2cosθ,sinθ),由点到直线的距离公式得点P到直线l的距离为d==== [6+4sin(θ﹣)].∴≤d≤2,故点P到直线l的距离的最大值为2,最小值为.【点评】题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.23.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值X围.【考点】绝对值不等式的解法;带绝对值的函数.【专题】计算题;压轴题.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值X围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值X围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
安徽省阜阳市汇文中学高三上学期第一次月考(数学理)考试时间:1 总分:150分第Ⅰ卷(选择题,共60分)一、 选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的答案填在题后的括号内1、(1-i)2·i = ( ) A .2-2i B .2+2i C . 2 D .-2 2、设复数ωω++-=1,2321则i = ( )A .ω-B .2ωC .ω1-D .21ω3、的是,则:条件:条件q p x q x p ⌝⌝-<>2,1( )A .充分但不必要条件B .必要但不充分条件C .充分且必要条件D .既不充分也不必要条件4、高三年级有文科、理科共9个备课组,每个人备课组的人数不少于4人,现从这9个备课组中抽出12人,每个备课组至少1人,组成“年级核心组”商议年级的有关事宜,则不同的抽调方案共有:( )A .129种B .148种C .165种D .585种5、从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有: A .140种 B .80种 C .70种 D .35种6、在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2公差为3的等差数列的:( )A .第13项B .第18项C .第11项D .第 7、若nxx )213(32-的展开式中含有常数项(非零),则正整数n 的可能值是:( )A .3B .4C .5D .68、下列求导运算正确的是( )x x x D eC x x B xx x A x x s i n 2)c o s (.l o g 3)3(.2ln 1)(log .11)1(.2322-='='='+='+ 9、函数)2ln()(2--=x x x f 的单调递增区间是( )),和(∞+-+∞---∞2)21,1(.),2(.)21,1(.)1,(.D C B A10、设)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2005x f ( )x D x C x B x A cos .cos .sin .sin .--11、1||x dx ⎰= ( )A .0B .12C .1D .3212、1-⎰= ( )A .πB .2π C .3 D .32二.填空题:(每小4分,共16分)13、4个男生2个女生排成一排,若女生不能排在两端,且又不相邻,则不同的排法数有____________种。
北京市宏志中学高三上学期第一次月考(数学理)班级 姓名 考号 成绩一、选择题(每小题4分,共80分)1.( ) (A)(C)2.设则 ( ) (A) (B) (C) (D) 3.由曲线围成的封闭图形面积为 ( ) (A )(B)(C)(D)4.“”是“”成立的 ( ) (A )充分不必要条件. (B )必要不充分条件. (C )充分条件. (D )既不充分也不必要条件. 5.复数z =在复平面上对应的点位于 ( )(A)第一象限 (B )第二象限 (C )第三象限(D )第四象限6.为了得到函数的图像,只需把函数的图像( )(A )向左平移个长度单位 (B )向右平移个长度单位(C )向左平移个长度单位 (D )向右平移个长度单位7.函数的最小正周期为 ( )A. B.x C.2 D.48.函数(x R ),若f (a )=2,则f (-a )的值为 ( ) A.3B.0C.-1D.-29.下列命题中的假命题...是 ( ) A. B. C. D.cos300=-12122{|1},{|4},P x x Q x x =<=<P Q ={|12}x x -<<{|31}x x -<<-{|14}x x <<-{|21}x x -<<3,y x y x ==1121413712()24x k k Z ππ=+∈tan 1x =1ii+sin(2)3y x π=-sin(2)6y x π=+4π4π2π2πsin(),24x x R π-∈2πππ3()sin 1f x x x =++∈,lg 0x R x ∃∈=,tan 1x R x ∃∈=3,0x R x ∀∈>,20x x R ∀∈>10.设,则a ,b ,c 的大小关系是 ( ) (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 11.已知,则 ( ) (A ) (B ) (C )(D )12.函数f(x)=的零点所在的一个区间是 ( ) (A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)13.设( )(A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c14.下列函数中,周期为,且在上为减函数的是 ( )(A ) (B )(C ) (D )15.右图是函数在区间上的图象为了得到这个函数的图象,只要将的图象上所有的点 ( ) (A)向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变(B) 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变(D) 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变16.8名学生和2位教师站成一排合影,2位老师不相邻的排法种数为 ( ) (A ) (B ) (C ) (D )232555322555a b c ===(),(),()2sin 3α=cos(2)πα-=519-19523x x +554a log 4b log c log ===25,(3),,则π[,]42ππsin(2)2y x π=+cos(2)2y x π=+sin()2y x π=+cos()2y x π=+sin()y A x ωϕ=+()x R ∈5[,]66ππ-y sin x x R =∈()3π123π6π126π8289A A 8289A C 8287A A 8287A C17.函数的定义域为 ( )A.(,1) B(,∞) C (1,+∞)D. (,1)∪(1,+∞) 18.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是 ( ) A .152 B.126 C.90 D.5419.若是上周期为5的奇函数,且满足,则A -1B 1C -2D 220.已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是 ( ) (A) (B) (C) (D) 请考生们将1至20题的答案写在下面各题号的横线上 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 二、填空题(每小题4分,共24分)21.命题“存在,使得”的否定是 . 22.某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)23.的展开式中的常数项为______________. (用数字作答)24.曲线在点(0,1)处的切线方程为 .25.已知函数f (x )=若,则实数 .26.设函数f(x)=x-,对任意x 恒成立,则实数m 的取值范围是______ __. 三、解答题(共46分) 27.(本小题11分)y =343434()f x R (1)1,(2)2f f ==(3)(4)f f -=)+∞)+∞(3,)+∞[3,)+∞x R ∈2250x x ++=42()x x-21x y xe x =++232,1,,1,x x x ax x +<⎧⎨+≥⎩((0))4f f a =a =1x[1,∈+∞),f(mx)+mf(x)<0已知函数 (I )求函数的最小正周期。
(II) 求函数的最大值及取最大值时x 的集合。
28.(本小题11分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望E ξ.29.(本小题12分)设定函数,且方程的两个根分别为1,4。
(Ⅰ)当a=3且曲线过原点时,求的解析式; (Ⅱ)若在无极值点,求a 的取值范围。
30.(本小题12分)已知函数 (I )求曲线在处的切线方程; (Ⅱ)若,求的取值范围; (Ⅲ)证明:。
2()sin 22sin f x x x =-()f x ()f x ()f x 1632()(0)3a f x x bx cx d a =+++'()90f x x -=()y f x =()f x ()f x (,)-∞+∞()(1)ln 1f x x x x =+-+(1,(1))f 2()1xf x x ax '≤++a (1)()0x f x -≥参考答案一、选择题(每小题4分,共80分)CDAAA , BDBCA , BBDAA , AABAC 二、填空题(每小题4分,共24分)21.对任意,都有. 22.30 23. 24 24. 25.2 26. m<-1 三、解答题(共46分) 27.(本小题11分)28.(本小题11分)解:(1)设甲、乙、丙中奖的事件分别为A 、B 、C ,那么 P(A)=P(B)=P(C)=P()=P(A)P()P()=答:甲中奖且乙、丙都没有中奖的概率为(2)ξ的可能值为0,1,2,3 P (ξ=k )=(k =0,1,2,3)所以中奖人数ξ的分布列为x R ∈2250x x ++≠31y x =+16A B C B C 15252()66216=252163315()()66k k k C -E ξ=0×+1×+2×+3×=29.(本小题12分) 解:由 得 因为的两个根分别为1,4,所以(*) (Ⅰ)当时,又由(*)式得解得又因为曲线过原点,所以故 (Ⅱ)由于a>0,所以“在(-∞,+∞)内无极值点”等价于“在(-∞,+∞)内恒成立”。
由(*)式得。
又解 得即的取值范围 30.(本小题12分) 解:(I ) 所以,所以切线方程是(Ⅱ), 即:,而,则有, 即要使得成立. 设,那么, 12521625725721216232()3a f x x bx cx d =+++2()2f x ax bx c '=++2()9290f x x ax bx c x '-=++-=290168360a b c a b c ++-=⎧⎨++-=⎩3a =2608120b c b c +-=⎧⎨++=⎩3,12b c =-=()y f x =0d =32()312f x x x x =-+32()3a f x x bx cx d =+++2()20f x ax bx c '=++≥295,4b a c a =-=2(2)49(1)(9)b ac a a ∆=-=--09(1)(9)0a a a >⎧⎨∆=--≤⎩[]1,9a ∈a []1,911()ln 1ln x f x x x x x+'=+-=+(1)1f '=1y x =-22()11ln 1xf x x ax x x x ax '≤++⇔+≤++2ln x x x ax ≤+0x >ln x x a ≤+ln a x x ≥-()ln g x x x =-1()101g x x x'=-=⇒=可知当时单调增,当时单调减. 故在处取最大值为, 那么要使得成立,则有.(Ⅲ)由(Ⅱ)可得:,即当时,当时,01x <<1x >()ln g x x x =-1x =max 1g =-ln a x x ≥-1a ≥-ln 1x x -≤-ln 10x x -+≤01x <<()ln ln 10f x x x x x =+-+<1x ≥()ln ln 1f x x x x x =+-+11ln (ln 1)0x x x x=--+≥ln (ln 1)x x x x =+-+。