知识点清单_数学5年级下
- 格式:doc
- 大小:109.00 KB
- 文档页数:5
苏教版五年级下数学知识点总结苏教版五年级下数学知识1第一单元简易方程1、表示相等关系的式子叫做等式。
含有未知数的等式是方程。
例:x+50=150、2x=2002、方程一定是等式;等式不一定是方程。
3、等式的性质:① 等式两边同时加上或减去同一个数,所得结果仍然是等式。
② 等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式。
4、使方程左右两边相等的未知数的值叫做方程的解。
求方程中未知数的过程,叫做解方程。
5、解方程60-4X=20,解4X=60-204X=40X=10检验:?把X=10代入原方程, 左边=60-4×10=20,右边=20,左边=右边,所以X=10是原方程的解。
方程左边=60-4×10=20=方程右边,所以X=10是方程的解。
6、解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数7、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)9、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题,B、理清题目的等量关系,C、设未知数,一般是把所求的数用X表示,D、根据等量关系列出方程,E、解方程,F、检验,G、作答。
注意:解完方程,要养成检验的好习惯。
苏教版五年级下数学知识2第二单元折线统计图1、复式折线统计图从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。
小数和分数互化知识点小数和分数是数学中表示非整数的两种常用方式,它们之间可以相互转化,以便在不同情境下使用更为方便或直观。
下面将详细讲解小数和分数互化的知识。
一、常用小数化成分数口诀:常用小数化分数,背熟口诀有门路。
分母2、4、5和8,十一分数顶呱呱。
二分之一零点五,谁弄错了谁吃苦。
小数25或75,1、3为子4做母。
分母是五切莫忘,2、4、6、8不间断。
125、625对应81和85,375、875,八之三七记清楚。
整数非零带小数,化成分数带分数。
二、小数转分数(一)步骤:1、观察小数:首先观察小数,看它是有限小数还是无限循环小数。
这里我们主要讨论有限小数转分数的方法。
2、确定分母:小数化分数时,小数点后有几位数字,分母就是10的几次方。
例如,小数点后有1位数字,分母就是10;有2位数字,分母就是100,以此类推。
3、确定分子:将小数乘以分母(即10的相应次方),得到的结果就是分数的分子。
4、约分:如果得到的分数可以约分,就进行约分,得到最简分数。
(二)示例:将小数0.25转化为分数:1、小数点后有2位数字,所以分母是100。
2、将0.25乘以100,得到25。
3、因此,0.25 = 25/100。
4、约分后得到1/4。
三、分数转小数(一)步骤:1、观察分数:首先观察分数的分子和分母,判断它是否可以直接转化为有限小数或需要进一步的运算。
2、除法运算:将分数的分子除以分母,得到的商即为小数。
如果除不尽,可以根据需要保留一定的小数位数。
3、循环小数:如果除法运算得到的结果是循环小数,可以根据需要决定保留几位小数,并用循环节表示。
(二)示例:将分数3/4转化为小数:1、进行除法运算,3除以4得到0.75。
2、因此,3/4 = 0.75。
对于分数1/3,由于它不能整除,所以转化为小数是无限循环小数0.333...。
在实际应用中,可以根据需要保留几位小数。
四、注意事项(一)在进行小数和分数的互化时,要注意精度问题,特别是当小数转化为分数时,需要找到最简形式;而当分数转化为小数时,可能需要决定保留几位小数。
北京版五年级数学下册知识点第一单元长方体和正方体一、长方体、正方体的认识:长方体和正方体都是立体图形。
正方体也叫立方体。
1、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
2、长方体有6个面。
有12条棱,相对(也可以说是平行)的4条棱的长度相等。
长方体有8个顶点。
长方体最多有8条棱的长度相等,最多有4个面完全相同。
一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
3、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(长、宽、高都各有4条,分别平行并且相等)4、长方体的棱长总和 = 长×4+宽×4+高×4 =(长+宽+高)×4长方体的长=棱长总和÷4-宽-高;长方体的宽=棱长总和÷4-长-高;长方体的高=棱长总和÷4-长-宽5、(1)正方体的6个面是完全相同的正方形。
(2)正方体的12条棱长度都相等。
(3)有8个顶点。
6、正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
正方体可以看成是长、宽、高都相等的长方体,所以正方体是特殊的长方体。
7、正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12(如果用长60cm铁丝做成长方体或正方体,60cm就是长方体或正方体的棱长总和)8、用棱长1cm的小正方体摆成稍大一些的正方体,至少需要8个小正方体。
二、长方体和正方体的表面积1、长方体或正方体6个面的总面积,叫做它的表面积2、长方体的表面积:①长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面。
上、下面每个面的面积=长×宽;前、后面每个面的面积=长×高;左、右面每个面的面积=宽×高;②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=2(ab+ah+bh)长方体的表面积=长×宽×2+长×高×2+宽×高×2用字母表示:S=2ab+2ah+2bh无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ah+bh)+ab 或 S=2(ab+ah+bh)-ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。
五年级数学下册数学知识点(推荐9篇)五年级数学下册数学知识点第1篇1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:÷表示已知两个因数的积与其中的一个因数,求另一个因数的运算。
小数除法的计算方法:计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:取近似数的方法有三种,①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。
没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。
如:…………另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。
如:5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
五年级数学下册数学知识点第2篇用天平找次品规律:1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。
2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次244~739个物体,保证能找出次品需要测的次数是6次五年级数学下册数学知识点第3篇分数加减法1,异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
沪教版数学五年级下知识点(1)自然数: 0,1,2,3,…这些用来计数、编排次序、编码的数被称为自然数。
(2)没有最大的自然数。
每个自然数n都接着后一个自然数" n+1 "。
自然数这样一直延续下去,永无止境。
(3)自然数可以表示个数、序数、量数。
(4)0是自然数。
(5)毎一个自然数都只有一个自然数紧接在它的后面。
自然数n的后一个自然数是“n+1"。
(6)最小的自然数是0,没有最大的自然数。
正负数(1)前面有“+”号的数都是正数;前面有“-"号的数都是负数;零既不是正数也不是负数。
(2) 正数前面的“+”可以省略不写。
(3)零既不是正数也不是负数。
数轴为了表示负数,我们从数射线上的“0"点出发,向相反方向(左)延长,使它成为一条直线,这样的直线就成为了数轴。
数轴的画法:(1)画一条直线(一般画水平位置的直线),在直线上任取一点表示零,把这点叫做原点。
(2)规定一个方向(一般取从左往右的方向)为正方向,用箭尖表示,那么相反方向就是负方向。
(3)再选取适当的长度作内一个单位长度,直线上从原点向右,毎隔一个単位长度取一个点,依次表示1,2,3,…从原点向左,用类似方法依次取点表示-1 -2, -3, …我们把规定了原点、正方向、单位长度的一条直线叫做数抽。
用数轴上的点表示数,所有表示正数的点都在原点的右边,所有表示负数的点都在原点的左边。
原点(表示0的点)是表示正数和负数的点的分界点。
正数都大于0,负数都小于0,正数大于负数。
简易方程先找等量关系,再列式解答和倍问题:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题。
差倍问题:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题。
和差问题:已知两数的和及它们的差,求这两个数各是多少的应用题。
行程问题:两个物体/人相对而行,在途中相遇。
追及问题:两个物体/人同一起点,慢的先走,然后快的追慢的;两个物体/人不同地点,同时出发,快的追慢的,最后相遇。
五年级下数学——百分数知识点:1、百分数的意义。
百分数表示一个数另一个数的百分之几。
百分数也叫百分比、百分率。
2、解决一个数是另一个数的百分之几的实际问题。
同分数除法中求一个数是另一个数的几分之几相同。
3、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把分数化成百分数,可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
4、求一个数的百分之几是多少。
方法同求一个数的几分之几是多少。
5、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。
百分数应用题知识点归纳1、求一个数的百分之几是多少一个数(单位“1”)×百分率2、已知一个数的百分之几是多少,求这个数部分量÷百分率 = 一个数(单位“1”)3、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等a率=a的数量÷总量×100%4、比多比少的第一种类型:求一个数比另一个数多(或少)百分之几(未知数)实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
口诀:“一减一除”(大的减小的除以比后面的)差值÷单位“1”求甲比乙多百分之几(甲-乙)÷乙×100%求乙比甲少百分之几(甲-乙)÷甲×100%5、比多比少的第二种类型:已知已知A比B多或少b%(已知数),和其中一个数,求另一个数公式:已知A,求B: A÷(1±b%)已知B,求A: B×(1±b%)只需判断两点:一,不求单位1,用乘法;求单位1,用除法。
二,比多(或提高、增加.....)括号内就“+”,比少(降低、减少.....)括号内就“-”6、折扣几折就是十分之几也就是百分之几十现价=原价×折扣原价=现价÷折扣折扣=现价÷原价×100%7、纳税缴纳的税款叫做应纳税额。
人教版五年级下册数学第二单元知识点总结第一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
【×】改正:6是3和2的倍数,3和2是6的因数。
练习:【1】8×5=40,【】和【】是【】的因数,【】是【】和【】的倍数。
【2】因为36÷9=4,所以【】是【】和【】的倍数,【】和【】是【】的因数。
【3】在18÷6=3中,18是6的【】,3和6是【】的【】。
【4】在14÷7=2中,【】能被【】整除,【】能整除【】,【】是【】的倍数,【】是【】的因数。
【5】若A÷B=C【A、B、C都是非零自然数】,则A是B的【】数,B是A的【】数。
【6】如果A、B是两个整数【B≠0】,且A÷B=2,那么A是B的,B是A的。
【7】判断并改正:因为7×6=42,所以42是倍数,7是因数。
【】因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。
【】5是因数,15是倍数。
【】甲数除以乙数,商是15,那么甲数一定是乙数的倍数。
【】【8】甲数×3=乙数,乙数是甲数的【】。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:【1】有5÷2=2.5可知【】A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数【2】36÷5=7……1可知【】A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数【3】属于因数和倍数关系的等式是【】A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有【】。
五年级数学下《折线统计图》知识点总结归纳
一、折线统计图的概念
折线统计图是一种用线段的升降来表示指标的连续变化的统计图。
与条形统计图和扇形统计图不同,折线统计图不仅能够表示数量的多少,还能够清晰地反映数据的变化趋势和规律。
二、折线统计图的特点
1.表示数据随时间或其他因素的变化情况。
2.便于显示数据的变化趋势和规律。
3.制作较为简单,易于理解。
三、折线统计图的制作方法
1.确定数据:确定需要绘制折线统计图的数据。
2.确定坐标轴:根据数据确定横轴和纵轴,通常横轴表示时间或类别,纵轴表示
数值。
3.绘制线段:根据数据在坐标系中绘制线段,注意线段的连接点要准确,线段的
斜率要适当。
4.标注数据:在线段上标注相应的数据,包括点、线、数字等。
5.添加标题和说明:在图上添加标题和必要的说明,以便更好地理解图形所表达
的含义。
四、折线统计图的应用
1.表示某一事物随时间变化的情况。
2.比较同一事物在不同时间的变化情况。
3.分析数据的规律和趋势。
4.预测未来的发展趋势。
五、折线统计图的读图方法
1.观察折线的升降变化,了解数据的变化趋势和规律。
2.注意折线的起点和终点,了解数据的最大值和最小值。
3.结合图例和文字说明,了解各折线所代表的含义和数据单位。
4.根据折线统计图所表达的信息,进行简单的推断或预测。
人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。
因数和倍数是相互依存的。
例如:38=24,3和8是24的因数,24是3和8的倍数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。
5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。
(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。
6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。
例如:写出30以内4的倍数。
41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。
二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。
2、个位上是0或5的数都是5的倍数。
3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。
4、同时是2、5的倍数的数末尾必须是0。
最小的两位数是10,最大的两位数是90。
同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。
最小的两位数是30,最大的两位数是90。
三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。
如:0、2、4、6、8、10、12、14、16…都是偶数。