光学小论文
- 格式:docx
- 大小:19.66 KB
- 文档页数:6
理学院电子科学与技术120131326 刘玉光浅谈光学概论【简介】光学已成为为现代科研的重要内容,传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光学将成为今后光学工程学科的重要发展方向。
【英文译文】Optical has become the important contents for the modern scientific research, the traditional optical only research visible light, and modern optical already expanded to whole wavelength electromagnetic wave of research. Light is an electromagnetic wave, in physics, electromagnetic wave by electrodynamics of maxwell's equations describing, At the same time, the light has wave-particle duality, need to use the quantum mechanics expression. Optical will become future optical engineering discipline of important development direction.【关键词】光学、现代科技、应用、研究、历史、前景【正文】一、光学简介在早期,主要是基于几何光学和波动光学拓宽人的视觉能力,建立了以望远镜、显微镜、照相机、光谱仪和干涉仪等为典型产品的光学仪器工业。
这些技术和工业至今仍然发挥着重要作用。
光学小论文:数码相机原理照相机从胶片式的到如今的数码相机一直在不断发展走进千家万户,那么这个我们经常使用的光学仪器里有多少光学知识呢。
以前我了解甚少,只隐约知道其中有很多透镜组进行成像,买相机是看着那些眼花缭乱的规格参数也是一头雾水。
这学期刚刚学习了光学,我决定通过查阅一些资料运用一些学过的知识,初步了解一下照相机的内部原理。
(1)小孔成像数码相机在基本成像原理上,与传统的胶片相机乃至相机的老祖宗均属“同宗同源”——它们所遵循的都是“小孔成像”原理。
我们知道,光在同一均匀介质中、不受引力作用干扰的情况下,沿直线传播;因此它在遇到阻隔物上的孔洞时会穿过它,并能在孔后一定距离内的对应平面上投射出一个倒立的实影;只要投影面周围的环境足够暗,影像就能被人眼所观看到。
照相技术的发明者正是利用光的这一的特性与传递原理,以光子为载体,把某一瞬间被摄景物的光信息以能量方式通过设在相机上“孔洞”传递给后方的感光材料。
简单地说,照相机的基本工作原理就是——将景物影像通过光线的各种传播特性准确地聚焦在具有感光能力的成像平面上,通过各种辅助手段控制光线的流量,从而获得符合用户要求的影像画面,最后通过不同的手段保存下来。
在照相机上,“小孔成像”原理中的“小孔”就是大家一定不会感到陌生的“镜头”(其实更精确的描述应该是镜头内的光圈孔),而镜头后方的感光体(感光材料)便是“投影面”。
(2)镜头“小孔成像”只能简单地“留影”,却无法便捷地控制成像大小与清晰度,这个问题可以通过使用可改变光线聚散的“透镜”来解决。
为了获取清晰的成像,早在16世纪欧洲人设计的暗箱上就已经采用了透镜,照相机沿用了这一设计并将其发扬光大。
所以准确地说,照相机所遵循的是——以“小孔成像”为基础的“透镜成像”原理。
相机上安装这类透镜的部分就是我们所说的“镜头”。
随着技术的发展,人们发现改变被摄物体或景象的大小范围与清晰度,可通过在镜头中使用、组合不同规格的透镜并调节其位置来实现,因此镜头结构逐渐变得复杂起来。
光学畸变的原理及应用1. 引言光学畸变是指光线在经过光学系统传输过程中产生的形状失真现象。
过去几十年来,人们对光学畸变的研究已经取得了显著的进展。
本文将介绍光学畸变的原理及其在实际应用中的意义。
2. 光学畸变的分类在研究光学畸变之前,首先需要了解光学畸变的分类。
常见的光学畸变包括球差、色差、像散、弯曲畸变等。
2.1 球差球差是由于光线经过球状透镜或反射器时,不同位置的光线会汇聚或发散而产生的畸变现象。
球差的表现形式有球面像差和球面彗差。
2.2 色差色差是指不同波长的光线在通过透镜或反射器时,由于折射率的不同而引起的聚焦位置不同。
常见的色差有色像差和色散。
2.3 像散像散是指透镜或反射器在成像时,不同位置的光线所成的像位置不同的现象。
像散分为两种类型,即相对像散和绝对像散。
2.4 弯曲畸变弯曲畸变是由于光线通过球状透镜或反射器时,不同位置的光线会经历不同的折射或反射而产生的图像形状失真现象。
3. 光学畸变的原理光学畸变的原理可以用几何光学理论进行解释。
根据菲涅耳的原理和光线传播的基本规律,我们可以推导出光线在经过光学系统时产生畸变的原因。
4. 光学畸变的应用光学畸变的研究不仅仅是为了了解其原理,更重要的是为了提供解决方案,并应用于实际的光学系统中。
4.1 光学仪器设计在光学仪器的设计中,了解光学畸变的原理对于优化设计非常重要。
通过对各种畸变的研究,可以提高光学仪器的成像质量,减少畸变带来的成像失真。
4.2 光学通信在光学通信系统中,光学畸变会对信号传输造成干扰。
了解光学畸变的原理,可以帮助优化光纤的设计和信号传输过程,提高通信系统的性能。
4.3 光学成像在光学成像领域,光学畸变是一个重要的研究方向。
通过研究不同类型的光学畸变,可以改善成像系统的分辨率和清晰度,提高图像质量。
5. 结论通过对光学畸变的原理及应用的介绍,我们可以看到光学畸变在光学领域中的重要性。
光学畸变的研究对于优化光学系统的设计、提高通信系统的性能以及改善成像质量都具有重要的意义。
光学专业毕业论文范文在光学的开展历史上,曾经有几位学者做出过出色奉献。
其中,依萨克-牛顿(I. Newton1642--1727)[1] 认为,光是发光体发射的一种微粒,人们通常说的粒子性。
到公元二十世纪初,爱因斯坦等人[2] 认为,光是一份一份的,每一份被称为光量子。
综合牛顿与爱因斯坦的研究思想,作者经过详细考虑后认为,一份光量子为一个独立的能量体,它是由更细微的能量颗粒按照某种方式集合而成的一个能量体,是一个具有空间形态的几何体。
作者为了不再引进更多的新名称而称它为根本能量单元体。
这种能量单元体颗粒也有学者称它为亚光子[3]。
波动性代表人物惠更斯(C.Huygens,1629-1695)[4] 提出了光的球面波观点,作者不能理解的是:一个光粒子是怎样产生的一个球面波,一个子波的能量又是多少?恐怕科学巨匠和高手也不理解他的详细描绘。
一份光量子能量的大小,我们不可能将一份光量子的内部构造分拆开进展测量和计算至少在当前这个时代是这样。
接下来我们只有间接地使它与粒子(实物体)发生互相作用后所产生的效应进展描绘。
如示,设想,这些实物粒子在常温下处于稳定状态(只有温度处在绝对零度或附近时的实物粒子才可能处于基态),当它没有吸收外来能量时,也就不存在能量的外泻(辐射),这时它处于临时稳定状态。
在中,从S 发出的光经透镜L 后照射一透明物质,光子-1从实物粒子之间的狭小空隙(真空区域)中穿刺而过,光子-2 被实物粒子所吸收;我们设想,这个理想化粒子具有吸收一切能量段光子的才能,将吸收的每份光子又完全彻底地辐射出去(在粒子中不作任何残留)。
即是,认为实物粒子辐射出去的光子与它所吸入光子的能量完全一样。
显然,粒子在这一过程中经历了两个阶段:它吸收一份光子便从初始的稳定状态跃升至高的能量状态,这过程即为能量的上涨阶段;而高能态的它是极不稳定的,?即开场泻能,从高能态辐射光子而回落到原有的初始状态。
粒子所经历吸能和泻能这一过程的两个阶段,就认为是粒子完成了一次能量的上涨和回落,简称粒子能量的一次涨落。
光学的基本原理及应用1. 光学的基本原理1.1 光的性质•光是一种电磁波,具有波粒二象性。
•光的频率和波长决定了光的能量和颜色。
•光在介质中传播时会发生折射和反射。
1.2 光的传播模型•光的传播遵循直线传播的几何光学模型。
•光的传播速度在真空中为光速,而在介质中会因折射而减速。
•光的传播路径可以由光线进行描述。
1.3 光的干涉与衍射•光的干涉是指光波叠加到一起形成明暗相间的干涉条纹。
•光的衍射是指光波经过一个较小的孔或缝时发生弯曲并散射到周围区域。
2. 光学的应用领域2.1 光纤通信•光纤通信利用光信号在光纤中的传输来实现信息传输。
•光纤通信具有高带宽、低损耗和抗干扰等优点,广泛应用于长距离和高速通信领域。
2.2 光电子学•光电子学是将光和电子技术相结合的学科。
•光电子学应用于摄像机、激光器、光电传感器等领域。
2.3 光学显微镜•光学显微镜利用光学原理对微小物体进行放大观察。
•光学显微镜广泛应用于生物学、医学等领域。
2.4 光刻技术•光刻技术通过对光敏材料进行曝光和显影来制作微纳米级的器件。
•光刻技术在集成电路制造、光学器件制造等领域具有重要应用。
2.5 光学测量技术•光学测量技术通过利用光的干涉、衍射等原理实现对物体形状、位移、表面质量等参数的测量。
•光学测量技术在制造业、精密测量等领域具有广泛应用。
3. 结论光学作为物理学的重要分支,研究了光的性质、传播模型以及干涉、衍射等现象。
在实际应用中,光学在光纤通信、光电子学、显微镜等领域发挥着重要作用。
此外,光刻技术和光学测量技术也是光学的重要应用方向。
通过对光学的研究和应用,我们能更好地理解光的行为和光与物质的相互作用,为科学研究和技术发展提供了重要支持。
以上是光学的基本原理及应用的简要介绍,希望对您有所帮助。
光学在生活的应用及其原理1. 序言光学是研究光的传播、反射、折射、干涉、衍射和吸收等现象的学科。
它广泛应用于日常生活中的许多领域,包括通信、医学、工业、娱乐等。
本文将介绍光学在生活中的应用及其原理。
2. 光学在通信领域的应用•光纤通信:光纤通信是利用光的全反射原理将信息通过光信号的传输来实现的。
光纤通信具有传输速度快、抗干扰能力强等优点,广泛应用于电话、互联网等领域。
•光子晶体通信:光子晶体是一种具有周期性的介质结构,在光学通信中可以将其作为光波导来传输信息,具有纳米级别的分辨率和高速的传输速度。
3. 光学在医学领域的应用•光学医学成像:光学医学成像是利用光的散射、吸收、透射等特性来实现对人体内部结构和功能的观察。
例如,X光、CT、MRI等技术都是通过光学原理来实现影像的生成。
•激光治疗:激光在医学领域具有广泛的应用,如激光手术刀、激光疗法等。
激光能够通过光散射、吸收等方式对人体进行精确的处理,具有低创伤、无痛苦等优点。
4. 光学在工业领域的应用•激光切割:激光切割是利用激光的高能量密度来对物体进行切割的技术。
激光切割具有精度高、速度快、不产生机械变形等优点,广泛用于金属、塑料等材料的加工。
•光学测量:光学测量是利用光学原理来对物体的尺寸、形状、表面质量等进行精确测量的技术。
例如,光学投影仪、激光测距仪等都是利用光的反射、折射等特性实现测量。
5. 光学在娱乐领域的应用•光学幕布:光学幕布是利用光的反射和散射特性来实现影像显示的技术。
光学幕布能够提高投影仪的显示效果,使影像更加清晰、明亮。
•光学游戏:光学游戏是利用光学原理设计的一类娱乐产品,如光学迷宫、光学拼图等。
通过光的反射、折射等现象,给用户带来视觉上的乐趣和挑战。
6. 结论光学在生活中的应用广泛而多样,从通信到医学,再到工业和娱乐,都离不开光学的原理。
本文对光学在生活中的应用及其原理进行了简要介绍,希望能够增加对光学学科的认识,并激发读者对光学的兴趣。
大学物理光学论文范文引言光学是一门研究光的性质、光的传播以及与物质相互作用的学科。
在大学物理教育中,光学是一个重要的研究领域,涉及到光的直线传播、反射、折射、干涉、衍射等现象。
本文对光的干涉现象进行了深入探讨,通过实验验证了干涉现象与波的性质和光程差的关系。
实验方法实验材料1.激光器2.平面玻璃板3.透明薄膜4.透镜5.直尺6.磁铁7.实验台实验步骤1.在实验台上固定一块平面玻璃板,确保其水平。
2.将透明薄膜放置在玻璃板上,并利用磁铁将其固定在一侧。
3.将激光器调整到合适的位置和角度,使其发出一束平行光。
4.将透镜放置在激光器发出的光束前方,调整透镜位置,使光线在透镜表面相交并汇聚到一点。
5.将透镜后方的光线分成两束,一束经过透镜并经过薄膜射到玻璃板上,另一束直接射到玻璃板上。
6.观察玻璃板上的干涉条纹,并测量不同对称中心到两侧条纹的距离。
实验结果与讨论实验结果表明,通过透明薄膜干涉实验可以观察到明亮和暗淡的干涉条纹。
我们测量了不同对称中心到两侧条纹的距离,并记录了对应的数据。
我们首先观察到了明亮的干涉条纹,这是由不同光线相位差构成的。
当两束光线相位差为$\\frac{\\lambda}{2}$时,光线会加强干涉,形成亮纹。
而当两束光线相位差为$\\lambda$时,光线会减弱干涉,形成暗纹。
通过测量不同干涉条纹之间的距离,我们可以计算出光程差和波长之间的关系。
根据理论推导,两束光线的光程差与干涉条纹之间的距离d的关系可以表示为:$$\\Delta L = d \\cdot \\sin(\\theta)$$其中,$\\Delta L$表示光程差,d表示干涉条纹之间的距离,$\\theta$表示两束光线的夹角。
通过测量不同干涉条纹之间的距离d,我们可以使用上述公式计算出相应的光程差$\\Delta L$。
结论本实验通过透明薄膜干涉实验,观察并验证了光的干涉现象与波的性质和光程差之间的关系。
通过测量不同干涉条纹之间的距离,我们可以计算出相应的光程差,并验证了实验结果与理论推导的一致性。
浅谈光学概论【简介】光学已成为为现代科研的重要内容,传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光学将成为今后光学工程学科的重要发展方向。
【英文译文】Optical has become the important contents for the modern scientific research, the traditional optical only research visible light, and modern optical already expanded to whole wavelength electromagnetic wave of research. Light is an electromagnetic wave, in physics, electromagnetic wave by electrodynamics of maxwell's equations describing, At the same time, the light has wave-particle duality, need to use the quantum mechanics expression. Optical will become future optical engineering discipline of important development direction.【关键词】光学、现代科技、应用、研究、历史、前景【正文】一、光学简介在早期,主要是基于几何光学和波动光学拓宽人的视觉能力,建立了以望远镜、显微镜、照相机、光谱仪和干涉仪等为典型产品的光学仪器工业。
这些技术和工业至今仍然发挥着重要作用。
本世纪中叶,产生了全息术和以傅里叶光学为基础的光学信息处理的理论和技术。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==光学的论文篇一:光学设计论文第一章前言随着光学设计的发展,光学仪器已经普遍应用在社会的各个领域。
光学仪器的核心部分是光学系统。
光学系统成像质量的好坏决定着光学仪器整体质量的好坏。
然而,一个高质量的成像光学系统要靠良好的光学设计去完成。
光学设计的理论和方法也在发生着日新月异的变化。
光学是研究光的行为和性质,以及光和物质相互作用的物理学科。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光的本性也是光学研究的重要课题。
微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。
我们通常把光学分成几何光学、物理光学和量子光学。
所谓光学系统设计即设计出系统的性能参数、外形尺寸、和各光组的结构等,大体上分为两个阶段,第一阶段为“初步设计”或者“外形尺寸设计”,即根据仪器总体的设计要求,从仪器总体出发,拟定出光学系统的原理图,并初步计算系统的外形尺寸,以及系统中各部分要求的光学特性。
第二阶段称为“像差设计”,一般称为“光学设计”,即根据初步设计的结果,确定每个透镜的具体结构参数,以保证满足系统光学特性和成型质量成像质量的要求。
一个光学仪器工作性能的优劣,初步设计是关键,当然在初步设计合理的条件下,如果像差设计不当,同样也可能造成不良后果。
一个好的设计应该是在满足使用要求的情况下,结构设计最简单的系统。
光学设计是20世纪发展起来的一门学科,至今已经经历了一个漫长的过程。
光学系统设计的具体过程:制定合理的技术参数,光学系统总体设计和布局,光组的设计(包括选型,初始结构的计算,像差校正、平衡与像质评价),长光路的拼接与统算,绘制光学系统图、部件图和零件图,编写设计说明书,进行技术答辩。
孔径光阑和视场光阑一、内容摘要光阑及其有关概念在几何光学中占有一定的地位, 对其进行研究有其现实意义和理论价值, 通过对孔径光阑、视场光阑的各自的概念、特点、判定方法以及两种光阑的比较, 进一步了解这两种光阑。
二、关键词光学系统、孔径光阑、视场光阑三、引言由于光学系统对光束限制的要求多种多样,因此产生了许多不同种类、不同性质的光阑,按照光阑所起的作用不同,大体上可分为孔径光阑、视场光阑、渐晕光阑及消光光阑。
一般的光学系统都会有一个孔径光阑和一个视场光阑。
四、概念(一)孔径光阑在光学系统中,描述成像光束大小的参量为孔径,当物体在有限远时其孔径的大小用孔径角U表示,若物体在无限远时孔径的大小用孔径高度h来加以表示。
我们称光学系统中限制轴上物电成像光束大小的光阑为孔径光阑,该光阑实际上限制的是成像光束立体角的大小。
如果在子午面内(轴外点与光轴所构成的平面)进行分析,孔径光阑决定了轴上点发出的最大孔径角U的大小,例如,人眼的瞳孔就是孔径光阑。
(二)视场光阑视场通常描述的是成像光学系统物、像平面上(或物、像空间中)成像范围。
在光学系统中一般将安置在物平面或者像平面上用以限制成像范围的光阑成为视场光阑,它可能是光学系统中的某个或者某组透镜边框,也可能是专设的光孔。
例如,测量显微镜的分划板、照相机的底片边框都起到视场光阑的作用,其形状多为圆形、矩形或方形。
五、特点(一)孔径光阑1、孔径光阑的位置不同,但都起到了对轴上物点成像光束宽度的限制作用;只需相应的改变光阑大小,即可保证轴上物点成像光束的孔径角不变。
2、孔径光阑的位置不同,则对应于选择轴外物点发出光束的不同部分参与成像。
3.入射光瞳与出射光瞳(Entrance and Exit pupils)孔径光阑可能位于系统前面,也可能位于后面,还可能位于中间。
为方便讨论系统物像方光束限制的具体情况,我们定义:●入射光瞳:孔径光阑经其前面光学系统所成的像,主要限制系统物方空间中物点发出光束的孔径角。