随机过程与排队论19
- 格式:ppt
- 大小:889.50 KB
- 文档页数:31
随机过程与排队论课程部分习题答案第一章1-1 解:因为,,)1()1,()1|(>>=>x p x x p x x p 其中, ⎰∞+--==>1)1(λλλe dx e x p x所以,{=>)1|(x x p )1(0--x e λλ 11>≤x x ,[]λλλ11)1|(1|1)1(+==>=>⎰⎰∞+--∞+∞-dx e x dx x x xp x x E x1-3 解:因为,y dx ye y e y Yf y x f y Y x f y y y y 1)(),()|(0=====⎰--,其中,+∞<<<<y yx 00所以,[]31|2022y dx y x y Y x E y =⋅==⎰1-4解:令,{=Y 210迷宫第一次选择左边,走出分钟徊第一次选择左边,但徘第一次选择右边561,31,21210===p p p令N 为耗子徘徊的时间均值;[]27][65][]|[+====∑N E i Y p i Y N E N E i所以,[]N E =21。
平均徘徊21分钟1-8解:Y 的概母函数qZ pZZ P -=1)(所以,[]()p q p P Y E 11)1(2'=-==,222][][][p qY E Y E Y Var =-=1-10 证明:(略)1-11 解:a )N S 的概母函数为:⎥⎦⎤⎢⎣⎡--==λλqZ p Z P G Z H 1exp ))(()(N S 的均值:p q S E N λ=][,方差,2)1(][p q qS Var N +=λb )(1)证明:N S 的概率母函数为))1(exp())(exp()(-=-+=Z p Zp q Z H λλλ所以,N S 是均值为p λ的泊松分布。
(2))()(),(y S P n N P y S n N P n N =⋅==== yn y n q p y n y n e n --⋅-⋅⋅=λλλ)!(!!!)!(!y n y q p e yn y n -=--λλ 得证(3)!)(),()(),()|(y e p yS n N P y S p y S n NP y S n N P py N N N N λλ-⋅=========()y n y n q e yn q ≥-=--,)!(λλ,证毕1-13 解:)()('x F x f =,且[]θλλθθ+==-K e E f x )(*所有, []λθθθKd df x E =⎥⎦⎤⎢⎣⎡-==0*)(1-15解:[]()22*1)(θθθθ---==e e E f x第二章2-2 解:na a a a a a n p qq p p q p q U ⎪⎪⎭⎫⎝⎛-+--=2-5 证明:(略)2-7 证明:(略)2-8 解:)(1t N 时间t 内通过的小车数,)(2t N 时间t 内通过的大车数 a )950.011)1)((36005.01≈-=-=≥-⨯-e e t N Pb )[])(67105710)(|)(1辆=+==t N t N Ec )066.0)5)(45)((12=,==t N t N P2-9解:a )顾客到达的时间的分布是均匀分布,所以,3/1)20(=p p =分钟内到达顾客在开始9/1)202(2=p p =分钟内到达个顾客在开始b )至少有一个顾客在开始20分钟内到达的概率95)1(12=--=p p b2-11解:)1)1(exp())(()(qZ Z Z P G t M --=λ的概母函数:所以,p tP t X tE t M E i λλλ=⋅==)1(][)](['同时, 22)2(][)]([p p q t X tE t M Var +==λλ第三章3-1 解:1)根据定义,此过程为马氏链。
随机过程与排队论任课教师:魏静萱副教授wjx@曾勇副教授第一节排队现象例一:电话系统:主叫用户和被叫用户之间提供语音服务,该服务承载于某条通信信道之上,即两个用户c个通道。
地需要一条通道,3个用户需要3个通道,4个用户需要6个通道。
一般的,n个用户需要2n球人口60亿,需要?通道。
海量通信接近天文数字。
解决:信道“公用”导致拥挤排队现象例二:排队现象举例排队系统的三大要素:1. 输入过程 2. 排队规则:队列允许的最大长度 3. 服务窗:顾客是怎样接受服务的1.输入过程:顾客按什么规则进入系统?一个个?成批?到达过程和到达时间间隔符合一定的分布,称到达分布。
假设:到达过程和到达时间是独立同分布的。
到达过程假定为平稳的,对时间是齐次的。
注:Markov 齐次过程 如果一个过程只依赖于现在,而不是过去。
表1 输入过程的三种随机过程描述按顾客到达过程的不同概率特性分类: ① 定长输入(D ):顾客等间隔到达,nc τ=n τ的分布函数为 1()()0n t c F t P t t cτ≥⎧=≤=⎨<⎩②Poisson 流输入(M): 系统的输入过程{M(t)>0}是Poission 流 满足4个条件:a) M(t)取值为非负数b) P(M(0)=0)=1, 即时间间隔为0时到达系统 的人数为0 c) 过程{M(t)} 具有平稳独立增量性 d) 每一个增量M(a+t)-M(a)非负,且服从参数为tλ的泊松分布(){()()}!k a t P M t a M a k e K λλ-+-==③ k 阶Erlang 输入(Ek)④ 一般独立输入(G):顾客的到达过程{n τ}是独立同分布的随机变量序列,其分布函数可以是任意函数。
⑤ 成批到达系统:顾客一批批到达系统,每批相继到达的时间间隔为上述各种分布之一。
2.排队与服务规则① 损失制 (无排队队列):顾客到达时,系统被占用,顾客离去,不再回来。
第八章 排队论排队是日常生活和经济管理经常遇到的问题,如医院等待看病的病人、加油站等待加油的汽车、工厂等待维修的机器、港口等待停泊的船只等。
在排队论中把服务系统中这些服务的客体称为顾客。
由于系统中顾客的到来以及顾客在系统中接受服务的时间等均是随机的,因此排队现象是不可避免的。
对于随机服务系统,若扩大系统设备,会提高服务质量,但会增加系统费用。
若减少系统设备,能节约系统费用,但可能使顾客在系统中等待的时间加长,从而降低了服务质量,甚至会失去顾客而增加机会成本。
因此,对于管理人员来说,解决排队系统中的问题是:在服务质量的提高和成本的降低之间取得平衡,找到最适当的解。
排队论是优化理论的重要分支。
排队论是1909年由丹麦工程师爱尔郎(A.K.Erlang )在研究电话系统时首先提出,之后被广泛应用于各种随机服务系统。
第一节 排队论的基本概念及所研究的问题一、基本概念(一)排队系统的组成一般的排队系统有三个基本组成部分:顾客的到达(输入过程)、排队规则和服务机构,如图8—1所示。
1.输入过程输入过程指顾客按什么样的规律到达。
包括如下三个方面的内容:(1)顾客总体(顾客源) 指可能到达服务机构的顾客总数。
顾客总体数可能是有限的,也可能是无限。
如工厂内出现故障而等待修理的机器数是有限的,而到达某储蓄所的顾客源相当多,可近似看成是无限的。
(2)顾客到达的类型 指顾客的到达是单个的还是成批的;(3)顾客相继到达的时间间隔分布 即该时间间隔分布是确定的(定期运行的班车、航班等)还是随机的,若是随机的,顾客相继到达的时间间隔服从什么分布(一般为负指数分布);2.排队规则排队规则指顾客接受服务的规则(先后次序),有以下几种情况。
(1)即时制(损失制) 当顾客来到时,服务台全被占用,顾客随即离去,不排队等候。
这种排队规则会损失许多顾客,因此又称为损失制。
(2)等待制 当顾客来到时,若服务台全被占用,则顾客排队等候服务。
在等待制中,又可按顾客顾客达到排队系统 图8—1服务的先后次序的规则分为:先到先服务(FCFS,如自由卖票窗口等待卖票的顾客)、先到后服务(FCLS,如仓库存放物品)、随机服务(SIRO,电话交换台服务对话务的接通处理)和优先权服务(PR,如加急信件的处理)。
第9章 排队论排队论是我们每个人都很熟悉的现象。
因为人或物或是信息为了得到某种服务必须排队。
有一类排队是有形的,例如在售票处等待买票的排队,加油站前汽车等待加油的排队等;还有一类排队是无形的,例如电话交换机接到的电话呼叫信号的排队,等待计算机中心处理机处理的信息的排队等。
为了叙述的方便,排队者无论是人、物、或信息,以后统称为“顾客”。
服务者无论是人,或事物,例如一台电子计算机也可以是排队系统中的服务者,我们以后统称为“服务员”。
排队现象是我们不希望出现的现象,因为人的排队意味着至少是浪费时间;物的排队则说明了物资的积压。
但是排队现象却无法完全消失,这是一种随即现象。
由于顾客到达间隔时间的随机性和为顾客服务时间的随机性是排队现象产生的原因。
如果上述的两个时间是固定的,我们就可以通过妥善安排来完全消除排队现象。
排队论是研究排队系统在不同的条件下(最主要的是顾客到达的随机规律和服务时间的随机规律)产生的排队现象的随机规律性。
也就是要建立反映这种随机性的数学模型。
研究的最终目的是为了运用这些规律,对实际的排队系统的设计与运行做出最优的决策。
排队论中的数学模型是根据概率和随机过程的理论建立起来的,我们先来讨论泊松过程和生灭过程,然后,再此基础上研究排队系统的结构及其主要的数学模型,最后研究排队系统的优化问题。
9.1泊松过程和生灭过程9.1.1 泊松过程如果用表示在[0时间内顾客到达的总数,则对于每个给定的时刻,都是一个随机变量。
随即变量族()N t ,]t t ()N t {(称作是一个随机过程。
)[0,]}N t t T ∈若对,有12n n t t t t +<<<"1111122(()(),(),,()n n n P N N N N t i t i t i t ++==="n i =11(()())n n n P N N t i t ++==n i = (9-1)则称随即过程{(为马尔柯夫过程。
第七部分 排队论第十九章 排队论排队论又称随机服务系统理论,它是通过对各种服务系统在排队等待现象中概率特性的研究,来解决服务系统最优设计与最优控制一门学科。
目前,排队论已在计算机系统、计算机通信网络系统、电子对抗系统、交通运输系统、医疗卫生系统、库存管理系统、军事作战系统等方面有着重要的应用,并已成为工程技术人员、管理人员在系统分析与设计中的重要数学工具之一。
§1 排队系统的基本概念在人们的日常生活中,一个服务系统在工作过程中由于拥挤而产生的排队等待现象是经常发生的.例如,顾客在理发店内等待理发(见图)、用户在电话机前等候通话、发生故障的机器等候工人修理、进入机场上空的飞机等候降落等等。
如果我们把服务系统的含义再拓广一下,则进入雷达接收机的信号等待处理、通信系统的报文在缓冲器上等候传送、多微机系统的处理机等候访问公共内存、计算机网的用户等候使用某资源、进入水库的流水等待开闸泄放等等都可看作服务系统在运行过程中所产生的排队等候现象。
我们就将这种具有排队等候现象的服务系统通称为排队系统。
任何一个服务系统总是由两个相辅相成的要素:顾客和服务员(或服务台)所构成。
凡是要求接受服务的人与物统称为顾客;凡是给予顾客服务的人与物统称为服务员(或服务台)。
对于一个排队系统来说,如果顾客的到达时刻和对顾客的服务时间是固定的话,人们总可以适当安排或调整服务员个数、服务速率,从而使顾客到达后少排队甚至不排队而迅速进入服务,亦即容易达到供求之间的平衡关系,如通常情况下的火车调度就属于以上情况。
然而由于客观环境的复杂多变以及种种随机因素的影响,使得在绝大数情况下,顾客到达服务系统的时刻以及对顾客的服务时间都是随机的,这就给服务系统造成了一系列供求之间的矛盾。
例如,有时顾客到得多而服务跟不上(供不应求),而另一些时候则由于顾客少(或无顾客)而使服务员处于空闲状态(供过于求)。
因此,排队论的主要任务就是:通过对排队系统概率规律性的探讨来寻求某些能达到供求平衡的手段与策略,这也就是排队系统的所谓最优设计与最优控制问题。
在我们的日常生活中,常常遇到资源有限而需要按一定规则排队的情况,例如到超市购物付款,买火车票,数据的传输,电路交换等等,资源的有限性以及服务的随机性是排队现象存在的基础,研究这一类问题具有普遍意义。
数学中,通过随机过程分析来研究排队问题的方法论称为排队论,本文就是利用数学的随机过程理论来分析排队问题,讲述最基本的排队模型,标准的M/M/1 模型,分析代表其系统运行情况的指标。
排队系统一般来说是由等待资源的顾客和提供服务的服务员构成,由于顾客的到达与服务完毕的时间是不确定的,所以排队系统存在随机性。
为了既能保证服务质量又不浪费服务资源,人们在随机过程的基础上发展起来了一种数学方法—排队论。
任何排队系统都有三个基本参数,服务员的数目也称窗口数m ,顾客的到达速率λ,系统的服务速率μ。
除此之外,为了很好的描述系统的运行状态,还要研究顾客到达的时间间隔ti ,以及服务时间τi 的统计分布和排队规则。
最常用的方法也是比较合适的方法是认为它们服从指数分布,因为指数分布具有无记忆性,与现实中的一大类情况相似,并且使得排队过程称为马尔可夫过程。
所以要对排列规则做如下的假设:平稳性:到达k 个顾客的概率只和顾客到达的时间间隔t 有关,与起始时刻无关。
无后效性:顾客到达的时刻无相独立疏稀性:在无限小的时间间隔内,到达两个及以上顾客的概率为0,且在有限时间区间内到达的顾客数是有限的。
上面说做的假设,可以保证顾客到达的时间间隔t 为指数分布的随机变量,在现实生活中的排队系统里上述假设也是成立或者近似成立的。
t 的概率密度函数为 a(t)= λe −λt 式中的λ是顾客的到达率。
可以证明在T 时间间隔内,有k 个顾客到达的概率符合泊松分布:P k (T)=(λT)kk ! e −λT由于已经说明两个顾客服务所需的时间是互不相关的,平稳的,疏稀的,则服务时间τ的分布也服从指数分布b(τ)= μe −μτ类似的,在T 时间内,有k 个顾客被服务后离去的概率为Q k (T)=(μT)k k!e −μT 有了这些基础后,下面开始介绍一种基本的排队模型。