聚类算法 --以K-means算法为例
- 格式:pptx
- 大小:1.62 MB
- 文档页数:16
电子技术与软件工程Electronic Technology & Software Engineering数据库技术Database Technology 基于K-means 算法的亚洲足球聚类研究孙鹏杨杉*(四川大学锦城学院 四川省成都市 611731 )摘 要:本文利用数据挖掘中的K-means 算法对亚洲足球队的排名数据进行了聚类研究,并利用“手肘法”选择合适的K 值,客观地 反映中国男子足球国家队在亚洲的真实水平。
关键词:数据挖掘;K-means 算法;数据特征1前言大数据时代的到来,让数据的处理、分析及挖掘成为了人们热 衷于研究的一大课题,各行各业都能通过数据挖掘从数据源中探寻 出许多有用的潜在知识,而我们在进行数据挖掘之前通常还会对数 据进行探索、预处理等一系列操作来对我们之后的工作奠定基础。
数据挖掘的主要方法有:分类、聚类、关联分析、回归预测。
本文 所使用到的K-means 算法就是一种无监督学习的聚类算法,它是用 于将数据划分成不同的分组的方法。
1. 1研究背景足球起源于中国古代的“蹴鞠”。
1958年7月,前国际足联 主席阿维兰热访华时说,足球运动最初起源于中国。
他的这一说法 于2004年得到了国际足联的正式确认⑴。
亚足联自1954年成立以 来,现有46个会员协会和1个准会员协会⑵。
亚洲足球在世界范 围内水平较弱,身处亚洲的我国在足球方面的成绩也往往不理想, 常常受到外界诟病。
而为了客观地反映国足在亚洲的真实水平,本 文通过K-means 算法,来对亚洲各个球队的排名进行一个聚类研究, 将亚洲球队的排名数据进行一个档次的划分,以此来观察中国足球 到底在亚洲层面属于哪一档次的球队。
1. 2研究意义及方法本文利用《虎扑体育》等专业足球网站收集和整理到了 24支 进入到2019年阿联酋亚洲杯决赛圈的亚洲主流球队的2020FIFA 排 名、2019年亚洲杯排名以及2015年亚洲杯的排名,利用K-means 算法进行聚类研究,在大数据的剖析下客观地反映国足在亚洲足坛 的一个真实地位。
一种基于遗传算法的K-means聚类算法一种基于遗传算法的K-means聚类算法摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。
针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means 算法的局部性和对初始聚类中心的敏感性。
关键词:遗传算法;K-means;聚类聚类分析是一个无监督的学习过程,是指按照事物的某些属性将其聚集成类,使得簇间相似性尽量小,簇内相似性尽量大,实现对数据的分类[1]。
聚类分析是数据挖掘技术的重要组成部分,它既可以作为独立的数据挖掘工具来获取数据库中数据的分布情况,也可以作为其他数据挖掘算法的预处理步骤。
聚类分析已成为数据挖掘主要的研究领域,目前已被广泛应用于模式识别、图像处理、数据分析和客户关系管理等领域中。
K-means算法是聚类分析中一种基本的划分方法,因其算法简单、理论可靠、收敛速度快、能有效处理较大数据而被广泛应用,但传统的K-means算法对初始聚类中心敏感,容易受初始选定的聚类中心的影响而过早地收敛于局部最优解,因此亟需一种能克服上述缺点的全局优化算法。
遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。
在进化过程中进行的遗传操作包括编码、选择、交叉、变异和适者生存选择。
它以适应度函数为依据,通过对种群个体不断进行遗传操作实现种群个体一代代地优化并逐渐逼近最优解。
鉴于遗传算法的全局优化性,本文针对应用最为广泛的K-means方法的缺点,提出了一种基于遗传算法的K-means聚类算法GKA(Genetic K-means Algorithm),以克服传统K-means算法的局部性和对初始聚类中心的敏感性。
用遗传算法求解聚类问题,首先要解决三个问题:(1)如何将聚类问题的解编码到个体中;(2)如何构造适应度函数来度量每个个体对聚类问题的适应程度,即如果某个个体的编码代表良好的聚类结果,则其适应度就高;反之,其适应度就低。
somk-means聚类分区案例K-means聚类分区案例第一篇在数据分析领域,聚类是一种常用的无监督学习方法,能够将数据集中具有相似特征的数据样本划分为不同的类别或群组。
其中,K-means聚类是一种常见而有效的方法,它通过为每个数据样本分配一个与之最相似的聚类中心来实现分类。
在本文中,我们将介绍一个关于K-means聚类分区的案例。
将我们的案例定位于零售行业,想象一家超市的连锁店正计划在不同区域开设新的分店。
为了确定最佳的分店位置,他们决定利用K-means聚类算法对特定区域的顾客进行分析。
这样可以使他们对不同的市场细分,更好地了解各个区域的消费者需求和购物习惯。
通过这种方式,企业可以制定更有针对性的市场营销策略,提高销售额和市场份额。
首先,我们需要收集一些与消费者行为相关的数据。
这些数据可以包括每个顾客的购买记录、年龄、性别、消费金额等信息。
假设我们已经获得了一份包含500个顾客的数据集。
接下来,我们需要对数据进行预处理。
这包括去除异常值、处理缺失值以及数据标准化等步骤。
这些步骤旨在保证数据质量和可靠性,在分析过程中不会产生误导性的结果。
一旦数据预处理完成,我们可以开始使用K-means聚类算法。
该算法的基本思想是,通过计算每个数据样本与聚类中心的距离,将其归类到距离最近的聚类中心。
为了完成这个过程,我们首先需要确定聚类的数量K,也就是分店的数量。
为了确定最佳的K值,我们可以使用一种称为肘方法的技巧。
该方法基于聚类误差平方和(SSE),即聚类中心与其所包含数据样本距离的平方和,来评估聚类质量。
我们可以通过尝试不同的K值,计算相应的SSE,然后选择SSE曲线上的“肘点”作为最佳的K值。
在确定了最佳的K值之后,我们可以应用K-means算法进行聚类分析。
通过迭代更新聚类中心和重新分配样本,我们可以获取最终的聚类结果。
这些结果可以帮助我们理解不同区域顾客的消费行为和购物偏好。
最后,我们可以将聚类结果可视化,并提取有关每个聚类的关键特征。
题目: K-Means 聚类算法分析与实现学 院 xxxxxxxxxxxxxxxxxxxx 专 业 xxxxxxxxxxxxxxxx 学 号 xxxxxxxxxxx 姓 名 xxxx 指导教师 xxxx20xx 年x 月xx 日装 订 线K-Means聚类算法KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。
然后按平均法重新计算各个簇的质心,从而确定新的簇心。
一直迭代,直到簇心的移动距离小于某个给定的值。
K-Means聚类算法主要分为三个步骤:(1)第一步是为待聚类的点寻找聚类中心(2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去(3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止下图展示了对n个样本点进行K-means聚类的效果,这里k取2:(a)未聚类的初始点集(b)随机选取两个点作为聚类中心(c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去(d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心(e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去(f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心Matlab实现:%随机获取150个点X =[randn(50,2)+ones(50,2);randn(50,2)-ones(50,2);randn(50,2)+[ones(50,1),-ones( 50,1)]];opts = statset('Display','final');%调用Kmeans函数%X N*P的数据矩阵%Idx N*1的向量,存储的是每个点的聚类标号%Ctrs K*P的矩阵,存储的是K个聚类质心位置%SumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和%D N*K的矩阵,存储的是每个点与所有质心的距离;[Idx,Ctrs,SumD,D] = kmeans(X,3,'Replicates',3,'Options',opts);%画出聚类为1的点。
K-Means聚类算法K-Means聚类算法是一种常用的无监督学习算法,在数据挖掘、图像处理、信号处理等领域有广泛的应用。
聚类算法是将相似的对象归为一类,不同的类之间尽可能的不相似。
K-Means聚类算法是一种基于距离测量的算法,它将数据点分为K个簇,每个簇的中心点与相应的数据点之间的距离最小。
1.初始化K个簇的中心点。
2.将每个数据点分配到离它最近的簇中。
3.计算每个簇的新中心点。
4.重复步骤2和3,直到簇的中心点不再发生变化或达到预定的循环次数。
在算法中,K是指聚类的簇数,每个簇的中心点是从数据点中随机选择的。
在第二个步骤中,每个数据点会被分配到离它最近的簇中,这一步是K-Means聚类算法最重要的一步。
在第三个步骤中,每个簇的新中心点是通过计算该簇中所有数据点的平均值得到的。
1.简单易懂:K-Means聚类算法实现简单,易于理解。
2.计算速度快:该算法的时间复杂度为O(K*n*I),其中n是数据点的数量,I是迭代次数,因此算法速度较快。
3.可用于大规模数据:K-Means聚类算法可以处理大规模的数据集。
1.对初始值敏感:算法中随机选择簇的中心点,这会影响聚类结果。
如果初始值不理想,聚类结果可能会很糟糕。
2.需要指定簇数:需要事先指定簇的数量K,这对于有些问题来说可能是一个难点。
3.对数据分布的要求较高:K-Means聚类算法对数据分布的要求较高,如果数据分布不太符合预期,聚类结果可能会非常差。
在实际应用中,K-Means聚类算法可以用于数据挖掘、模式识别、图像分割等领域。
例如,在图像处理中,可以使用K-Means聚类算法将像素分为不同的颜色组。
在信号处理中,可以使用K-Means聚类算法将信号分为不同的频段组。
实际应用中,需要根据具体问题来选择聚类算法。
K-means聚类算法实验总结在本次实验中,我们深入研究了K-means聚类算法,对其原理、实现细节和优化方法进行了探讨。
K-means聚类是一种无监督学习方法,旨在将数据集划分为K个集群,使得同一集群内的数据点尽可能相似,不同集群的数据点尽可能不同。
实验步骤如下:1. 数据准备:选择合适的数据集,可以是二维平面上的点集、图像分割、文本聚类等。
本实验中,我们采用了二维平面上的随机点集作为示例数据。
2. 初始化:随机选择K个数据点作为初始聚类中心。
3. 迭代过程:对于每个数据点,根据其与聚类中心的距离,将其分配给最近的聚类中心所在的集群。
然后,重新计算每个集群的聚类中心,更新聚类中心的位置。
重复此过程直到聚类中心不再发生明显变化或达到预设的迭代次数。
4. 结果评估:通过计算不同指标(如轮廓系数、Davies-Bouldin指数等)来评估聚类效果。
实验结果如下:1. K-means聚类能够有效地将数据点划分为不同的集群。
通过不断迭代,聚类中心逐渐趋于稳定,同一集群内的数据点逐渐聚集在一起。
2. 在实验中,我们发现初始聚类中心的选择对最终的聚类结果有一定影响。
为了获得更好的聚类效果,可以采用多种初始聚类中心并选择最优结果。
3. 对于非凸数据集,K-means算法可能会陷入局部最优解,导致聚类效果不佳。
为了解决这一问题,可以考虑采用其他聚类算法,如DBSCAN、层次聚类等。
4. 在处理大规模数据集时,K-means算法的时间复杂度和空间复杂度较高,需要进行优化。
可以采用降维技术、近似算法等方法来提高算法的效率。
通过本次实验,我们深入了解了K-means聚类算法的原理和实现细节,掌握了其优缺点和适用场景。
在实际应用中,需要根据数据集的特点和需求选择合适的聚类算法,以达到最佳的聚类效果。
一、背景介绍MATLAB是一种用于算法开发、数据分析、数值计算和工业应用的高级技术计算语言和交互环境。
在MATLAB中,有丰富的工具箱可以用于数据分析和聚类算法。
其中,k-means聚类算法是一种常用的数据聚类方法,它可以有效地将具有相似特征的数据点聚集在一起。
二、3维数据在数据分析领域中,数据往往具有多维特征。
对于3维数据而言,每个数据点通常由三个特征组成,例如在空间中的三个坐标值。
这种情况下,我们可以使用k-means算法来对3维数据进行聚类分析,以发现数据点之间的内在关系和模式。
三、k-means聚类算法原理1. 随机初始化K个聚类中心。
2. 计算每个数据点与各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的簇。
3. 根据分配得到的簇重新计算每个簇的中心。
4. 重复步骤2和3,直到聚类中心不再发生变化,或者达到设定的迭代次数。
四、MATLAB中的k-means算法实现在MATLAB中,可以利用自带的Kmeans函数来实现对3维数据的聚类分析。
具体步骤如下:1. 准备3维数据,假设数据矩阵为X,每行代表一个数据点,每列代表一个特征。
2. 调用Kmeans函数进行聚类分析,例如:[idx, C] = kmeans(X, K),其中idx是每个数据点所属的簇的索引,C是聚类中心的坐标。
3. 根据idx的结果可以将数据点可视化展示在3维空间中,并标记不同颜色表示不同的簇。
五、实例演示下面通过一个具体的实例来演示如何使用MATLAB对3维数据进行k-means聚类分析。
1. 准备数据假设有一组三维数据,保存在一个名为data的矩阵中,每行代表一个数据点,三列分别代表三个特征。
我们可以使用以下MATLAB代码生成一个包含30个数据点的示例数据:```matlabdata = randn(30, 3);```2. 聚类分析调用Kmeans函数进行聚类分析,并将结果可视化展示。
```matlabK = 3; 假设有3个聚类中心[idx, C] = kmeans(data, K);scatter3(data(:,1), data(:,2), data(:,3), 50, idx, 'filled');hold onscatter3(C(:,1), C(:,2), C(:,3), 200, 'Marker', 'x');hold off```3. 分析结果根据可视化结果,我们可以观察到数据点被有效地分为了3个簇,并且每个簇的中心也被标记出来。