当前位置:文档之家› 生化论述题汇总-07影像班整理

生化论述题汇总-07影像班整理

生化论述题汇总-07影像班整理
生化论述题汇总-07影像班整理

1.论述各糖代谢途径相互联系,关键酶代谢调节方式

答:关系主要:(1)糖酵解的中间产物可进入糖的磷酸戊糖途径,而磷酸戊糖途径的产物可通过基因转移后进入糖酵解途径。如,糖酵解的中间产物6-磷酸葡萄糖。

(2)糖酵解途径合成的丙酮酸课进入线粒体进行有氧氧化,生产乙酰CoA进行三羧酸循环和氧化磷酸化。

(3)糖原分解产物葡萄糖课做为糖原合成原料,糖异生产物葡萄糖是糖酵解的底物,它们之间是相互抑制,促进协调的。

(4)糖异生与糖酵解的多数反应是共有的可逆反应,只有少数不可逆的反应需要各自特定的关键酶催化转化,

(5)糖的有氧氧化抑制乳酸酵解。

综上所述,糖的各种代谢途径相互作用,使机体的糖代谢处于平衡状态。

关键酶及代谢调节方式主要有:(1)糖酵解途径的关键酶为6-磷酸果糖激酶-1,丙酮酸激酶和己糖激酶,主要通过别构调节和共价调节来进行调节的。①6-磷酸果糖激酶-1的别构激活剂有:AMP;ADP;F-1,6-2P;F-2,6-2P。别构抑制剂为柠檬酸,A TP(高浓度)。6-磷酸果糖激酶-2(PFK-2)可在激素作用下以共价修饰的方式调节酶活性来调节F-2,6-2P。②丙酮酸激酶的别构激活剂为1,6-双磷酸果糖,别构抑制剂为ATP、丙氨酸。依赖cAMP的蛋白激酶和依赖Ca+,钙调蛋白的蛋白激酶可使丙酮酸激酶磷酸化失活。③己糖激酶受到6-磷酸葡萄糖的反馈抑制和长链脂肪CoA的别构抑制。

(2)糖有氧氧化关键酶是丙酮酸脱氢酶复合体,有别构调节和共价修饰调节。别构激活剂为:AMP,ADP,NAD+;抑制剂为:乙酰CoA,NADH,ATP。丙酮酸脱氢酶复合体可被激素调节磷酸化和去磷酸化来调节其活性。

(3)磷酸戊糖途径的关键酶是6-磷酸葡萄糖脱氢酶,受NADPH/NADP+比值调节,比值升高,抑制;比值降低,激活。

(4)糖原合成和分解的关键酶分别是糖原合酶和糖原磷酸化酶。糖原合酶受共价修饰和别构调节,激活剂为A TP,6-磷酸葡萄糖,抑制剂为AMP。糖原磷酸化酶也受共价修饰和别构调节,葡萄糖是其变构调节剂。

(5)糖异生的关键酶是磷酸烯醇式丙酮酸羧激酶,丙酮酸羧化酶,果糖二磷酸酶-1和葡糖-6-磷酸酶。主要调节方式是别构调节和共价修饰,通过调节6-磷酸果糖与1.6-双磷酸果糖和丙酮酸与烯醇式丙酮酸之间的底物循环来使糖异生和糖酵解彼此协调。

2.简述糖酵解,有氧代谢和糖异生的生理意义,并以短期饥饿和长期饥饿状态进一步阐述。答:糖酵解的生理意义:在肌肉收缩相对缺氧或缺氧、缺血性疾病是可迅速为机体提供能量。是机体少数组织获能的必需途径,如神经、骨髓、白细胞等即使在有氧的情况下也通过酵解供给部分能量。成熟红细胞仅靠糖酵解供能。

有氧代谢的生理意义:是体内供能的主要途径;三羧酸循环是糖、脂、蛋白质彻底氧化的共同途径,是这三大物质代谢的联系枢纽;三羧酸循环提供生物合成的前体。

糖异生的生理意义:维持血糖浓度恒定;是充或恢复肝糖原储备的重要途径;长期饥饿时肾糖异生增强有利于维持酸碱平衡。

短期饥饿时糖利用减少而脂动员加强,主要能量来源是储存的脂肪和蛋白质,其中脂肪约占能量来源的85%以上。(1)各组织对葡萄糖的利用度普遍降低;(2糖异生作用增强,禁食6~12小时以后肝糖原已动员,饥饿1~2天后糖异生和酮体生产明显增加;(3)肌肉蛋白质分解加强,分解的大部分氨基酸转变为丙氨酸和谷氨酰胺释放入血进入肝脏进行糖异生;(4)脂肪动员加强,脂肪加速分解生成甘油和脂肪酸,甘油可异生成糖,脂肪酸可生成乙酰CoA 而促进糖异生作用。

长期饥饿是代谢改变与短期饥饿不同,肌肉蛋白分解减少,脂肪动员进一步加强,肝脏生成大量酮体,脑组织利用酮体增加,超过葡萄糖。肌肉一脂酸为主要能源,以保证酮体有限供应脑组织。乳酸和丙酮酸成为肝糖异生的主要来源。肾糖异生作用明显增强,占饥饿晚期糖异生总量的一半。

简单的总结脂肪酸合成和分解的比较正如上表,下面对个别方面简单描述。二者除反应组织部位及代谢代谢产物不同外,催化反应的酶系也不同。脂酸合成中,首先是乙酰辅酶A羧化酶(限速酶)催化乙酰辅酶A生成丙二酰辅酶A。其次,由于脂酸合成是一个重复加成的过程,每次延长增加2个C,催化一轮反应,即酰基转移,缩合,还原,脱水,再还原等步骤需要七种酶,这些酶的活性均在一条肽链上,属多功能酶,统称为脂酸合成酶系。而脂酸的分解,首先需酯酰辅酶A合成酶催化脂酸活化,其次活化生成的酯酰辅酶A需在肉碱酯酰转移酶I,II的作用下进入线粒体。其中,酯酰转移酶I是脂酸b氧化的限速酶。接下来,线粒体中的酯酰辅酶A在线粒体基质中的脂酸b氧化多酶复合体的催化下,从酯酰基断裂生成一分子比原来少2个C的乙酰辅酶A及1分子乙酰辅酶A,直至最后完成脂酸b 氧化。

2,论述物质代谢特点,并在细胞水平说明代谢调节。

一、物质代谢的特点

(一)整体性:体内各种物质代谢相互联系、相互转变,构成统一整体。

(二)代谢在精细的调节下进行。

(三)各组织器官物质代谢各具特色,如肝是物质代谢的枢纽,常进行一些特异反应。

(四)各种代谢物均有各自共同的代谢池,代谢存在动态平衡。

(五)ATP是共同能量形式

(六)NADPH是合成代谢所需还原当量但分解代谢常以NAD为辅酶。

(一)细胞水平的代谢调节

实际上就是酶的调节,这是单细胞生物主要的调节方式,这也是一切代谢调节的基础,包括酶结构的调节和酶量的调节。

1 细胞内酶的隔离分布。

代谢途径有关酶类常常组成酶体系,分布于细胞的某一区域或亚细胞结构中,这就使得有关代谢途径只能分别在细胞不同区域内进行,不致使各种代谢途径互相干扰,要记住体内主要代谢过程发生的亚细胞定位,如脂肪酸β氧化、三羧酸循环在线粒体中进行,而脂肪酸合成,糖异生在胞液中进行,尿素合成在胞液和线粒体中进行。

代谢反应进行的速度和方向是由此代谢途径中一个或几个具有调节作用的关键酶的活性决定的。这些调节代谢的酶称为关键酶。它们催化的反应有下述特点:①反应速度最慢,

因此又称限速酶,它的活性决定整个途径的总速度②催化单向反应或非平衡反应,它的活性决定整个途径的方向③酶活性可受多种代谢物或效应剂的调节。

代谢调节主要通过对关键酶活性的调节而实现的,可分为快速调节和迟缓调节两类。快速调节即对酶结构的调节,分为变构调节和共价修饰两种,这类调节方式效应快,但不持久。迟缓调节即对酶含量的调节,发生较慢,但作用也持久。

2 关键酶的变构调节

①变构酶定义在酶一章中已述。

②机制:变构酶常是由两个以上亚基组成的具有四级结构的铁蛋白质。在酶分子中与底物结合起催化作用的亚基称催化亚基,与变构效应剂结合起调节作用的调节亚基,个别酶催化,调节部位位于同一亚基。变构效应剂通过非共价键与调节亚基结合,引起酶构象改变,不涉及酶共价键的变化,从而影响酶与底物结合,使酶催化活性受到影响,酶构象的改变可表现为亚基的聚合或解聚等。

③意义:变构调节是细胞水平调节中一种较常见的快速调节,代谢终产物常可对酶起变构抑制作用,此即反馈调节,使代谢物不致过多,也不致过少,也可使能量得以有效利用。变构调节可使不同代谢途径相互协调。

3 酶的化学修饰调节

①定义:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。

②特点:经绝大多数属此类调节方式的酶有无活性(低活性)和有活性(或高活性)两种形式。这两种形式通过共价外修饰,可互相转变。以磷酸化为例,酶蛋白分子中丝氨酸、苏氨酸、酪氨酸的羟基是磷酸化的位点,但有些酶经磷酸化后活性升高,而有些酶磷酸化后却活性降低,在去磷酸化才是其活性状态。化学修饰引起酶的共价键变化,且化学修饰发生的是酶促反应。一个酶分子可催化多个作用物(酶蛋白)出现组成变化,故有放大效应,催化效率比变构调节高。磷酸化,脱磷酸化是最常见的化学修饰调节,其本身也是酶促反应,磷酸化由蛋白激酶催化,脱磷酸化由磷蛋白磷酸酶催化,酶发生磷酸化消耗的ATP比合成酶蛋白消耗的ATP要少得多,因此,是体内调节酶活性经济而有效的方式。

对某一酶而言,可同时受变构调节和化学修饰两种方式的调节,然而当效应剂浓度过低,变构调节就不如共价修饰来得快而有效,故在应激情况下,共价修饰尤为重要。

4 酶量的调节

由于酶的合成、降解所需时间较长,消耗ATP较多,故酶量调节属迟缓调节。

①酶蛋白的诱导与阻遏

一般将加速酶合成的化合物称为诱导剂,减少酶合成的称阻遏剂,二者是在酶蛋白生物合成的转录或翻译过程中发挥作用,但影响转录较常见,通常底物多为诱导剂,产物多为阻遏剂。而激素和药物也是常见的诱导剂。

②酶蛋白降解

改变酶蛋白分子的降解速度也能调节细胞内酶含量,此过程主要靠蛋白水解酶来完成。

第十一章:

试述生物氧化与体外物质氧化的异同。

生物氧化与体外氧化的相同点:

生物氧化与体外的非生物氧化或燃烧的化学本质是相同的,都是脱氢、失去电子、或与氧直接化合并释放能量的过程。物质在体内外氧化时所消耗的氧量、最终产物和释放的能量是相同的,都遵循氧化还原反应的一般规律。。

生物氧化与体外氧化的不同点:

生物氧化是在细胞内温和的环境中(体温、pH近中性,有水)在一系列酶的催化下逐步进行的,是酶促反应,能量逐步释放并伴有A TP的生成,将部分能量储存于高能化合物(如ATP、GTP等)中,以满足机体需能生理过程的需要。可通过加水脱氢反应间接获得氧并增加脱氢机会,二氧化碳是通过有机酸的脱羧产生的。生物氧化有加氧、脱氢、脱电子三种方式,体外氧化常是较剧烈的过程,其产生的二氧化碳和水是由物质的碳和氢直接与氧结合生成的,能量是突然释放的。

2.试述影响氧化磷酸化的诸因素及其作用机制。

答:影响氧化磷酸化的因素及机制:(1)ADP/A TP比值。当线粒体内ADP/ATP比值增高时,氧化磷酸化速度加快,于是NADH迅速减少而NAD+增多,从而间接促进三羧酸循环氧化过程ATP合成增多,反之,A TP合成减少.(2)呼吸链抑制剂:鱼藤酮、粉蝶霉素A、异戊巴比妥与复合体Ⅰ中的铁硫蛋白结合,抑制电子传递;抗霉素A、二巯基丙醇抑制复合体Ⅲ;一氧化碳、氰化物、硫化氢抑制复合体Ⅳ。(3) 解偶联剂:二硝基苯酚和存在于棕色脂肪组织、骨骼肌等组织线粒体内膜上的解偶联蛋白可使氧化磷酸化解偶联。(4)氧化磷酸化抑制剂:寡霉素可与寡霉素敏感蛋白结合,阻止质子从F0质子通道回流,抑制磷酸化并间接抑制电子呼吸链传递。(5) 甲状腺素:诱导细胞膜Na+-K+-ATP酶生成,加速A TP分解为ADP,促进氧化磷酸化;增加解偶联蛋白的基因表达导致耗氧产能均增加。(6)线粒体DNA突变:呼吸链中的部分蛋白质肽链由线粒体DNA编码,线粒体DNA因缺乏蛋白质保护和损伤修复系统易发生突变,影响氧化磷酸化。(7)阻断剂:CO可与细胞色素aa3的Fe2+结合,使后者不能传递电子。CN-可与细胞色素aa3的Fe3+结合,阻断电子传递。

第十二章

概述体内氨基酸的来源和主要代谢去路。

答:体内氨基酸主要来源于食物蛋白,它在人体的胃和小肠中消化水解成氨基酸和寡肽,其次就是体内蛋白质的分解,这有两条途径:①外在和长寿蛋白质在溶酶体通过ATP-非依赖途径降解②异常和短寿蛋白质在蛋白酶体通过需要ATP的泛素途径降解。

主要去路:㈠合成组织蛋白

㈡氨基酸发生转氨基作用产生氨和α-酮酸。

氨转运到肝组织中,经鸟氨酸循环,转化为尿素,排出体外。

α-酮酸经氨基化生成营养非必需氨基酸,也可转化为糖和脂类化合物或者彻底氧化分解并供能。

㈢某些特殊氨基酸还可以产生一碳单位、胺类等。

论述一碳单位的代谢及生理作用。

答:指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、甲烯基、甲炔基、甲酰基及亚氨甲基等。

一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.须以四氢叶酸为载体。

能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外甲硫氨酸可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。因此四氢叶酸并不是一碳单位的唯一载体。

一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:红细胞,导致巨幼红细胞性贫

血。

第十三章

论述核苷酸在体内的主要生理功能。

答:核苷酸具有多种生物学功能,表现在:(1)作为DNA和RNA合成的基本原料, 例如AMP、GMP,CMP和UMP是RNA的组成单位。(2)体内的主要能源物质,如ATP和GTP 等;(3)参与代谢和生理性的调节作用,cAMP和cGMP作为激素的第二信使参与许多物质代谢调节的过程。(4)作为许多辅酶的组成部分,如腺苷酸的构成辅酶I,辅酶II,FAD,辅酶A等的重要部分;(5)活化中间代谢物的载体,如UDP-葡萄糖是合成糖原的活性原料,CDP-二酰基甘油是合成磷脂的活性原料,PAPS是活性硫酸的形式,SAM是活性甲基的载体等。

试从合成原料、合成程序与反馈调节等方面比较嘌呤核苷酸与嘧啶核苷酸从头合成的异同点。

答:1.相同点:1)都在肝的细胞液中进行;2)由PRPP参与;3)由CO2,谷胺酰胺,天冬氨酸参与;4)先生成IMP或UMP;5)催化第一,二步反应的酶是关键酶。

2.不同点:1)合成原料不同。嘌呤核苷酸的合成所需要的原料有天冬氨酸,谷氨酰胺,甘氨酸,CO2,一碳单位(N5,N10-甲炔四氢叶酸与N10-甲酰叶酸),PRPP;嘧啶核苷酸合成的原料有天冬氨酸,谷氨酰胺,CO2,一碳单位(仅胸苷酸合成),PRPP。2)合成程序不同。嘌呤核苷酸的合成是在磷酸核糖分子上逐步合成嘌呤环,从而形成嘌呤核苷酸;嘧啶核苷酸的合成是首先合成嘧啶环,再与磷酸核糖结合形成核苷酸,最先合成的核苷酸是UMP。3)反馈调节不同。嘌呤核苷酸产物反馈抑制PRPP合成酶,酰胺转移酶等起始反应的酶;嘧啶核苷酸产物反馈抑制PRPP合成酶,氨基甲酰磷酸和成酶,天冬氨酸,氨基甲酰转移酶等起始反应的酶。4)生成的核苷酸前体物质不同。嘌呤核苷酸最先合成的核苷酸是IMP;嘧啶核苷酸最先合成的核苷酸是UMP。

第三篇

1.参与DNA复制的生物分子有哪些? 各有何功能?

答:1.解旋酶:DNA复制时首先将双链螺旋解开成为单链,分别以两条单链为模板合成互补链。这些解旋酶承担着DNA的解旋,双链解链的任务。

2.拓扑异构酶:DNA解链时,因双链DNA处于螺旋状态,常常会旋转缠绕。拓扑异构酶可切断DNA链,使DNA在解链旋转中不致

打结缠绕。

3.引物酶:是一种依赖DNA的RNA聚合酶,负责合成一段RNA引物,以提供3‘-OH末端。

4.DNA聚合酶:催化dNTP在核苷酸3‘-OH末端逐一加上脱氧核苷酸,聚合为新的核苷酸链。原核生物有3种,真核生物有5种。

5.DNA连接酶:催化DNA链的3‘-OH末端与5‘-P末端生成磷酸二酯键,把两段相邻的DNA链连接成完整的DNA链。

2.简述保证DNA复制真实性的机制和DNA损伤后的修复机制

答:(一)DNA复制真实性的机制:

DNA复制过程中会发生错误的,这可以由DNA聚合酶来修正错误。在大肠杆菌DNA

复制过程中,如果有错误核苷酸掺入,DNA聚合暂时停止催化聚合作用,而是由DNA Pol Ⅰ或PolⅢ的3′→5′外切酶活性切除错误的碱基,然后继续再催化正确的聚合作用。真核生物DNA Polδ也具有此种校对作用。所以DNA聚合酶的校对作用是DNA复制中的修复形式。

其他能够保证DNA复制准确性的机制在于:

(1)以亲代DNA为模板,按碱基互补配对方式进行DNA复制。

(2)细胞内DNA错配修复机制。

(二)DNA的损伤修复

修复是指针对已发生了的缺陷而施行的补救机制,DNA的修复机制的有数种方式,有光修复、切除修复、重组修复、SOS修复等,其中以切除修复最为重要。

1 光修复

通过光修复酶催化而完成的,可使环丁基二聚体分解为原来的非聚合状态,DNA完全恢复正常。

2 切除修复

切除修复是指对DNA损伤部位先行切除,继而进行正确的合成,补充被切除的片段。大肠杆菌有两种切除修复方式。

(1)由糖基化酶起始作用的切除修复。

糖基化酶识别损伤或错误的碱基而水解糖苷键,造成DNA骨架中因丢失碱基而形成一个洞,称为AP部位。特异的AP内切酶识别AP位点,切断其与DNA骨架的连接;继而在外切酶作用下,切下AP位点的核苷酸。随后,在DNA聚合酶Ⅰ的作用下,以未受损伤的DNA链为模板正确合成,补充缺口,最后在连接酶作用下连成一条完整的DNA链。

(2)UvrABC修复。原核生物与紫外线损伤修复有关的一些基因,称为UvrA、UvrB、UvrC。其产物,UvrA,UvrB是辨认及结合DNA损伤部位的蛋白质,UvrC有切除损伤部位相邻12个核苷酸的作用,可能还需要有解螺旋酶的协助,才能把损伤部位除去。然后由DNA聚合酶Ⅰ补充空隙,连接酶连接,完成修复。

3 重组修复

当DNA分子的损伤面较大,还来不及修复完善就进行复制时,损伤部位因无模板指引,复制出来的新子链会出现缺口,这时,就靠重组蛋白recA的核酸酶活性将别一股健康的母链与缺口部分进行交换,以填补缺口。

4SOS修复

指DNA损伤时,应急而诱导产生的修复作用,称为SOS修复。在正常情况下,修复蛋白的合成是处于低水平状态的,这是由于它们的mRNA合成受到阻遏蛋白LexA的抑制。细胞中的recA蛋白也参与了SOS修复。当DNA受到严重损伤时,recA以其蛋白酶的功能水解破坏LexA,从而诱导了十几种SOS基因的活化,促进了此十几种修复蛋白的合成。

1.复制和转录过程有什么相似之处?又各有什么特点?

答:复制和转录的相同点:1.都以DNA为模板;2.都需依赖DNA的聚合;3.聚合过程都是在核苷酸之间生成磷酸二酯键;4.都需遵循碱基配对规律;5.模板链方向均为3‘-5‘,合成方向为5’-3‘。

复制和转录各自的特点:1.复制:复制需要的聚合酶为DNA聚合酶;原料为4种dNTP;碱基配对原则为A-T,G-C;最终生成DNA;复制的功能是储存和传递遗传信息。

2.转录:转录需要的聚合酶为RNA聚合酶;原料是4种dNTP;碱基配对原则为A-U,G-C;最终生成mRNA,tRNA,rRNA;转录的功能是产生的三种RNA都参与蛋白质的合成,参与遗传信息的表达.

2. 试述真核细胞RNA转录后的加工修饰

答:真核细胞RNA转录后的加工修饰包括:

1.真核细胞mRNA5’端加毛和3’端多聚腺苷酸化修饰。

除了组蛋白外,所有真核细胞mRNA都有5’端加毛和3’端的poly(A)尾结构。1)5’加帽的作用:①有助于保护mRNA免于被核糖核酸酶降解;

②协助mRNA的剪接。在剪接第一个外显子时,剪接体的形成需要帽结合蛋白的参与;

③促进mRNA从细胞核运输到胞浆;

④5’帽结合蛋白复合体参与mRNA和核糖体的结合来起始翻译。

2)poly(A)尾结构的作用:

poly(A)尾可结合一种或者多种特殊蛋白,避免mRNA被酶降解,并在翻译过程中具有重要作用。许多原核mRNA也含有poly(A)尾,但是此尾功能是促进mRNA降解,而非保护mRNA免于被降解。

2.选择性剪接可以使同一基因产生不同的蛋白质。

许多初始转录本可以通过一种以上的选择性剪接方式,去除不同的内含子而被加工形式不同的mRNAs,因而形成不同的多肽。选择性剪接可以被正负调节分子调节。

3.RNA编辑可以改变RNA分子信息的内涵。

某些mRNAs在翻以前被编辑,在编辑过程中插入了4个U残基,从而改变了转录本的翻译读码框。

4.RNA的核外转运可以被调控。

5.一些RNA分子定位于细胞浆的特殊区域。

一些mRNA分子携带有信息,可以在翻译开始前自我导向定位于细胞内的特定位置。这可以在细胞铁定的部位集中产生所需要的大量蛋白质。

6.mRNA稳定性的改变也可以调控基因的表达。

意义:降解途径保证mRNA不在细胞中累积并避免合成过多的蛋白质。

7.细胞浆poly(A)的添加可以调节蛋白翻译

8.无义变化介导的mRNA降解是真核细胞mRNA监视系统

意义:①以使某些异常的mRNA在被有效地翻译成蛋白质前得到清除,这个mRNA监视系统可以防止非正常截短的蛋白质的合成。

②NMD在进化过程中发挥了重要作用,使真核细胞更容易探究由于DNA重排,突变或不同剪接方式所形成的新基因。

③免疫系统细胞的发育过程中也很重要,重排基因产生的这类mRNA被NMD系统迅速降解,避免了截短蛋白质的细胞毒作用。

9.RNA干涉可以使转录后的基因沉默。

意义:控制至少某些生物体的适时发育。它也是一种保护生物体免受RNA病毒侵袭和控制转座子活性的机制。

简述参与蛋白质生物合成体系的组分及功能。

答:1)mRNA:含有从DNA转录的遗传信息,是蛋白质合成的模版。

遗传密码子:mRNA上的编码某一塔顶氨基酸或者作为蛋白质合成其实,终止信号,称为三联体密码。

2)tRNA是氨基酸的转运工具。

3)核糖体RNA是蛋白质合成场所

核糖体的作用:①核糖体通过将mRNA,氨基酰-tRNA和相关的蛋白质因子放置在正确的位置来调节蛋白质的合成。

②核糖体的成分可催化翻译过程的一部分化学反应。

4)蛋白质合成体系组成还需要其他成分:

①20种氨基酸:合成原料;

②酶:氨酰-tRNA合成酶和L蛋白、S蛋白外,重要的酶还有转肽酶、转位酶等

③众多蛋白因子:起始因子(initiation factors,IF),包括IF1、IF2、IF3;延伸因子(elongation factors,EF),有EF-T,EF-G;释放因子(release factors,RF),包括RF1、RF2。

④ATP,GTP :提供合成蛋白质所需的能量。

⑤无机离子:作为辅助因子。

2.真核生物蛋白质的翻译后加工有哪些?

答:1.肽链氨基酸末端和羧基末端有切除/化学修饰

2.水解加工:

①多蛋白水解加工可产生多种肽链

一些蛋白质在合成之初是含有一系列头尾相连的代表作的长多肽链。多肽链的水解将断裂释放各种功能不同的蛋白质。

②内含肽切除导致外显肽连接

3.酸残基的化学修饰

个别氨基酸可进行甲基化和乙酰化修饰

蛋白质糖基化修饰

某些蛋白质加入异戊二烯基团

结合代表作加入辅基

大多数蛋白质有二硫键的形成

4.折叠是肽链高级结构形成的过程。

①多肽链通过分布反应快速进行折叠(有2种模式)

第一种模式:新生肽链边延长边按等级逐级折叠,产生正确的二级结构,模序,直至形成结构域和多肽链。

第二种模式:多肽链自动折叠形成“熔球”的紧密结构。

②多数天然蛋白质折叠需要一些辅助蛋白如:

蛋白分子伴侣:封闭折叠蛋白质暴露的疏水区段;创建一个隔离环境,使蛋白质可以互不干扰地在此折叠;促进折叠和去聚合;遇到应激,使已折叠的蛋白质去折叠。

蛋白质二硫键异构酶:催化链内或链间二硫键形成。

肽脯氨酰顺反异构酶等催化顺反异构加速折叠

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

生化习题及答案

一.选择题 1.唾液淀粉酶应属于下列那一类酶( D ); A 蛋白酶类 B 合成酶类 C 裂解酶类 D 水解酶类 2.酶活性部位上的基团一定是( A ); A 必需基团 B 结合基团 C 催化基团 D 非必需基团 3.实验上,丙二酸能抑制琥珀酸脱氢酶的活性,但可用增加底物浓度的方法来消除其抑制,这种抑制称为( C ); A 不可逆抑制 B 非竟争性抑制 C 竟争性抑制 D 非竟争性抑制的特殊形式 4.动物体肝脏内,若葡萄糖经糖酵解反应进行到3-磷酸甘油酸即停止了,则此过程可净生成( A )ATP; A 0 B -1 C 2 D 3 5.磷酸戊糖途径中,氢受体为( B ); A NAD+ B NADP+ C FA D D FMN 6.高等动物体内NADH呼吸链中,下列那一种化合物不是其电子传递体( D ); A 辅酶Q B 细胞色素b C 铁硫蛋白 D FAD 7.根据化学渗透假说理论,电子沿呼吸链传递时,在线粒体内产生了膜电势,其中下列正确的是( A ); A 内膜外侧为正,内侧为负 B 内膜外侧为负,内侧为正 C 外膜外侧为正,内侧为负 D 外膜外侧为负,内侧为正 8.动物体内,脂酰CoA经β-氧化作用脱氢,则这对氢原子可生成( B )分子ATP; A 3 B 2 C 4 D 1 9.高等动物体内,游离脂肪酸可通过下列那一种形式转运( C ); A 血浆脂蛋白 B 高密度脂蛋白 C 可溶性复合体 D 乳糜微粒 10.对于高等动物,下列属于必需氨基酸的是(B ); A 丙氨酸 B 苏氨酸 C 谷氨酰胺 D 脯氨酸 11.高等动物体内,谷丙转氨酶(GPT)最可能催化丙酮酸与下列那一种化合物反应( D );

生物化学试题及答案

第五章脂类代谢 【测试题】 一、名词解释 1.脂肪动员 2.脂酸的β-氧化 3.酮体 4.必需脂肪酸 5.血脂 6.血浆脂蛋白 7.高脂蛋白血症 8.载脂蛋白 受体代谢途径 10.酰基载体蛋白(ACP) 11.脂肪肝 12.脂解激素 13.抗脂解激素 14.磷脂 15.基本脂 16.可变脂 17.脂蛋白脂肪酶 18.卵磷脂胆固醇脂酰转移酶(LCAT) 19.丙酮酸柠檬酸循环 20.胆汁酸 二、填空题 21.血脂的运输形式是,电泳法可将其为、、、四种。 22.空腹血浆中含量最多的脂蛋白是,其主要作用是。 23.合成胆固醇的原料是,递氢体是,限速酶是,胆固醇在体内可转化为、、。 24.乙酰CoA的去路有、、、。 25.脂肪动员的限速酶是。此酶受多种激素控制,促进脂肪动员的激素称,抑制脂肪动员的激素称。 26.脂肪酰CoA的β-氧化经过、、和四个连续反应步骤,每次β-氧化生成一分子和比原来少两个碳原子的脂酰CoA,脱下的氢由和携带,进入呼吸链被氧化生成水。 27.酮体包括、、。酮体主要在以为原料合成,并在被氧化利用。 28.肝脏不能利用酮体,是因为缺乏和酶。 29.脂肪酸合成的主要原料是,递氢体是,它们都主要来源于。 30.脂肪酸合成酶系主要存在于,内的乙酰CoA需经循环转运至而用 于合成脂肪酸。 31.脂肪酸合成的限速酶是,其辅助因子是。 32.在磷脂合成过程中,胆碱可由食物提供,亦可由及在体内合成,胆碱及乙醇胺由活化的及提供。 33.脂蛋白CM 、VLDL、 LDL和HDL的主要功能分别是、,和。 34.载脂蛋白的主要功能是、、。 35.人体含量最多的鞘磷脂是,由、及所构成。

《生化分离工程》思考题与答案

第一章绪论 1、何为生化分离技术?其主要研究那些容?生化分离技术是指从动植物组织培养液和微生物发酵液中分离、纯化生物产品的过程中所采用的方法和手段的总称。 2、生化分离的一般步骤包括哪些环节及技术?一般说来,生化分离过程主要包括4 个方面:①原料液的预处理和固液分离,常用加热、调PH、凝聚和絮凝等方法;②初步纯化(提取),常用沉淀、吸附、萃取、超滤等单元操作;③高度纯化(精制),常选用色谱分离技术;④成品加工,有浓缩、结晶和干燥等技术。 3、生化分离工程有那些特点,及其重要性? 特点:1、目的产物在初始物料(发酵液)中的含量低;2、培养液是多组分的混合物,除少量产物外,还有大量的细胞及碎片、其他代物(几百上千种)、培养基成分、无机盐等;3、生化产物的稳定性低,易变质、易失活、易变性,对温度、pH 值、重金属离子、有机溶剂、剪切力、表面力等非常敏感;4、对最终产品的质量要求高重要性:生物技术产品一般存在于一个复杂的多相体系中。唯有经过分离和纯化等下游加工过程,才能制得符合使用要求的产品。因此产品的分离纯化是生物技术工业化的必需手段。在生物产品的开发研究中,分离过程的费用占全部研究费用的50 %以上;在产品的成本构成中,分离与纯化部分占总成本的40~ 80 %;精细、药用产品的比例更高达70 ~90 %。显然开发新的分离和纯化工艺是提高经济效益或减少投资的重要途径。

4、生物技术下游工程与上游工程之间是否有联系? 它们之间有联系。①生物工程作为一个整体,上游工程和下游工程要相互配合, 为了利于目的产物的分离与纯化,上游的工艺设计应尽量为下游的分离纯化创造条件,例如,对于发酵工程产品,在加工过程中如果采用液体培养基,不用酵母膏、玉米浆等有色物质为原料,会使下游加工工程更方便、经济;②通常生物技术上游工程与下游工程相耦合。发酵- 分离耦合过程的优点是可以解除终产物的反馈抑制效应,同时简化产物提取过程,缩短生产周期,收到一举数得的效果。 5、为何生物技术领域中往往出现“丰产不丰收”的现象? 第二章预处理、过滤和细胞破碎 1、发酵液预处理的目的是什么?主要有那几种方法? 目的:改变发酵液的物理性质,加快悬浮液中固形物沉降的速率;出去大部分可溶性杂质,并尽可能使产物转入便于以后处理的相中(多数是液相),以便于固液分离及后提取工序的顺利进行。 方法:①加热法。升高温度可有效降低液体粘度,从而提高过滤速率,常用于粘度随温度变化较大的流体。控制适当温度和受热时间,能使蛋白质凝聚形成较大颗粒,进一步改善发酵液的过滤特性。使用加热法时必须注意加热温度必须控制在不影响目的产物活性的围,对于发酵液,温度过高或时间过长可能造成细胞溶解,胞物质外溢,而增加发酵液的复杂性,影响其后的产物分离与纯化;②调节悬浮液的pH 值,pH 直接影响发酵液中某些物质的电离度和电荷性质,适当调节pH 可以改善其过滤特性;③凝聚和絮凝;④使用惰性助滤剂。

(完整word版)生物化学实验知识点整理,推荐文档

生物化学实验知识点整理 实验一 还原糖的测定、实验二 粮食中总糖含量的测定 1.还原糖测定的原理 3,5-二硝基水杨酸与还原糖溶液共热后被还原成棕色的氨基化合物,在550nm 处测定光的吸收增加量,得出该溶液的浓度,从而计算得到还原糖的含量 2.总糖测定原理 多糖为非还原糖,可用酸将多糖和寡糖水解成具有还原性的单糖,在利用还原糖的性质进行测定,这样就可以分别求出总糖和还原糖的含量 3.电子天平使用 4.冷凝回流的作用: 使HCl 冷凝回流至锥形瓶中,防止HCl 挥发,从而降低HCl 的浓度。 5.多糖水解方法: 加酸进行水解 6.怎样检验淀粉都已经水解: 加入1-2滴碘液,如果立即变蓝则说明没有完全水解,反之,则说明已经完全水解。 7.各支试管中溶液的浓度计算 8.NaOH 用量:HCl NaOH n n = 9.不能中途换分光光度计,因为不同的分光光度计的光源发光强度不同 10.分光光度计的原理:在通常情况下,原子处于基态,当通过基态原子的某辐射线所具有的能量(或频率)恰好符合该原子从基态跃迁到激发态所需的能量(或频率)时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱。原子的能级是量子化的,所以原子对不同频率辐射的吸收也是有选择的。这种选择吸收的定量关系服从式/E h hc νλ?==。 实验证明,在一定浓度范围内,物质的吸光度A 与吸光样品的浓度c 及厚度L 的乘积成正比,这就是光的吸收定律,也称为郎伯-比尔定律 分光光度计就是以郎伯比尔定律为原理,来测定浓度 11.为什么要水解多糖才能用DNS 因为DNS 只能与还原糖溶液在加热的条件下反应生成棕红色的氨基化合物,不能与没有还原性的多糖反应。 12.为什么要乘以0.9 以0.9才能得到多糖的含量。 13.为什么要中和后再测? 因为DNS 要在中性或微碱性的环境下与葡萄糖反应 实验三 蛋白质的水解和纸色谱法分离氨基酸、实验四 考马斯亮蓝法测定蛋白质浓度 1.纸色谱分离氨基酸分离原理 由于各氨基酸在固定相(水)和流动相(有机溶剂)中的分配系数不同,从而移动速度不同,经过一段时间后,不同的氨基酸将存在于不同的部位,达到分离的目的。 2.天然氨基酸为L 型 3.酸式水解的优点是:是保持氨基酸的旋光性不变,原来是L 型,水解后还是L 型,由于甘氨酸所有的R 基团是氢原子,所以它不是L 型

生物化学实验思考题

生物化学实验思考题 Document number:BGCG-0857-BTDO-0089-2022

生物化学实验思考题 1.可用何种颜色反应鉴别酮糖的存在? 间苯二酚反应,在酸的作用下,酮糖脱水生成羟甲基糠醛,后者再与间苯二酚作用生成红色物质。 2.α—萘酚的反应原理是什么? 糖在浓的无机酸(硫酸、盐酸)作用下,脱水生成糠醛及其糠醛的衍生物,后者能与α—萘酚生成紫红色物质。 3.菲林试剂和本尼迪凯特氏法检验糖的原理是什么? O沉淀。它们都是含有Cu2+的碱性溶液,能使还原糖氧化而本身还原成红色或者黄色的Cu 2 4.何谓纸层析法? 用滤纸作为惰性支持物的的分层层析法。 5.何谓Rf值?影响Rf值的主要因素是什么? 纸层析法形成的纸层析图谱上,原点到层析点中心的距离与原点到溶剂前沿的距离的比值;影响Rf值的因素有:物质的结构、性质、溶剂系统、层析滤纸的质量和层析温度等因素有关。 6.怎样制备扩展剂? 扩展剂是4份水饱和的和1份醋酸的混合物。将20ml和5ml冰醋酸放入中,与15ml水混合,充分振荡,静置后分层,放出下层水层,漏斗中的则为扩展剂。 7.层析缸中的平衡剂的作用是什么? 平衡剂起到使纸上吸附的溶剂达到饱和。使物质在展开剂和纸层析上吸附的溶剂中溶解度不同而进行分离。 8.通过蛋白质及氨基酸的呈色反应实验你掌握了几种鉴定蛋白质和氨基酸的方法?他们 的原理是什么?

四种:双缩脲反应;茚三酮反应;黄色反应;考马斯亮蓝反应。 (1)双缩脲在碱性环境中能与Cu2+ 生成紫红色化合物,蛋白质中有肽键,其结构与双缩脲相似,也能发生此反应。(2)除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外,所有α—氨基酸及一切蛋白质都能和茚三酮反应产生蓝紫色物质。(3)含有苯环结构的氨基酸,如酪氨酸、和色氨酸,遇硝酸后,可被硝化成黄色物质,该化合物在碱性溶液中进一步形成橙色的硝醌酸钠。(4)考马斯亮蓝G250有红色和蓝色两种色调。在酸性溶液中,其以游离态存在呈现棕红色;当它与蛋白质通过疏水作用结合后变为蓝色。 9.什么是酶的最适温度及其应用的意义? 酶活性最高时的温度称为酶的最适温度。可以利用这一原理指导工农业生产,提高生产效益。 10.什么是酶反应的最适PH?对酶的活性有什么影响? 酶催化活性最高时反应体系的 pH 称为酶促反应的最适 PH。PH过高、过低都会使酶促反应的速率下降。 11.什么是酶的活化剂? 指能够与分子上的一些结合,使酶活力提高的物质。 12.什么是酶的抑制剂?与变性剂有何区别?本实验结果如何证明酶的专一性? 指与分子上的一些结合,使酶活力下降,甚至消失,但不使变性的物质。区别:酶的抑制剂不会使酶发生变性,而酶的变性剂会使酶的结构和性质发生改变。酶的专一性证明:实验结果表明通过在淀粉和蔗糖中分别加入有活性的淀粉酶和蔗糖酶后,两者均产生了还原性的糖,与本尼迪凯特试剂反应产生了砖红色沉淀,而其他的条件下均没有还原性糖的的产生,进而说明了酶的专一性。(答题时可以详尽的描述) 13.何谓碘值?有何意义?

生化技术复习题 简答题 问答题

思考题 一.生物大分子物质的制备 简述生化分离方法与一般化学分离法相比的特点? 特点: 与化学产品的分离制备相比较,生物大分子的制备有其特殊性: (1)生物材料的组成极其复杂,常常包含有数百种乃至及几千种化合物。还有很多化合物未知,有待人们研究和开发。 (2)有的生物大分子在分离过程中还在不断的代谢,所以生物大分子的分离纯化方法差别极大,想找到一种适合各种不同类生物大分子分离制备的标准方法是不可能的。(3)许多生物大分子在生物材料中的含量甚微。分离纯化的步骤繁多,流程又长,有的目的产物要经过十几步,几十步的操作才能达到所需纯度的要求。 (4)生化分离制备几乎都在溶液中进行,影响因素很多,经验性较强。 (5)许多具有生物活性的物质一旦离开活体,很容易变形破坏,因此常选用比较温和的条件。 生物材料选择的一般原则有哪些? 生物材料选择的一般原则是:制备生物大分子,首先要根据目的选择合适的生物材料。材料选择的一般原则是,有效成分(即欲提取的物质)含量高、来源丰富、制备工艺简单、成本低等。但在实际工作中,则只须考虑材料的选择符合实验预定的目标要求即可。 材料选定后要尽可能保持新鲜,尽快加工处理。生物材料如暂不提取应冷冻保存。 常用于细胞破碎方法可分为哪些类型?简述细胞破碎的目的意义。 细胞的破碎方法可分为:机械法,包括(1)捣碎法(2)研磨法(3)匀浆法 物理法,包括(1)反复冻融法(2)超声波处理法(3)压榨法 化学与生物化学方法,包括(1)酶解法(2)化学法 目的意义:除了某些细胞外的多肽激素和某些蛋白质与酶之外,对于细胞内或多细胞生物组织中的各种生物大分子的分离纯化,都需要事先将细胞和组织破碎,使生物大分子充分释放到溶液中,并不丢失生物活性。不同的生物体或同一生物体不同部位的组织,其组织破碎的难易不一,使用的方法也不相同。 何谓提取?影响提取有效成分的因素有哪些? 提取定义:提取是指在一定的条件下,用适当的溶剂(溶液)处理原料,使欲分离物质充分溶解到溶剂(溶液)中的过程,也称为抽提。常用稀盐溶液、缓冲溶液和有机溶剂等来提取生物大分子。

生化实验思考题参考答案[1].

生化实验讲义思考题参考答案 实验一淀粉的提取和水解 1、实验材料的选择依据是什么? 答:生化实验的材料选择原则是含量高、来源丰富、制备工艺简单、成本低。从科研工作的角度选材,还应当注意具体的情况,如植物的季节性、地理位置和生长环境等,动物材料要注意其年龄、性别、营养状况、遗传素质和生理状态等,微生物材料要注意菌种的代数和培养基成分的差异等。 2、材料的破碎方法有哪些? 答:(1) 机械的方法:包括研磨法、组织捣碎法; (2) 物理法:包括冻融法、超声波处理法、压榨法、冷然交替法等; (3) 化学与生物化学方法:包括溶胀法、酶解法、有机溶剂处理法等。 实验二总糖与还原糖的测定 1、碱性铜试剂法测定还原糖是直接滴定还是间接滴定?两种滴定方法各有何优缺点? 答: 我们采用的是碱性铜试剂法中的间接法测定还原糖的含量。间接法的优点是操作简便、反应条件温和,缺点是在生成单质碘和转移反应产物的过程中容易引入误差;直接法的优点是反应原理直观易懂,缺点是操作较复杂,条件剧烈,不易控制。 实验五粗脂肪的定量测定─索氏提取法 (1)本实验制备得到的是粗脂肪,若要制备单一组分的脂类成分,可用什么方法进一步处理? 答:硅胶柱层析,高效液相色谱,气相色谱等。 (2)本实验样品制备时烘干为什么要避免过热? 答:防止脂质被氧化。 实验六蛋白质等电点测定 1、在等电点时蛋白质溶解度为什么最低? 请结合你的实验结果和蛋白质的胶体性质加以说明。

蛋白质是两性电解质,在等电点时分子所带净电荷为零,分子间因碰撞而聚沉倾向增加,溶液的粘度、渗透压减到最低,溶解度最低。结果中pH约为4.9时,溶液最浑浊,达到等电点。 答: 2、在分离蛋白质的时候,等电点有何实际应用价值? 答: 在等电点时,蛋白质分子与分子间因碰撞而引起聚沉的倾向增加,所以处于等电点的蛋白质最容易沉淀。在分离蛋白质的时候,可以根据待分离的蛋白质的等电点,有目的地调节溶液的pH使该蛋白质沉淀下来,从而与其他处于溶液状态的杂质蛋白质分离。 实验七氨基酸的分离鉴定-纸层析法 1、如何用纸层析对氨基酸进行定性和定量的测定? 答: 将标准的已知氨基酸与待测的未知氨基酸在同一张层析纸上进行纸层析,显色后根据斑点的Rf值,就可以对氨基酸进行初步的定性,因为同一个物质在同一条件下有相同的Rf 值;将点样的未知氨基酸溶液和标准氨基酸溶液的体积恒定,根据显色后的氨基酸斑点的面积与点样的氨基酸质量成正比的原理,通过计算斑点的面积可以对氨基酸溶液进行定量测定。 3、纸层析、柱层析、薄层层析、高效液相层析各有什么特点? 答:

生化知识点整理(特别全)

第一章 蛋白质的元素组成(克氏定氮法的基础) 碳、氢、氧、氮、硫(C、H、O、N、S ) 以及磷、铁、铜、锌、碘、硒 蛋白质平均含氮量(N%):16% ∴蛋白质含量=含氮克数×6.25(凯氏定氮法) 基本组成单位 氨基酸 熟悉氨基酸的通式与结构特点 ● 1. 20种AA中除Pro外,与羧基相连的α-碳原子上都有一个氨基,因而称α-氨 基酸。 ● 2. 不同的α-AA,其R侧链不同。氨基酸R侧链对蛋白质空间结构和理化性质有 重要影响。 ● 3. 除Gly的R侧链为H原子外,其他AA的α-碳原子都是不对称碳原子,可形成 不同的构型,因而具有旋光性。 ● 氨基酸分类P9 按侧链的结构和理化性质可分为: 非极性、疏水性氨基酸 极性、中性氨基酸 酸性氨基酸 碱性氨基酸 等电点概念 在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点(isoelectric point,pI )。 紫外吸收性质 含有共轭双键的芳香族氨基酸Trp(色氨酸), Tyr(酪氨酸)的最大吸收峰在280nm波长附近。 氨基酸成肽的连接方式 两分子脱水缩合为二肽,肽键

由10个以氨基酸相连而成的肽称为寡肽。 而更多的氨基酸相连而成的肽叫做多肽;多肽链有两端,其游离a-氨基的一端称氨基末端或N-端,游离a-羧基的一端称为羧基末端或C-端。 肽链中的氨基酸分子因脱水缩合而基团不全,被称为氨基酸残基。 蛋白质就是由许多氨基酸残基组成的多肽链。 谷胱甘肽GSH GSH是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。 (1) 体重要的还原剂保护蛋白质和酶分子中的巯基免遭氧化,使蛋白质处与活性状态。 (2) 谷胱甘肽的巯基作用可以与致癌剂或药物等结合,从而阻断这些化合物与DNA、RNA 或蛋白质结合,保护机体免遭毒性损害。 蛋白质1~4级结构的定义及维系这些结构稳定的作用键 蛋白质是氨基酸通过肽键相连形成的具有三维结构的生物大分子 蛋白质的一级结构就是蛋白质多肽链中氨基酸残基的排列顺序。主要化学键是肽键,有的还包含二硫键。 蛋白质二级结构是指多肽链的主链骨架中若干肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象,如α-螺旋、β-折叠、β-转角和无规卷曲等。蛋白质二级结构一般不涉及氨基酸残基侧链的构象。 二级结构的主要结构单位——肽单元(peptide unit)[肽键与相邻的两个α-C原子所组成的残基,称为肽单元、肽单位、肽平面或酰胺平面(amide plane)。它们均位于同一个平面上,且两个α-C原子呈反式排列。] 二级结构的主要化学键——氢键(hydrogen bond) 蛋白质的三级结构是指多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。也就是整条多肽链中所有原子或基团在三维空间的排布位置。蛋白质三级结构的形成和稳定主要靠次级键,包括氢键、盐键、疏水键以及德华力等。此外,某些蛋白质中二硫键也起着重要的作用。 由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象,称为蛋白质的四级结构。[亚基(subunit):由一条或几条多肽链缠绕形成的具有独立三级结构的蛋白质。] 蛋白质二级结构的基本形式?重点掌握α-螺旋、β-折叠的概念 α-螺旋(α-helix) β-折叠(β-pleated sheet) β-转角(β–turn or β-bend) 无规卷曲(random coil) α-helix ①多个肽平面通过Cα的旋转,相互之间紧密盘曲成稳固的右手螺旋。 ②主链螺旋上升,每3.6个氨基酸残基上升一圈,螺距0.54nm。肽平面和螺旋长轴平行。 ③相邻两圈螺旋之间借肽键中羰基氧(C=O)和亚氨基氢(NH)形成许多链氢键,即每一

医学检验生物化学考试复习题

2012年上半年生化考试复习题 一:单选题 1.琼脂糖凝胶电泳用pH8.6的巴比妥缓冲液可以把血清蛋白质分成五条区带,由正极向负极数起它们的顺序是:( B ) A.白蛋白、β-球蛋白、α1-球蛋白、α2-球蛋白、γ-球蛋白 B.白蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白 C.白蛋白、α1-球蛋白、α2-球蛋白、γ-球蛋白、β-球蛋白 D.α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白、白蛋白 E.白蛋白、β-球蛋白、α1-球蛋白、γ-球蛋白、α2-球蛋白 2.已经确定的稳定而均一的物质,它的数值已由决定性方法确定,所含杂质也已经定量,该物质为:(A ) A.一级标准品 B.二级标准品 C.校准品 D.控制物 E.参考物 3.从结构上看能较好的避免交叉污染的自动生化分析仪是:( B ) A.流动式 B.分立式 C.离心式 D.单通道式 E.多通道式 4.临床生物化学检验中应用最广泛的一类分析技术是:(C ) A.发射光谱分析法 B.散射光谱分析法 C.吸收光谱分析法 D.荧光分光光度法 E.原子吸收分光光度法 5.离心机砖头的旋转速度为20000γ/min的离心为:( C ) A.低速离心 B.平衡离心 C.高速离心 D.超速离心 E.等密度离心 6.反映神经系统疾病最好的测定标本是:( C ) A.血清 B.全血 C.脑脊液 D.尿液 E.溶血血清 7.由实验室自己配置或为商品,其中有关物质的量由参考方法定值的标准品为( B )A.一级标准品

B.二级标准品 C.控制物 D.参考物 E.原级参考物 8.经过详细的研究,没有发现产生误差的原因或在某些方面不够明确的方法为( A )A.决定性方法 B.推荐方法 C.参考方法 D.常规方法 E.对比方法 9.影响电泳的因素包括:(D ) A.电场强度 B.电泳缓冲液的PH值 C.电泳缓冲液的离子强度 D.以上都是 E.以上均不是 10.干化学自动生化分析仪的光学系统是:( B ) A.分光光度计 B.反射光分析仪 C.比色计 D.浊度计 E.原子吸收光谱仪 11.下列哪项不属于NCCLS所规定的纯水等级标准的特性指标:( C ) A.微生物含量 B.电阻率 C.钙离子 D.PH值 E.硅 12.有关比浊测定法的描述哪项是错误的:( D ) A.比浊法不是比色分析 B.比浊法分为化学比浊法和免疫比浊法 C.免疫比浊法分为透射比浊法和散射比浊法 D.分立式自动生化分析仪不能做散射比浊分析 E.干片式生化分析仪不能做比浊分析 13.临床生化实验室用水一般采用:( B ) A.一级水 B.二级水 C.三级水 D.次级水 E.自来水 14. 生化质控目的是:(E ) A.使随机误差逐渐缩小 B.消灭随机误差 C.使随机误差得到监测和及时发现

生化简答题

名词解释: 1 、蛋白质:蛋白质是由许多氨基酸通过肽键联系起来的含氮高分子化合物,是机体表现生理功能的基础。 2 、蛋白质的变性:在某些物理和化学因素的作用下,蛋白质的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失称为蛋白质变性。 3 、蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序。 4 、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 5 、蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置,即整条肽链所有原子在三维空间的排布位置。 6 、蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用。 7 、蛋白质的等电点:当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。 8 、DNA的变性:在某些理化因素的作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,称DNA变性。 9 、DNA的复性:变性DNA在适当条件下,两条互补链可以重新恢复天然的双螺旋构象,称为DNA的复性。 10 、核酸酶:所有可以水解核酸的酶。可分为DNA酶和RNA酶。 11 、酶:由活细胞合成的,对其特异底物起高效催化作用的蛋白质,是机体内催化各种代谢反应最主要的催化剂。 12 、核酶:是具有高效,特异催化作用的核酸,是近年发现的一类新的生物催化剂。 13 、酶原:无活性的酶的前体称为酶原。 14 、酶的必需基团:酶分子结构中与酶的活性密切相关的基团称为酶的必需基团。 15、同工酶:指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。 16、糖酵解:缺氧情况下,葡萄糖生成乳糖的过程。 17 、酵解途径:由葡萄糖分解成丙酮酸的过程。 18 必需脂酸:某些不饱和脂肪酸,动物机体自身不能合成,需要从植物油摄取,是动物不可缺少的营养素,称为必需脂酸。 19 、脂肪的动员:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂肪酸及甘油并释放入血以供其他组织氧化利用,该过程称脂肪动员。 20 、酮体:乙酰乙酸,β羟丁酸和丙酮三者酮体。是脂肪在肝分解氧化时特有的中间代谢物。 21 、转录:生物体以DNA为模板合成RNA的过程称为转录。 22 、基因:是为生命活性产物编码的DNA功能片段,这些产物主要是蛋白质和各种RNA。 问答题: 1、简述镰刀形红细胞溶血的发病机制。 答正常人血红蛋白β亚基的第6位氨基酸是谷氨酸,而镰刀形红细胞贫血患者的血红蛋白中,Glu变成了Val,导致蛋白质一级结构的改变,从而使本是水溶性的血红蛋白,聚集成丝,相互粘着,导致红细胞变形成为镰刀状极易破碎,产生贫血。 2 、什么是酶的抑制剂?说明酶的抑制作用分为哪几种。 答:凡能使酶的催化活性下降而不引起酶蛋白变性的物质称为酶的抑制剂。根据抑制剂与酶结合的紧密程度不同,酶的抑制作用可分为可逆性抑制和不可逆性抑制。 3 、磺胺类药物的作用机制。 答:对磺胺类药物敏感的细菌在生长繁殖时,不能直接利用环境中的叶酸,而是在菌体内二氢叶酸合成酶的作用下以对氨基苯甲酸为底物合成二氢叶酸,而磺胺类药物的化学结构与对氨基苯甲酸的结构相似,是二氢叶酸合成酶的竞争性抑制剂,从而抑制二氢叶酸的合成,导致细菌的核酸合成受阻而影响其生长繁殖。 4 、什么是三羧酸循环?其生理意义是什么? 答:三羧酸循环也称柠檬酸循环,是三大营养素的最终代谢通路。其生理意义在于三羧酸循环是糖,脂肪,氨基酸代谢联系的枢纽,其过程中代谢的各种小分子物质为体内生化过程所必需。 5、什么是DNA复制中的半保留复制?其意义是什么? 答:半保留复制是指复制时,母链的双链DNA解开成两股单链,各自作为模板指导子链DNA的合成。子

食品·微生物学实验思考题答案

食品微生物学技术思考题答案1.如何区别高倍镜和油镜 答:(1)油镜更接近标本片(2)油镜与标本间的介质是香柏油(3)油镜刻有“oil”或“Hi”字样,也刻有一圈红线或黑线为标记。 2.为什么在使用高倍镜及油镜是应特别注意避免粗调节器的错误操作答:使用高倍镜及油镜时镜头距离标片很近,而粗调节器的调节幅度较大,粗调节器的错误操作会使镜头大幅度向标本移动,很容易损坏标本和镜头。一般先用低倍镜找到物象后换到高倍镜,就只需要用细调节器了。 3.用油镜观察时应注意哪些问题在载破片和镜头之间加滴什么油起什么作用 答:(1)应该先用擦镜纸将镜头擦干净,以防止上次实验的污染,操作时,先低倍再高倍,用完要擦掉油。(2)在转换油镜时,从侧面水平注视镜头注视镜头与玻片的距离。使镜头浸入油中而不以压破载玻片为宜。(3)从目镜内观察,把孔径光阑开到最大,使其明亮。然后用微调将镜台下降,直至视野内物象清晰。如油镜已离开油面仍未见物象,需重复操作。加的是香柏油。作用是增加折光率,增加显微镜的分辨率。 4.在调节焦距时,往往出现一些疑似观察标本的物象点,物象点可能是目镜或物镜上的杂质,也可能是标本片上的观察对象,如何通过操作判断这些物象点是否在标片上 答:移动标本片,看物象点是否移动,如果不移动,则不在标本片上。 5.如果涂片未经热固定或固定温度过高、时间过长,会出现什么现象答:固定时间是杀死菌体,使菌体蛋白质凝固黏附于载玻片上,增加菌体对染色剂的结合力,易于着色。但是如果没固定,不容易着色,且容易被清水冲走。

温度过高会使细胞收缩变形,时间过长会导致菌体变形或形态破坏,难以着色,从而导致难以着色。 6.为什么要培养18-24h的细菌菌体进行革兰氏染色 答:此时菌体进入比较活泼的繁殖生长期,细胞壁比较好着色。若菌龄太老,由于菌体死亡或自溶常使革兰氏阳性菌转呈阴性反应,关键在于细胞壁的通透性的改变。如果菌龄过老,不便于显微镜下观察时阴性还是阳性菌。 7.如何操作才能保证革兰氏染色结果正确,其中的关键环节是什么答:具体操作步骤为(1)涂片,与简单染色法相同,要求薄而均匀。(2)干燥、固定,在空气中自然晾干,或将涂面朝上,在酒精灯微小火焰上干燥;在酒精灯火焰上通过3-4次,温度不宜过高。(3)染色,用结晶紫进行初染1min,然后水洗。用碘液进行媒染,用碘液覆盖染色部位1min,水洗。在涂有细菌的部位连续滴加95%乙醇,约30s,水洗脱色。用番红溶液复染1min,水洗。(4)干燥,自然干燥或用吸水纸吸干,也可以用电吹风吹干。(5)镜检。 关键环节是酒精脱色。 8.为何常用插片法培养放线菌观察个体形态 答:放线菌的营养菌丝生长在培养基表面或插入培养基里面,不易被接种针挑取制片。采用插片法可观察到放线菌自然生长状态下的特征,而且便于观察不同生长时期的形态。 9.在显微镜下,如何区分基内菌丝和气生菌丝 答:一般气生菌丝颜色较深,直生或分枝丝状,比基内菌丝粗;而基内菌丝色浅、发亮,可看到隔膜,继而断裂成球状或杆状小体。 10.放线菌与细菌的菌落最显着的差异是什么

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

生化论述题

生化论述题 1、现有两支试管,有一支装有一种DNA溶液,另外一支装有一种RNA溶液,请根据核酸的理化性质设计一个实验来对二者进行鉴别,并对相关的核酸理化性质进行解释(可使用的设备和试剂:水浴锅,分光光度计,蒸馏水,移液器,试管)。 题解: 1)通过加热后测定吸光度,吸光度升高的是DNA,吸光度基本不变的是RNA。 2)DNA和RNA的结构上的不同,DNA为双链双螺旋结构,RNA为单链。 3) DNA双链之间通过硷基之间的氢键相连接,加热会破坏氢键,暴露出硷基,260nm吸光度增加。 2、凝血因子II,VII, IX和X是依赖维生素K的凝血因子.γ-羧化酶参与了催化这些凝血因子的合成过程.维生素K对γ-羧化酶的催化活性是必需的.所以临床上,为防止手术中及术后出血过多,常补充一定量的维生素K,对促进病人的凝血功能有明显效果.请结合酶的结构和功能相关理论进行解释。 题解: 1) 酶蛋白与辅助因子共同组成全酶,单独存在无活性,γ-羧化酶是一个结合酶,只有辅助因 子维生素K存在的情况下,酶才具有活性。 2) 酶的辅助因子分为辅酶和辅基,辅酶和酶蛋白结合疏松;辅基和酶蛋白结合紧密。 3、举例论述蛋白质的结构与功能之间的紧密关联。 每一种蛋白质都具有特定的结构,也具有特定的功能。 一)蛋白质的一级结构与其构象及功能的关系 蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。 一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且在系统发生上进化位置相距愈近的差异愈小。 在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因上遗传信息的突变。 (二)蛋白质空间构象与功能活性的关系 蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋白质在复性后,构象复原,活性即能恢复。如血红蛋白结构与氧离曲线,Hb中的亚基和氧结合后,会促进下一个亚基和氧的结合。

生物化学知识点汇总

生物化学知识点486 时间:2011-8-10 18:04:44 点击: 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要1生物化学一、填空题核心提示:折、蛋白质二级结构的主形式是(a-螺旋)、(B-元素组成的,组成蛋白质的基本单位是(氨基酸)。2(疏3、维行蛋白质的空间结稳定的化 学键主要有(氢键)、(盐键)、叠)(B-转角)(无规则卷曲)。... 水键)、(范德华力)等生物化学 一、填空题 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白1 质的基本单位是(氨基酸)。 转角)(无规则卷曲)。、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-2、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华3 力)等非共价键和(二硫键)。 、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、、4 (重金 属盐沉淀法)。、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。构成核酸的基本单位是(氨基酸),5 核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。)、CA)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶6、核酸中嘌呤碱主要有(腺嘌呤)和(胸腺嘧啶T)三种。(尿嘧啶U、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称7 为(酶促反应),酶的活性是指(酶的催化能力)。 8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。 、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、9 )、(激活剂)、(抑制剂)(PH),糖的来源有(食物中糖的消化吸收)、3.9-6.1mmol/L10、正常情况下空腹血糖浓度为((肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。,反应在(线12)分子ATP411、三羧酸循环中有(2)次脱羧()次脱氧反应,共生成(酮戊二酸脱氢酶粒)中进行,三种关键酶是(柠檬酸合成酶)、(异柠檬酸脱氢酶)、(a- 系)。、由于糖酵解的终产物是(乳酸),因此,机体在严重缺氧情况下,会发生(乳酸)中12 毒。 、糖的主要生理功能是(氧化供能),其次是(构成组织细胞的成分),人类食物中的13 糖主要是(淀粉)。、糖尿病患者,由于体内(胰岛素)相对或绝对不足,可引起(持续)性(高血糖),14 1 甚至出现(糖尿)),并释放能量的过程称(生H2O、营养物质在(生物体)内彻底氧化生成(CO2)和(15 物氧化),又称为(组织呼吸)或(细胞呼吸)。琥珀酸氧化呼吸链),两FADH2、体内重要的两条呼吸链是(NADH氧化呼吸链)和(16 2ATP)。条呼吸链ATP的生成数分别是(3ATP)和()H2O17、氧化磷酸化作用是指代谢物脱下的(氢)经(呼吸链)的传递交给(氧)生成(ATP)的过程相(偶联)的作用。的过程与(ADP)磷酸化生成(ATP的主 要方式为(氧化磷酸化),其次是(底物水平磷酸化)。18、体内生成脱a-CO2是通过(有机物)的脱羧反应生成的,根据脱羧的位置不同,可分为(19、体内脱羧)。羧)和(B-氧化过程包括(脱氢)、(加水)、(再脱氢)、(硫解)四个步每一次B-20、脂酰CoA )。)和比原来少2

生化简答题及论述题

简答题及论述题 1、请描述沃森和克里克在1953 年提出的DNA 双螺旋结构模型 1、两条反平行链,右手螺旋;碱基在链内侧,戊糖磷酸在外侧,碱基垂直于螺旋轴,碱基与糖垂直。10 个核苷酸形成一个螺旋,螺距 3.4nm。碱基互补配对,一个 A 对应一个T , 一个G 对应一个 C 。 2、某些金属和非金属离子以及一些有机小分子对酶的结构和功能有何影响? 2、(1)通过结合底物为反应定向。 (2)通过可逆地改变金属离子的氧化态调节氧化还原反应。 (3)通过静电效应稳定或屏蔽负电荷。 (4)作为辅酶或者辅基起到电子或原子的传递作用。 3、使酶活力降低或丧失的可能因素有哪些? 3、(1)温度升高(2)酸碱变化(3)有机溶剂或重金属离子 4、试比较酶的变性与失活有什么异同 4、酶是由蛋白质组成的,所以具有蛋白质的性质。即在高温、过强的酸、碱环境下会发生组成或是结构的改变,这就是变性。由于组成或者结构改变,酶的功能也会受到破坏。酶的变性往往是不可逆的。当温度或者酸碱度达到一个程度时,酶的活性持续下降,当把条件恢复到初始状态时,酶活并没有恢复,这说明酶已失活。但是酶的结构或组成没有发生改变。在经过特殊处理后,酶活能够得到恢复。 5、试列举五种测定蛋白质分子量的方法 5、渗透压法、化学组成法、沉降分析法、凝胶过滤法、SDS-聚丙烯酰胺凝胶电泳法。 6、什么是蛋白质的二级结构?它主要有哪几种形式? 6、蛋白质主链的折叠产生由氢键维系的有规则的构象,成为蛋白质的二级结构。二级结构包括α螺旋、β折叠、β转角和β突起以及无规则卷曲。 7、什么是抗体?简述其结构特点(可用简图表示) 7、机体是在抗原物质刺激下,由 B 细胞分化成的浆细 胞所产生的、可与相应抗原发生特异性结合反应的免疫 球蛋白。 抗体是具有 4 条多肽链的对称结构,其中 2 条较 长、相对分子量较大的相同的重链(H 链);2 条较 短、相对分子量较小的相同的轻链(L 链)。链间由 二硫键和非共价键联结形成一个由 4 条多肽链构成的单 体分子。 8、简述从蛋白质与氨基酸的混合物中分离和鉴定氨基 酸的方法 8、分配柱层析、纸层析、离子交换层析、薄层层析

相关主题
文本预览
相关文档 最新文档