弗赖登塔尔的数学教育理论(推荐)
- 格式:ppt
- 大小:1.48 MB
- 文档页数:35
几种数学教育理论一、弗赖登塔尔的数学教育理论(一)“数学现实”原则弗赖登塔尔认为,数学来源于现实,存在于现实,并且应用于现实,而且每个学生有各自不同的“数学现实”。
数学教师的任务之一是帮助学生构造数学现实,并在此基础上发展他们的数学现实。
因此,在教学过程中,教师应该充分利用学生的认知规律,已有的生活经验和数学的实际。
在运用“现实的数学”进行教学时,必须明确认识以下几点:第一,数学教学内容来自于现实世界.把那些最能反映现代生产、现代社会生活需要的最基本、最核心的数学知识和技能作为数学教育的内容.第二,数学教育的内容不能仅仅局限于数学内部的内在联系,还应该研究数学与现实世界各种不同领域的外部关系和联系。
这样才能使学生一方面获得既丰富多彩而又错综复杂的“现实的数学”内容,掌握比较完整的数学体系.另一方面,学生也有可能把学到的数学知识应用于现实世界中去.第三,数学教育应该为所有的人服务,应该满足全社会各种领域的不同层次的人对数学的不同水平的需求。
(二)“数学化”原则弗赖登塔尔认为,数学教学必须通过数学化来进行。
现实数学教育所说的数学化有两种形式:一是实际问题转化为数学问题的数学化,即发现实际问题中的数学成分,并对这些成分做符号化处理;二是从符号到概念的数学化,即在数学范畴之内对已经符号化了的问题作进一步抽象化处理。
对于前者,基本流程是:1、确定一个具体问题中包含的数学成分;2、建立这些数学成分与学生已知的数学模型之间的联系;3、通过不同方法使这些数学成分形象化、符号化和公式化;4、找出蕴含其中的关系和规则;5、考虑相同数学成分在其他数学知识领域方面的体现;6、作出形式化的表述。
对于后者,基本流程是:1、用数学公式表示关系;2、对有关规则作出证明;3、尝试建立和使用不同的数学模型;4、对得出的数学模型进行调整和加工;5、综合不同数学模型的共性,形成功能更强的新模型;6、用已知数学公式和语言尽量准确的描述得到的新概念和新方法;7、作一般化的处理、推广。
1.弗赖登塔尔教育思想综述。
弗赖登塔尔的数学教育思想是基于他对数学的认识而产生的.在他看来“数学是系统化了的常识.这些常识是可靠的,不像某些物理现象会把人引入歧途”[2]而常识并不等于数学,“常识要成为数学,它必须经过提炼和组织,而凝聚成一定的法则,这些法则在高一层里又成为常识,再一次被提炼、组织⋯⋯如此不断地螺旋上升,以至于无穷。
”[2]这就是我们今天所说的抽象与逐级抽象,亦即数学的发展过程具有层次性。
在此认识的基础上,他结合自己对以往教育家的研究“教一个活动的最好方法是演示”的教学论原理.进一步发展为:“学一个活动的最好方法是做” 尽管他很谦虚地说:“这个提法与夸美纽斯的追求也许没有太多区别,只是重点从教转向学,从教师转向学生活动。
”而这些转变正是教育应该做而没有做到的,是对教学活动最本质的认识的改变,是对传统的教学方法、教学模式的批评.他反复强调:学习数学的唯一正确方法是实行“再创造”,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生.他说“将数学作为一个现成的产品来教,留给学生活动的唯一机会就是所谓的应用,其实就是做问题” 他指出:“这不可能包含真正的数学,强有力作问题的只是一种模仿的数学” 他指出,不仅在数学教学中很少将数学作为一种活动,在教育研究中将数学作为一种活动分析的也很少。
以至于不能深刻揭示学习数学的本质特性.那么,什么是学习数学的最本质的特性呢?弗赖登塔尔指出:学一个活动最好的方法是做,学数学的最好的方法是做数学。
数学学习不是一个被动接受的过程,而是一个以已有的知识和经验为基础的主动的建构过程,他指出:“教数学活动不是教数学活动的结果,而是教数学学活动的过程,而且从某种程度上讲,教过程比教结果更重要.”他反对教现成的数学,提倡教做出来的数学,因为通过数学再创造获得的能力,要比被动获得的知识理解的更好、更容易保持。
弗赖登塔尔!再创造"理论对小学数学教学的启示邓海英!#喻 平"$!#湖南第一师范学院#$!%"%&%"#南京师范大学数学科学学院#"!%%$'&摘 要'引导学生在数学活动中学习#基于数学现实#对学习材料进行数学化加工#从而实现!再创造"#这是弗赖登塔尔!再创造"理论的框架(将这一理论应用于小学数学教学#首先#要用儿童的眼光看待现实情境#发现儿童眼中的数学现实#并且搭建!脚手架"#帮助儿童构建数学现实%其次#要组织现实材料#帮助学生获得操作性经验#并且简化复杂情境#帮助学生抓住问题的本质%再次#要指导学生将现实问题加工为局部的数学问题#将局部的数学问题加工为结构化的数学问题(关键词'弗赖登塔尔%再创造%数学现实%数学化%小学数学荷兰著名数学家和数学教育家弗赖登塔尔#早期从事拓扑学和李代数$一种重要的非结合代数&方面的研究#取得了卓越成就%后期把精力放到数学教育领域#出版了大量著作#成为国际数学教育委员会$()*(&第八任主席#倡议召开国际数学教育大会$()*+&#极大地推动了数学教育研究(他在代表作)作为教育任务的数学*一书中提出了!再创造"理论#在数学教育界产生了巨大的影响(即使在课程改革持续推进+教育理念不断翻新的当下#!再创造"理论仍具有现代意义#对以发展学生核心素养为目标的数学教学仍具有实在的指导价值(一+弗赖登塔尔!再创造"理论概述$一&!再创造"理论的几个核心概念!数学现实"!数学化"!再创造"是!再创造"理论的核心概念(本文系湖南省社会科学成果评审委员会项目!小学生情境问题解决能力培养研究"$编号',-."!/0)%&"&的阶段性研究成果#也系喻平教授团队的!数学学习心理学研究及其教学启示"$小学&系列文章之九(!数学现实"是指数学课程内容应该与现实有密切的联系#并且能够在实际中得到应用(数学的整体结构应当存在于现实中#只有密切联系现实的数学才能充满着各种关系#才能与现实结合并且得到应用( 儿童总是处于某种现实的情境中#有些情境承载着重要的数学信息#这些情境中的数学信息就是儿童面对的!数学现实"之一(!数学化"是指学生应该学习将非数学内容或不完整的数学内容组织成一个合乎数学的精确性要求的结构( 例如#将空间完形为图形#是空间的数学化%整理平行四边形的性质#使之形成推理联系#以得出平行四边形的定义#是平行四边形概念领域的数学化(数学化有两种形式(一是横向数学化'将实际问题转化为数学问题#即发现实际问题中的数学成分#并对这些成分做形式化处理#把生活世界引向符号世界(二是纵向数学化'在数学范畴内对已经形式化了的问题做进一步抽象化处理#是更深层次的数学化#从符号到概念#影响到复杂的数学处理过程(!再创造"是指由学生本人把要学习的东西发现或创造出来(教师的任务是引导和帮助学生进行!再创造"的工作#而不是把现成的知识灌输给学生(弗赖登塔尔认为#学生已经具备某些潜在的能力#从发展这种潜能出发#数学教育不能从完美的现成结果开始#不能将各种规则+定理等远离现实生活的抽象内容硬性地灌输给学生#而应创造合适的条件$通常是提供一些情境或现象的材料&#逐步让学生在实践的过程中通过自己的发现学习数学#获取知识#使学生头脑中已有的非正规的数学知识与思维上升+发展为科学的理论(生物学上有一条原理'个体发展过程是群体发展过程的重现(这条原理在数学学习上也是成立的'学生具有发现数学知识$!再创造"&的能力#数学发展的历程也可以在学生身上重现($二&!再创造"的基本理论体系弗赖登塔尔对数学教育有一些独特的见解#可以概括为下面几个观点'其一#不应当教现成的数学#而应当教活动的数学(!将数学作为一种现成的产品来教#留给学生活动的唯一机会就是所谓的应用#其实就是做问题(这不可能包括真正的数学#留作问题的只是一种模仿的数学,,面对现成的数学#学生唯一能做的事就是复制(" 这个观点是对传统数学教学形态的一种反叛#意图将先学后做的思维方式颠倒过来#在活动的过程中引入知识#在数学化的过程中建构知识(这个观点与斯托利亚尔的观点是一致的#把数学教学视为活动的教学(这个观点奠定了弗赖登塔尔的教学认识论基础(其二#教学活动是让学生!做数学"的过程(弗赖登塔尔认为#教学的最好方法是让学生做(这就为!活动的数学"规约了活动的方式(!做"既包括动手#也包括动脑(动手做的本质是借助于身体去认知#动脑做的本质则是思维实验(显然#这一思想与杜威的!做中学"一脉相承(杜威认为#在理想的教学过程中#教师应当鼓励儿童在活动中#开动大脑#运用观察和推测+实验和分析+比较和判断#使他们的手足耳目和头脑等身体器官成为智慧的源泉(其三#教学活动应当让学生经历数学化的过程(数学化是对!活动的数学"在内容方面的圈定(数学产生于现实#每个学生都有不同的数学现实(学生需要对现实进行数学化#将非数学的内容数学化#将不完整的数学内容组弗赖登塔尔#作为教育任务的数学-*.#陈昌平#唐瑞芬#等编译#上海'上海教育出版社#!11&'!""# !"2#!%1(约翰/杜威#民主主义与教育-*.#王承绪#译#北京'人民教育出版社#"%%!'"&(织成一个合乎数学的精确性要求的结构(而数学化的核心步骤是用数学方法把实际材料组织起来#组织材料本身就是一项数学活动(这里要强调的是#数学化有两个要点(一是数学化的结果应当是结构化的知识体系(例如#平行四边形的每一个性质都是数学陈述#但是这些陈述的整体本身只是一个大杂烩#只有用逻辑关系建立结构#它才成为数学#而这个过程就是数学化(二是数学化有进阶的特征(数学化首先是对数学现实进行加工形成局部的数学材料#这是低层次的数学化过程%然后是对局部的教学材料进行整体组织形成结构化的数学#这是高层次的数学化过程(其四#数学活动的一个目标是!再创造"(弗赖登塔尔认为#普通的儿童也有能力!再创造"出他在将来的日常生活中所需要的数学#可以创造内容#也可以创造形式(学习过程必须含有直接创造的层面#即从学生的观点上来看是创造#是主观上觉得的创造#而不是客观意义上的创造(比如#学生可以根据自身的数学现实创造个性化的"324&的计算过程#而不能说学生创造了"324&这个算式的计算原理(所以#学生可以创造数学化而不是数学#创造抽象化而不是抽象#创造算法化而不是算法#创造语言描述而不是语言(通过!再创造"#可以促进人们形成数学教育是一种人类活动的看法(通过!再创造"来学习#能够获得发现的乐趣#引起学习的兴趣#并激发学习的动力%通过自身活动得到的知识与能力比由旁人!硬塞"来的#要理解得透彻+掌握得充分#同时也更善于被应用#还可以较长久地被记住(将上面的观点组合起来#可以看到#弗赖登塔尔事实上给出了一个数学教学程式$如图!所示&(首先#从现实中选择与学习内容相关的材料#通过学生的数学活动将这些材料加工成不完整的数学$局部的数学&#这是低层次的数学化过程%其次#通过学生的数学活动将局部的数学加工为结构化的数学#这是高层次的数学化过程%最后#将建构的知识用于解决问题(这就是!再创造"的学习过程#它不是将现成的数学直接传递给学生#而是通过揭示知识的发生发展过程#让学生经历数学化#本质是学生自我建构知识(图%二+对小学数学教学的启示!再创造"理论以数学现实作为起点#需要学生对现实情境进行数学化#从中辨认问题+提出问题#进而建立一个数学模型($一&如何甄别数学现实!#用儿童的眼光看待现实情境#发现儿童眼中的数学现实教学直接指向的是学生思维世界的开启#任何教学都要首先激发个体的思维参与到特定教学情境包容着的知识世界#以此使得个体身心参与到其生活世界的建构中( 马克斯/范梅南也提出#要关注儿童的独特性+情境的独特性以及个人生活的独特性#避免过分关注儿童的共同特征(数学家们常常只关注数学本身#关注逻辑$演绎&和结构$体系&#并不关注现实材料对儿童学习的作用和影响(大量实践和研究表明#学习材料若不对儿童的胃口#就很难引发他们的学习兴趣(教师要有意识地从儿童的角度看待现实世界#揣摩儿童眼中独特的数学现实(简单地说#要能判断哪些现实情境在儿童眼中是合刘铁芳#位涛#从思维激活到理智兴趣培育'启发的教学意蕴及其实现-5.#国家教育行政学院学报# "%!6$!!&'671&(理的+熟悉的+贴近生活的+新颖有趣的(例如#教学!数据统计"时#可以让学生统计某一年内自己家里每个月的电费#从而既能和父母共同研学#又能知道节约用电#增强环保意识%还可以让学生统计一个星期内自己家里的饮食情况#包括吃水果+蔬菜+零食等的情况#培养健康饮食的意识和习惯等(再如#在工程问题+行程问题等应用题的教学中#教师可以试着改造陈旧的问题情境#利用科技发展等元素融入爱国主义教育#发挥情境的教育意义#从而既能教授数学方法#又可赋能课程思政#践行立德树人(下面再举一个更为详细具体的例子'教学人教版小学数学三年级上册)吨的认识*一课时#教师先让学生思考'一袋大米重!%%千克#!%袋大米重多少千克0学生列式计算#得到结果为!%%%千克(教师揭示' !%%%千克是一个很重的质量#数学上规定用!吨来表示!%%%千克#即!吨4!%%%千克(然后提问'!吨里面有几个!千克0吨和千克之间的进率是多少0学生回答后#教师组织活动#让学生体验!吨有多重($!&教师让学生以小组为单位#每个人都用力提一提$力气小的学生可以两个人一起提&事先准备好的一袋重!%千克的豆子#感受!%千克有多重#并汇报自己的感受(然后#让学生推算多少袋这样的豆子重!吨(当推算出来是!%%袋时#学生会感叹'!哇1!吨这么重呀1"$"&教师让学生两人一组#互相说一说课前测出的自己的体重是多少千克#再互相背一背#感受!名同学有多重(然后#让学生推算'三年级学生的体重差不多是"&千克#如果一名学生的体重是"&千克#那么#!%名这样重的学生大约重多少千克0$%名这样重的学生呢0从而进一步感受!吨有多重($2&有了一袋豆子的重量+一名同学的体重作为参考#教师让学生结合生活经验说一说生活中什么东西大约重!吨(然后#用课件出示各种例子'两头牛大约重!吨#一般电梯的载重量是!吨,,$$&教师让学生汇报课前了解的自己家上个月或某几个月的用水量(然后#让学生想象'如果把!吨水装在一个正方体的水箱里#这个正方体该有多大0接着#出示一个棱长是!米的正方体#指出'在这个正方体里装满水#水的质量就是!吨(由此#让学生感受!吨水到底有多少(以上设计#让学生先感受身边物体的质量#再以此为基础加到大单位的质量#增强体验感#紧紧抓住儿童的生活经验#用儿童的眼光提取现实中的数学("#搭建!脚手架"#帮助儿童构建数学现实每个儿童都有自己的数学现实#但往往又不完善+不严密#甚至还存在错误的认识#影响学习效果(教师站在儿童的角度置身于学习过程#搭建!脚手架"#是帮助学生构造数学现实+发展数学现实的良好途径(下面通过一组测试数据说明学生在计算错误中反映出来的!现实误差"(测试试题如下'每年的7月!日 7月2%日#富士山对公众开放#在这段时间里#大约有1%%%名游客去富士山爬山#平均每天大约有 名游客(有效被试总人数为6%%人#答对的有'$%人#占总人数的6%8%没有作答和答错的共!'%人#占总人数的"%8(错误解答情况如下页表!所示(邓海英#严卿#魏亚楠#数学情境问题解决错误分析与评价-5.#数学教育学报#"%"!$!&''!'7(表% 测试题目错误解答情况序号错误答案错误算法推测错误原因推测!"7%%%%2%91%%%4"7%%%%不理解!平均"的含义#乘除混淆""6%%%%2%91%%%4"6%%%%不理解!平均"的含义#乘法口诀掌握不到位2"!%%%%2%91%%%4"!%%%%不理解!平均"的含义#乘法口诀记错$"7%%%2%91%%%4"7%%%不理解题意#计算能力薄弱&1%%%1%%%不认真审题#以为每天的游客数就是1%%%'!%%%%1%%%!%%%%不理解题意#以为每天都有1%%%人#大约之后为!%%%%人72%%%1%%%:2%42%%%运算能力不够扎实62%1%%%:2%42%对除法运算不熟悉12!%1%%%:$2%;!&2!%以为从7月!日到7月2%日只有"1天!%2"!1%%%:$2%;"&2"!用一个月2%天减去7月!日与7月2%日两天!!2$$!%%%%:"12$$把人数1%%%约等于!%%%%#把天数算错为"1!"$&%%1%%%:"4$&%%把7月!日到7月2%日看成7月!日和7月2%日!2261%%%:"$%26把天数当成!月头到7月底的总天数#且算错!$26!32%37426将题目中出现的数随便相加!&2662'%3$2%;"&4266以为一年是2'%天#再用一个月2%天减去7月!日和7月2%日两天#然后相加!'61"!1%%%;"1461"!不理解题意#直接用游客数减去天数#且算错!7"%%1%%%:$73!3732%&4"%%毫无意义地把7月!日到7月2%日中的几个数字相加!6'1%%%:-$7973!&92%.4'对7月!日与7月2%日所包含的数字做毫无根据的运算!121%%%:-$7973!&92%.:"42$7973!&92%是对7月!日与7月2%日所包含的数字做毫无根据的运算#"表示7月!日与7月2%日两天"%$#12$1%%%:$!32%37&:"$:"$#12$"$表示一天有"$小时#"表示7月!日与7月2%日两天从表中可以看到#四年级学生对1%%%:2%42%%的应用竟然会有这么多错误的想法和算法(除了一些纯粹由于计算能力弱+口诀记错+把用除法求平均数看成用乘法求总数等造成的错误之外#其余大部分错误都存在比较共同的原因#那就是'1%%%:2%42%%这个计算题放在了现实情境中#学生的数学现实不够支撑起对这个情境的理解#要么用错了1%%%人#要么算错了2%天#要么完全不知道怎么用数学式子来表达题意#只是将数字毫无根据地加减乘除(因此#学生犯这些错误可以认为是因为他们不理解算式与情境的关系#不能对1%%%:2%42%%这个算式!讲故事"#不能由!故事"想到算式#也不会质疑不合常情的!故事结尾"222如对"6%%%%这样的大数+$#12$这样的小数#尤其是$#12$表示人数#竟然没有觉得有什么不妥#也没有反思+改正(学生数学现实的水平又成了教师要面对的!数学现实"(教师要把算式与情境的关系讲好#给学生讲清楚题目中每句话+每个字描述的真实现象#搭好!脚手架"'!富士山是日本有名的旅游胜地(因为山顶常年寒冷#所以#一年中最热的7月份$山顶平均气温也才'度左右&旅游的人比较多(7月!日27月2%日这2%天里#共有1%%%名游客去了富士山#那么#这2%天里#平均每天大约有多少名游客呢0是多大的一个数呢0"把总人数1%%%+总天数2%+要计算平均数这些条件陈述清楚#将问题置入真实情境中#就是在搭建!脚手架"($二&如何实现!数学化"!#组织现实材料#帮助儿童获得操作性经验!1世纪英国著名博物学家+生物学家+教育家赫胥黎认为'!数学训练几乎是纯演绎的(数学家从少量简单的命题出发#这些命题的证明如此明显#可以不证自明#其余的工作就是从这些简单的命题来进行巧妙的演绎("!数学是一种根本不懂得观察+实验+归纳与因果关系的研究("这是常见的对数学的偏见和误解(同时期#英国数学家西尔维斯特对赫胥黎的观点做了批判(他认为#数学研究要不断观察和比较#它的主要武器之一是归纳#它经常求助于实际的试验与比较#同时它还对想象力与创造力进行最好的训练( 弗赖登塔尔主张#儿童在数学学习中可以对非数学化的现实材料用数学方法来组织#通过整理+观察+比较+试验+提炼+归纳进行数学化(例如#学生通过观察学具#将空间表示成图形#这是对空间的数学化%用折一折+拼一拼的方法发现三角形的内角和为!6%<#这也是经历了数学化的过程%通过操作+讨论+联系+类比+记录#整理平行四边形的性质#使之形成推理关系#再归纳得出平行四边形的一个定义#这是平行四边形概念领域的数学化(几何学习有数学化的优势'有具体可操作的现实材料#学生易于获得操作性经验#在具体操作中体验数学化过程#逐渐发展抽象+归纳的能力#提高数学水平("#简化复杂情境#帮助儿童抓住问题的本质一些数学问题看上去似乎是现实情境里的问题#但是被编题者加工了#让解题者好像掉进了一个复杂的漩涡里(来看下面两个问题'$!&顾客在书店里买一本书#书价!%元#他付了一张"%元的钞票(书商无零钱可找#请隔壁的鞋匠帮忙(鞋匠给他一双修好的鞋#可收修鞋费!'元(此外#鞋匠原来欠书商"元(结果#书商从鞋匠那儿拿到了'元#加上自己的$元#总共找给顾客!%元(下午#鞋匠告诉书商#"%元钞票是假的(问'书商欠鞋匠多少钱0自己损失多少钱0 $"&甲乙两人相距7%%米#相向而行#速度分别是!#&米 秒和"米 秒(一条小狗在甲+乙之间匀速地来回跑动直到甲乙两人相遇#速度是"%米 秒(当甲乙两人相遇时#小狗共跑了多少米0弗赖登塔尔#作为教育任务的数学-*.#陈昌平#唐瑞芬#等编译#上海'上海教育出版社#!11&'!"!(问题!给出的现实情境比较杂乱#学生读下来往往觉得没有头绪#只看到多个人不断地给或收钱物%而问题"#学生读下来则满脑都是来回奔跑的小狗和越走越近把小狗夹在中间的两人#直至最后小狗没空隙奔跑#两人面对面站着#在这一过程中#小狗跑动的轨迹非常复杂#可以分为多段直线#而且无法计算出每一段的长度(这两个题目的!高明"之处就是把数学条件隐藏在了有多个行为主体参与的动态的现实情境中(要求的问题看上去都很简单+朴实#但是#方法被纷繁复杂的现实情境遮住了(攻克这种问题的武器就是!简化"(去掉所有枝节#抓住问题本质#解决的方法+需要的条件也就浮出水面了(问题!的简化思路和方法如下'题中人员关系混杂#那就从!裁员"开始#确定!主角"和!配角"(以书商为标准#!进项"为加#!出项"为减#假钞为%$没有价值&(先看他与鞋匠的交易'出"%元假钞#价值为%%进一双修好的鞋#价值为!'元%进'元%之前出过"元$鞋匠原来欠他"元&(!'3';"4"%#意味着他得鞋匠"%元#即他欠鞋匠"%元(再看他与顾客的交易'进"%元假钞#价值为%%出一本书#价值为!%元%出!%元$找钱&(;!%;!%4;"%#意味着他给顾客"%元#即顾客欠他"%元(他欠鞋匠的要还#还完之后不得不失%顾客欠他的不会还了#所以他损失"%元(问题"的简化思路和方法如下'路程4速度9时间#小狗奔跑的时间就是甲乙两人相遇所花的时间(此题只是做了一个巧妙的转嫁'看似复杂的现实情境#其实对应着非常简洁的数学公式($三&如何实现!再创造"弗赖登塔尔指出'!将数学作为一种活动来解释和分析#建立在这一基础上的教学方法#我称之为3再创造4方法(" 这是要让学生参与活动#在活动中经历对学习材料的数学化处理过程#从而获得知识(数学化的两种形态222将现实材料加工为局部$不完整&的数学+将局部$不完整&的数学改造为结构化的数学#都应当在指导学生!再创造"的教学中有所体现(下面以!平均数"概念教学为例来说明(首先#将现实问题加工为局部的数学问题222教师出示问题'在学校!题王争霸赛"中#=+0两队选手的得分情况如表"所示$答对!题得!分&#请问'哪一队水平高0表( 两队选手答题得分情况)队选手!号"号2号$号得分72!%6 *队选手&号'号7号2得分11'2对这个问题#学生会想到#分别求两队的总分#然后比较(但是又会发现#两队的人数不同#将总分进行比较存在不公平性#因此不能说明哪个队的水平高(于是#用旧知识解决新问题已经无能为力(这是一个数学化的过程'把一个现实问题抽象成一个数学问题(但是对学生而言#这个数学问题又是一个局部的数学问题(其次#将局部的数学问题加工为结构化的数学问题222师 在人数一样的情况下#用每个队的总分作比较#便知道哪个队的水平高(但是两队的人数不同#该如何判断哪个队的弗赖登塔尔#作为教育任务的数学-*.#陈昌平#唐瑞芬#等编译#上海'上海教育出版社#!11&'!!!(水平高呢0$学生思考(&师 我们先不比=+0两队的水平高低#而把=队和0队的分数制成条形统计图( $出示图"&大家发现了什么0图(生 方块有多有少#每队各个选手水平高低不一(师 确实#各个选手水平高低不一#哪个能代表本队的水平呢0生 可以把多的方块移到少的方块上去#最后变成一样多(生 =队全部移成7#0队全部移成6(师 $出示图2&现在知道=+0两队哪一队水平高了吗0图+生 0队(师 没错(这个一样多的得分#就是各个选手得分的平均数(平均数可以代表一组数#而且它排除了这组数的总个数因素($稍停&!移多补少"的方法直观#但是需要作图(一般地#平均数4总数:份数(这个算法使用起来很方便(同学们可以用它来算一下=队$个人的平均分和0队2个人的平均分吗0$学生计算(&师 结果一样吗0生 一样(师 利用这个方法#我们班上次期末考试的数学平均成绩怎么算0生 把我们全班同学的数学成绩加起来#然后除以全班总人数($教师总结#对平均数概念做进一步说明(&这个过程就是将局部的数学问题加工为结构化的数学问题'用总数不能解决问题#就引入平均数的概念(而且#结构化的过程是不断进阶的'在今后的学习中#会出现用平均数不能解决的问题#于是又会形成局部的数学#需要引入中位数+众数等概念#再使其结构化(除了数量关系的学习#在空间形式的学习中#也存在这两种层次的!加工"(比如#由单位正方形的面积推出长方形的面积公式#这是较低层次的!加工"%系统地回忆长方形+平行四边形+三角形+梯形面积公式的推导方法#形成如图$所示的思维导图#这是较高层次的!加工"#由此还可以大胆猜测圆的面积与长方形面积之间的关系$如图&所示&#得到圆的面积公式的推导方法(图,图"。
弗赖登塔尔的主要数学教育思想弗赖登塔尔的数学教育思想主要有:(1)情景问题是教学的平台;(2)数学化是数学教育的目的;(3)学生通过自己的努力得到的结论和创造是教育内容的一部分;(4)“互动”是主要的学习方式;(5)学科交织是数学教育内容的呈现方式。
强调数学教育面向社会现实,必须联系生活实际,注重培养和发展学生从客观现象发现数学问题的能力;用再创造的方法去进行教学,反对灌输式和死记硬背;提倡讨论式、指导式的教学形式,反对传统的讲演式的教学形式.1987年,已经80多高龄的弗赖登塔尔到我国访问,他在华东师范大学数学系演讲,走上讲台的第一句话就说:“在荷兰,中学教室里的桌椅摆法都是围成一圈,教师在学生中间活动.如果有一个学校的教室象今天这样摆桌椅:前面一张讲台,下面是一排排桌椅,那么这所中学的校长大概要被撤职了!”这时教室发出一阵笑声,同时也引起人们的思索.他的演讲为我国数学教育改革提供了新的思路,他的思想对我国数学教育研究产生了积极而深远的影响。
弗赖登塔尔把自己的一生献给了数学与数学教育事业。
作为20世纪最伟大、最具有影响的数学教育家,他的许多观点将会影响着世界数学教育的改革与发展。
弗赖登塔尔谈数学学习方法作为著名的数学家和数学教育家,弗赖登塔尔在谈到数学学习方法时,反复强调:学习数学的唯一正确方法是实行“再创造”,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。
他认为这是一种最自然的、最有效的学习方法。
说它最自然,是因为生物学上“个体发展过程是群体发展过程的重现”这条原理在数学学习上也是成立的,即;数学发展的历程也应在个人身上重现,这才符合人的认识规律。
数学在其发展中,走过漫长而曲折的道路,它不断地修正过自己的进程,避开过弯路,绕过死胡同,重新明确前进的方向。
像这样的历程是不必让它在学生身上重现的。
弗赖登塔尔说,他所说的“再创造”是指应该使学生体验到:如果当时的人有幸具备了我们现在有了的知识,他们是怎样把那些知识创造出来的。
参考资料弗赖登塔尔的数学教育思想——“数学现实”原则荷兰数学家、数学教育家弗赖登塔尔是国际上知名的数学教育方面的权威学者.在他担任国际数学教育委员会( ICMI ) 主席期间,召开了第一届国际数学教育大会(ICME —1) ,并创办了《Educa — tional Studies in Mathematics 》杂志,现任ICMI 主席( 巴黎十一大学校长) 加亨(Kahane) 教授曾评价说“对于数学教育,本世纪的上半叶Felix Klein 做出了不朽的功绩;本世纪的下半叶Hans Freudenthal 做出了巨大的贡献.”作为一位数学家,弗赖登塔尔30 年代就享有盛誉,从50 年代起就逐渐转向数学教育的研究,形成了他自己的独到的观点.他的数学教育理论与思想,完全是从数学教育的实际出发,用数学家和数学教师的眼光审视一切,可以说已经摆脱了“教育学”( 或“心理学”) 加数学例子这种“传统的”数学教育研究模式,抽象概括成他独有的系统见解,这也许是他最重要的贡献,也正是我们特别需要借鉴之处.弗赖登塔尔回顾了数学发展的历史,研究了数学的特性,特别是数学的严密演绎理论对经验的指导作用,理性与观察的结合关系,为了使人们更透彻、更合乎逻辑地分析自然,从而促使在极端理论与极端实际的数学现象之间,实现一个连续的过渡,他努力探索着数学教育的途径、内容与方法.弗赖登塔尔认为,人类历史必然是一个前进的历史,只有突破了、对传统、对权威的迷信,才能充分发挥科学的创造性;科学是一种活动,科学不是教出来的,也不是学出来的,科学是靠研究出来的;因而学校的教学必须由被动地学转为主动地获得,学生应该成为教师的合作者,通过自身的实践活动来主动获取知识.这样,教育的任务,首先就应当为青年创造机会,让他们充满信心,在自身活动的过程中,继承传统,学习科学,获得知识;另一方面,由于社会在不断前进,人们就必须不断学习.因此,教育中更重要的一个问题,并不是教的内容;而是如何掌握与操纵这些内容,换句话说,要让学生学会掌握方法,那是更根本的东西.根据这些考虑,弗氏从数学教育的特点出发,提出了“数学现实”原则.数学来源于现实,也必须扎根于现实,并且应用于现实;这是弗赖登塔尔的基本出发点,也是我们历来提倡的基本思想;确实,数学不是符号的游戏,而是现实世界中人类经验的总结.根据数学发展的历史,无论是数学的概念,还是数学的运算与规则,都是由于现实世界的实际需要而形成的.数学教育如果脱离了那些丰富多采而又错综复杂的背景材料,就将成为“无源之水,无本之木”.另一方面,弗氏也认为数学是充满了各种关系的科学,通过与不同领域的多种形式的外部联系,不断地充实和丰富着数学的内容;与此同时,由于数学内在的联系,形成了自身独特的规律,进而发展成为严谨的形式逻辑演绎体系.因此,数学教育又应该给予学生数学的整个体系——充满着各种各样内在联系与外部关系的整体结构.弗氏的另一个基本主张是:数学应该是属于所有人的,我们必须将数学教给所有人.这是很重要的,在我国这一想法还未能被普遍接受,实际上,对于少数数学家来说,抽象的形式体系,严密的逻辑结构,以及涉及内在联系的规律,也许是最为本质、最为完美也是最感兴趣的东西.可是对于大多数人而言,掌握数学与外部世界的密切关系,从而获得适应于当前社会的生存与生活,并进而能够改革社会促使其进一步发展的能力,将是更为重要的.为此,弗赖登塔尔坚持主张:数学教育体系的内容应该是与现实密切联系的数学,能够在实际中得到应用的数学,即“现实的数学”.如果过于强调了数学的抽象形式,忽视了生动的具体模型,过于集中于内在的逻辑联系,割断了与外部现实的密切关系,那必然会给数学教育带来极大的损害.70 年代“新数学”运动的失败就是个明证.如何理解“现实”?不同的社会需要是否就是“现实”?将“现实”等同于实际的社会生产活动,这是一种片面的理解.根据英国的Cockcmft 报告,他们在进行了比较广泛的调查、分析了一些比较实际的资料之后提出,人们所需要的数学可以分为三种水平.第一种是日常生活的需要,从个人消费、家庭开支到国家建设,处处都要涉及各种数字、图表、测量等问题,这些大多是比较简单的数学知识,但却是每个人都必须知道的.第二种是不同的技术或者说是各种职业的需要,从工程技术人员、农业技师到各行业的服务人员,在相当广泛的不同领域内,从事各种不同性质工作的人,从各个不同方向,对数学知识提出了种种要求,当然其中也含有某些共同部分.第三种是为进一步学习并从事高水平研究工作的需要,包括范围很大,差别也很大,未来的科学家、企业家、管理学家等,都需要与各个领域相关的不同分支的数学知识,他们需要共同的基础及类似的数学思想方法,但却涉及到千变万化的具体内容.数学教育应该为所有的人服务,应该满足全社会各种领域的人对数学的不同水平的需求.数学教育应为不同的人提供不同的数学修养,从而为每个人培养适合于他所从事的不同专业所必需的数学态势,使其能顺利地处理有关的各种数学问题.为此,弗赖登塔尔的一个基本结论是:每个人都有自己生活、工作和思考着的特定客观世界以及反映这个客观世界的各种数学概念、它的运算方法、规律和有关的数学知识结构.这就是说,每个人都有自己的一套“数学现实”.从这个意义上说,所谓“现实”不一定限于具体的事物,作为属于这个现实世界的数学本身,也是“现实”的一部分,或者可以说,每个人也都有自己所接触到的特定的“数学现实”.大多数人的数学现实世界可能只限于数和简单的几何形状以及它们的运算,另一些人可能需要熟悉某些简单的函数与比较复杂的几何,至于一个数学家的数学现实可能就要包含Hilbert 空间的算,子、拓扑学以及纤维丛等等.数学教育的任务就在于,随着学生们所接触的客观世界越来越广泛,应该确定各类学生在不同阶段必须达到的“数学现实”,并且根据学生所实际拥有的“数学现实”,采取相应的方再次,弗氏主张客观现实材料和数学知识的现实彼此溶为一体,你中有我,我中有你,密切不可分;我们的传统观念是以理论知识的逻辑展开为唯一线索,有些地方“联系”一下“实际”,这种联系往往是“节外生枝”式的,不被重视,顶多搞成一条“美丽的尾巴”,核心还是“理论”第一,这当然和考试制度有关,但也不能不说和教育思想的陈旧有关.弗氏的“数学现实”原则,主张把客观现实和知识体系溶为一体,教学过程应该经历从现实背景中抽象出数学知识的全过程,着眼于能力.【返回参考资料列表】。
弗赖登塔尔的数学教育理论与思想介绍荷兰数学家、数学教育家弗赖登塔尔是国际上知名的数学教育方面的权威学者。
在他担任国际数学教育委员会(1CMl)主席期间,召开了第一届国际数学教育大会(ICME—1),并创办了《Educa—tional Studies in Mathematics》杂志,现任ICMI主席(巴黎十一大学校长)加亨(Kahane)教授曾评价说“对于数学教育,本世纪的上半叶Felix Klein做出了不朽的功绩;本世纪的下半叶Hans Freudenthal做出了巨大的贡献。
”作为一位数学家,弗赖登塔尔30年代就享有盛誉,从50年代起就逐渐转向数学教育的研究,形成了他自己的独到的观点。
他的数学教育理论与思想,完全是从数学教育的实际出发,用数学家和数学教师的眼光审视一切,可以说已经摆脱了“教育学”,(或“心理学”)加数学例子这种“传统的”数学教育研究模式,抽象概括成他独有的系统见解,这也许是他最重要的贡献,也正是我们特别需要借鉴之处。
第一节关于现代数学特性的论述数学教育的研究不能离开它的对象——数学的特有规律,进入20世纪以来,数学发展的突飞猛进,迫使当代社会的数学教育必须充分考虑到现代数学的特点。
为此,弗赖登塔尔从数学发展的历史出发,深入研究了数学的悠久传统,以及现代数学形成的背景,提出了现代数学的转折点,是否应该以现代实数理论的诞生和约当(Jordan)的置换群的产生作为标志;或者是另一种看法,那是以著名的布尔巴基(Bourbaki)理论的出现,作为一个新时期的开端。
基于这一分析,弗赖登塔尔认为现代数学的特性,可以归结为以下几个方面:1.数学表示的再创造与形式化活动。
如果认真分析一下近几十年来数学的变化,就会发现变的主要是它的外表形式,而不是它的内容实质。
这是一个自然演变的过程,在数学的各个领域内,逐斩渗透与发展了各种新知识与新词汇,最终汇成一个新潮流——形式化,这是组织现代数学的重要方法之一,也是现代数学的标志之一。
弗赖登塔尔的数学教育思想——“数学现实”原则荷兰数学家、数学教育家弗赖登塔尔是国际上知名的数学教育方面的权威学者.在他担任国际数学教育委员会( ICMI ) 主席期间,召开了第一届国际数学教育大会(ICME —1) ,并创办了《Educa —tional Studies in Mathematics 》杂志,现任ICMI 主席( 巴黎十一大学校长) 加亨(Kahane) 教授曾评价说“对于数学教育,本世纪的上半叶Felix Klein 做出了不朽的功绩;本世纪的下半叶Hans Freudenthal 做出了巨大的贡献.”作为一位数学家,弗赖登塔尔30 年代就享有盛誉,从50 年代起就逐渐转向数学教育的研究,形成了他自己的独到的观点.他的数学教育理论与思想,完全是从数学教育的实际出发,用数学家和数学教师的眼光审视一切,可以说已经摆脱了“教育学”( 或“心理学”) 加数学例子这种“传统的”数学教育研究模式,抽象概括成他独有的系统见解,这也许是他最重要的贡献,也正是我们特别需要借鉴之处.弗赖登塔尔回顾了数学发展的历史,研究了数学的特性,特别是数学的严密演绎理论对经验的指导作用,理性与观察的结合关系,为了使人们更透彻、更合乎逻辑地分析自然,从而促使在极端理论与极端实际的数学现象之间,实现一个连续的过渡,他努力探索着数学教育的途径、内容与方法.弗赖登塔尔认为,人类历史必然是一个前进的历史,只有突破了、对传统、对权威的迷信,才能充分发挥科学的创造性;科学是一种活动,科学不是教出来的,也不是学出来的,科学是靠研究出来的;因而学校的教学必须由被动地学转为主动地获得,学生应该成为教师的合作者,通过自身的实践活动来主动获取知识.这样,教育的任务,首先就应当为青年创造机会,让他们充满信心,在自身活动的过程中,继承传统,学习科学,获得知识;另一方面,由于社会在不断前进,人们就必须不断学习.因此,教育中更重要的一个问题,并不是教的内容;而是如何掌握与操纵这些内容,换句话说,要让学生学会掌握方法,那是更根本的东西.根据这些考虑,弗氏从数学教育的特点出发,提出了“数学现实”原则.数学来源于现实,也必须扎根于现实,并且应用于现实;这是弗赖登塔尔的基本出发点,也是我们历来提倡的基本思想;确实,数学不是符号的游戏,而是现实世界中人类经验的总结.根据数学发展的历史,无论是数学的概念,还是数学的运算与规则,都是由于现实世界的实际需要而形成的.数学教育如果脱离了那些丰富多采而又错综复杂的背景材料,就将成为“无源之水,无本之木”.另一方面,弗氏也认为数学是充满了各种关系的科学,通过与不同领域的多种形式的外部联系,不断地充实和丰富着数学的内容;与此同时,由于数学内在的联系,形成了自身独特的规律,进而发展成为严谨的形式逻辑演绎体系.因此,数学教育又应该给予学生数学的整个体系——充满着各种各样内在联系与外部关系的整体结构.弗氏的另一个基本主张是:数学应该是属于所有人的,我们必须将数学教给所有人.这是很重要的,在我国这一想法还未能被普遍接受,实际上,对于少数数学家来说,抽象的形式体系,严密的逻辑结构,以及涉及内在联系的规律,也许是最为本质、最为完美也是最感兴趣的东西.可是对于大多数人而言,掌握数学与外部世界的密切关系,从而获得适应于当前社会的生存与生活,并进而能够改革社会促使其进一步发展的能力,将是更为重要的.为此,弗赖登塔尔坚持主张:数学教育体系的内容应该是与现实密切联系的数学,能够在实际中得到应用的数学,即“现实的数学”.如果过于强调了数学的抽象形式,忽视了生动的具体模型,过于集中于内在的逻辑联系,割断了与外部现实的密切关系,那必然会给数学教育带来极大的损害.70 年代“新数学”运动的失败就是个明证.如何理解“现实”?不同的社会需要是否就是“现实”?将“现实”等同于实际的社会生产活动,这是一种片面的理解.根据英国的Cockcmft 报告,他们在进行了比较广泛的调查、分析了一些比较实际的资料之后提出,人们所需要的数学可以分为三种水平.第一种是日常生活的需要,从个人消费、家庭开支到国家建设,处处都要涉及各种数字、图表、测量等问题,这些大多是比较简单的数学知识,但却是每个人都必须知道的.第二种是不同的技术或者说是各种职业的需要,从工程技术人员、农业技师到各行业的服务人员,在相当广泛的不同领域内,从事各种不同性质工作的人,从各个不同方向,对数学知识提出了种种要求,当然其中也含有某些共同部分.第三种是为进一步学习并从事高水平研究工作的需要,包括范围很大,差别也很大,未来的科学家、企业家、管理学家等,都需要与各个领域相关的不同分支的数学知识,他们需要共同的基础及类似的数学思想方法,但却涉及到千变万化的具体内容.数学教育应该为所有的人服务,应该满足全社会各种领域的人对数学的不同水平的需求.数学教育应为不同的人提供不同的数学修养,从而为每个人培养适合于他所从事的不同专业所必需的数学态势,使其能顺利地处理有关的各种数学问题.为此,弗赖登塔尔的一个基本结论是:每个人都有自己生活、工作和思考着的特定客观世界以及反映这个客观世界的各种数学概念、它的运算方法、规律和有关的数学知识结构.这就是说,每个人都有自己的一套“数学现实”.从这个意义上说,所谓“现实”不一定限于具体的事物,作为属于这个现实世界的数学本身,也是“现实”的一部分,或者可以说,每个人也都有自己所接触到的特定的“数学现实”.大多数人的数学现实世界可能只限于数和简单的几何形状以及它们的运算,另一些人可能需要熟悉某些简单的函数与比较复杂的几何,至于一个数学家的数学现实可能就要包含Hilbert 空间的算子、拓扑学以及纤维丛等等.数学教育的任务就在于,随着学生们所接触的客观世界越来越广泛,应该确定各类学生在不同阶段必须达到的“数学现实”,并且根据学生所实际拥有的“数学现实”,采取相应的方法予以丰富,予以扩展,从而使学生逐步提高所具有的“数学现实”的程度并扩充其范围.通过这样的过程,数学教育将随着不断地扩展的现实发展,同时数学教育本身又促使了现实的扩展,正象数学与现实世界的辩证关系一样,数学教育也应该符合这样的规律.一些具体的例子如下:通过公共汽车上下车人数的变化引入整数的加减法,并找出运算规律;借助学生上学乘汽车、骑自行车或步行等多种交通工具以及途中出现的各种情况,介绍各种类型的图象表示、解析表示,进一步可介绍变化率以及斜率等概念及有关性质;还可以从商店出售各种不同牌子、不同规格的商品所获得的利润计算,引进矩阵的乘法概念,以及它的运算法则;以及根据血压的变化介绍一般周期函数的概念,再进到更有规律的正弦函数及其性质;或者从物质的生长率引进指数函数概念,从而导出对数函数等.由于人们对数学需求不尽相同,各人在不同阶段又有特定的数学现实,弗赖登塔尔认为,在现实背景材料的使用上有下述三种不同的水平:第一级是在实际问题中直接包含着有关的数学运算,只要通过简单的变换或过渡,就可以从实际问题求得相应的数学问题.在这里,具体的现实问题起着核心作用.第二级是提出了某个现实问题,希望学生能够找出与之有关的数学,加以组织,建立结构,从而解决问题.这里需要运用数学作为工具来组织现实问题并予以解决,因而具体的实际问题是起着实质性的作用.第三级则是指出某个数学概念或是描述了某个数学过程的特征,由此引进新的数学概念或是构造新的数学模型,在这儿所提供的现实背景材料已经从通常的具体客观世界中抽象出来.综上所述,弗赖登塔尔提的“数学现实”原则,和我们通常所说的理论联系实际有原则的区别,有其独特的含义和理论深度,值得我们借鉴.首先,弗氏所说的“数学现实”,是客观现实与人的数学认识的统一体,并非先有了一个”理论”,然后去联系一下“实际”,也不是从具体例子引入,然后做几个应用题就算完事.所谓“数学现实”乃是人们用数学概念、数学方法对客观事物的认识的总体,其中既含有客观世界的现实情况,也包括学生个人用自己的数学水平观察这些事物所获得的认识.我们习惯于把课本上的知识笼统称为“理论”,而把“实际”狭隘地理解为“生产实际”,其实是不妥当的.其次,弗氏认为“每个人都有自己的数学现实”,这十分重要,这也许和我们常说的“从学生实际出发”差不多,数学教育当然要根据学生的“数学现实”来进行.学生的“实际”知识有多少? 学生的“数学水平”有多高? 学生的“日常生活常识”有多广? 这些都是教师面对的“现实”,如果我们简单地将“课本上定理”和“应用题”联系起来,那样的教学未免太狭隘.例如,在荷兰教材中,讲函数概念并不从映射出发,用双射、单射把学生弄得晕头转向,而是化许多时间用于制作图表、画函数图象,用距离(s) 与时间(t) 的关系图表示一个学生走路、等车、乘车、半路回家等等日常生活实际,每个学生都可根据自己上学的情形来画草图,定函数.再次,弗氏主张客观现实材料和数学知识的现实彼此溶为一体,你中有我,我中有你,密切不可分;我们的传统观念是以理论知识的逻辑展开为唯一线索,有些地方“联系”一下“实际”,这种联系往往是“节外生枝”式的,不被重视,顶多搞成一条“美丽的尾巴”,核心还是“理论”第一,这当然和考试制度有关,但也不能不说和教育思想的陈旧有关.弗氏的“数学现实”原则,主张把客观现实和知识体系溶为一体,教学过程应该经历从现实背景中抽象出数学知识的全过程,着眼于能力。