正余弦定理及数列习题
- 格式:docx
- 大小:329.99 KB
- 文档页数:6
根本运算类1、ABC ∆中,45,60,10,A B a ===那么b 等于2、在△ABC 中,8=a ,B=060,C=075,那么b 等于3、ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,那么A =4、在△ABC 中,a b c 、、分别是三角A B C 、、的对边, ︒=︒=45,75C A ,2b ,那么此三角形的最小边长为5、在ABC ∆中,B=30︒,C=45︒,c=1,那么最短边长为6、在ABC ∆中,假设边4a c ==,且角4A π=,那么角C=;7、在ABC ∆中,8a =,60B =︒,75C =︒,那么b 的值为 8、在ABC ∆中,15a =,10b =,60A =︒,那么cos B = 9、在ABC ∆中,045,1,2===B c b ,那么C =.10、在A B C △中,3A π∠=,3B C =,AB ,那么C ∠=11、在△ABC 中,0045,30,2A B b ===,那么a 边的值为 .12、在ABC ∆中, 假设21cos ,3-==A a ,那么ABC ∆的外接圆的半径为13、△ABC 中,30,8,A a b ===那么此三角形的面积为14、锐角ABC ∆的面积为4BC =,3CA =,那么角C 大小为 15、ABC ∆的角A,B,C 所对的边分别为a,b,c ,且54cos ,3,2===B b a ,那么A sin 的值为 16、ABC △中,假设537AB ===,AC ,BC ,那么A 的大小为17、在ABC ∆中,假设1b =,c =23C π=,那么a =. 18、在△ABC 中,假设222ca b ab =++,那么∠C=19、在ABC ∆中,222a c b ab -+=,那么C = 20、边长为5,7,8的三角形的最大角的余弦是.21、假设ABC ∆的角A 、B 、C 的对边分别为a 、b 、c ,且222a b c bc =+-,那么角A 的大小为 22、在ABC ∆中,A,B,C 的对边分别为a,b,c ,bc c b a ++=222,那么A 等于23、在ΔABC 中, 角A 、B 、C 的对边分别为a 、b 、c , A =3π, 3=a , 1=b ,那么=c24、在ABC △中,假设120c b B ===,那么a 等于 25、在ABC ∆中,2=a , 30=A , 120=C ,那么ABC ∆的面积为 26、在ABC ∆中,,,,23230===AC AB B 那么ABC ∆的面积是27、在ABC ∆中,5,7,8AB BC AC ===,那么ABC ∆的面积是;28、ABC ∆中,120,2,ABC A b S ∆===a 等于。
第6讲 正弦定理和余弦定理一、选择题1.(2016·哈尔滨模拟)在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30°B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32, 即12×3×1×sin A =32,∴sin A =1,由A ∈(0°,180°),∴A =90°,∴C =60°.故选C.法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°,S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( ) A.π3B.5π6C.π6或5π6D.π6解析 ∵A =2π3,a =2,b =233,∴由正弦定理a sin A =b sin B 可得, sin B =b a sin A =2332×32=12.∵A =2π3,∴B =π6. 答案 D3.(2017·成都诊断)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形 解析 因为cos 2B2=a +c2c ,所以2cos 2B2-1=a +c c -1,所以cos B =ac ,所以a 2+c 2-b 22ac =ac ,所以c 2=a 2+b 2.所以△ABC 为直角三角形. 答案 B4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则“a >b ”是“cos 2A < cos 2B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 因为在△ABC 中,a >b ⇔sin A >sin B ⇔sin 2A >sin 2B ⇔2sin 2A >2sin 2B ⇔1-2sin 2A <1-2sin 2B ⇔cos 2A <cos 2B .所以“a >b ”是“cos 2A <cos 2B ”的充分必要条件. 答案 C5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4B.π3C.π4D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C. 答案 C二、填空题6.(2015·重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析 由3sin A =2sin B 及正弦定理,得3a =2b ,又a =2,所以b =3,故c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝ ⎛⎭⎪⎫-14=16,所以c =4.答案 47.(2017·江西九校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________. 解析 因为角A ,B ,C 依次成等差数列,所以B =60°.由正弦定理,得1sin A =3sin 60°,解得sin A =12,因为0°<A <180°,所以A =30°或150°(舍去),此时C =90°,所以S △ABC =12ab =32.答案 328.(2016·北京卷)在△ABC 中,A =2π3,a =3c ,则bc =________. 解析 在△ABC 中,a 2=b 2+c 2-2bc ·cos A ,将A =2π3,a =3c 代入,可得(3c )2=b 2+c 2-2bc ·⎝ ⎛⎭⎪⎫-12,整理得2c 2=b 2+bc .∵c ≠0,∴等式两边同时除以c 2,得2=⎝ ⎛⎭⎪⎫b c 2+bc ,可解得b c =1.答案 1 三、解答题9.(2015·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14. (1)求a 和sin C 的值; (2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值.解 (1)在△ABC 中,由cos A =-14, 可得sin A =154.由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158.(2)cos ⎝ ⎛⎭⎪⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6 =32(2cos 2A -1)-12×2sin A ·cos A =15-7316.10.(2015·全国Ⅱ卷)在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin B sin C ;(2)若∠BAC =60°,求∠B . 解 (1)由正弦定理得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD .因为AD 平分∠BAC ,BD =2DC ,所以sin B sin C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B .由(1)知2sin B =sin C ,所以tan B =33,即∠B =30°.11.(2017·广州调研)已知锐角三角形的边长分别为1,3,x ,则x 的取值范围是( ) A.(8,10) B.(22,10) C.(22,10)D.(10,8)解析 因为3>1,所以只需使边长为3及x 的对角都为锐角即可,故⎩⎪⎨⎪⎧12+x 2>32,12+32>x 2,即8<x 2<10.又因为x >0,所以22<x <10. 答案 B12.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac=2cos C ,则c =( )A.27B.4C.2 3D.3 3解析 ∵a cos B +b cos Ac =2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C , ∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3. ∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,⎩⎪⎨⎪⎧a =2,b =4或⎩⎪⎨⎪⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12, ∴c =23,故选C. 答案 C13.(2015·全国Ⅰ卷)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析 如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CBF 中,∠FCB =30°,CF =BC =2, ∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°, BE =CE ,BC =2,BE sin 75°=2sin 30°, ∴BE = 212×6+24=6+ 2.∴6-2<AB <6+ 2. 答案 (6-2,6+2) 14.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12.由-π2+2k π≤2x ≤π2+2k π,k ∈Z,可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z,可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32.由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc≤2+3,且当b=c时等号成立.因此12bc sin A≤2+34.所以△ABC面积的最大值为2+34.。
正余弦定理 15道经典基础例题例1、(共5分,2分钟)在∆ABC 中,若∠A =60°,∠B =45° ,BC =3√2 ,则AC=( )A .4√3B .2√3C .√3 D.√32解答:由正弦定理,可得AC sin45°=BCsin60° 所以AC =3√2√32×√22=2√3可得答案B考点: 考点:正弦定理, 难度:★☆☆☆☆☆例2、(共5分,2分钟)在∆ABC 中,角A,B,C 所对边长分别为a,b,c ,若a 2+b 2=2c 2,则sin C 的最小值为( )A. √32 B. √22 C. 12 D. −12 解答:cos C =a 2+b 2−c 22ab=2c 2−c 22ab≥c 2a 2+b 2=12可得答案C考点:余弦定理,基本不等式,难度:★☆☆☆☆☆ 例3、(共5分,3分钟)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ). A.32B.332C.3+62D.3+394解答:设AB =c ,BC 边上的高为h .由余弦定理,得AC 2=c 2+BC 2-2BC ·c cos 60°,即7=c 2+4-4c cos 60°, 即c 2-2c -3=0,∴c =3(负值舍去).又h =c ·sin 60°=3×32=332,故选B.可得答案B考点:余弦定理,难度:★☆☆☆☆☆例4、(共5分,3分钟)在∆ABC 中,内角A ,B ,C 所对的边分别是a,b,c ,已知8b =5c,C =2B ,则cos C = ( ) A.725 B.−725 C.±725 D.2425 解答:由8b =5c,C =2B 及正弦定理得, 8sin B =5sin C,sin C =sin 2B ,又由正弦公式知sin 2B =2sin B cos B ,整理可得 8sin B =10sin B cos B ,cos B =45,sin B =35, cos C =cos 2B =cos 2B −sin 2B =725 可得答案A考点:正弦定理,二倍角公式,难度:★★☆☆☆☆例5、(共5分,2分钟)在∆ABC 中,AB =√6,∠A =75°,∠B =45°,则AC= .解答:由正弦定理可知:ABsin [180°−(75°+45°)]=ACsin 45°⇒√6sin 60°=ACsin 45°⇒AC =2可得答案:AC=2考点:正弦定理,难度:★☆☆☆☆☆例6、(共5分,2分钟)在∆ABC 中,a=4,b=5,c=6,则sin 2A sin C= .解答:sin2Asin C =2sin A cos Asin C=2ac∙b2+c2−a22bc=1可得答案sin2Asin C=1考点:正弦定理、余弦定理,难度:★☆☆☆☆☆例7、(共5分,3分钟)若锐角∆ABC的面积为10√3,且AB=5,AC=8,则BC 等于________.解答:由已知得的∆ABC面积为12AB∙AC sin A=20sin A=10√3,∴sin A=√32,A∈(0,π2),可知A=π3由余弦定理得AB2+AC2−2AB∙AC cos A=49,解得BC=7可得答案BC=7考点:三角形面积公式,余弦定理,难度:★☆☆☆☆☆例8、(共5分,2分钟)设∆ABC的内角A,B,C的对边分别为a,b,c若a=√3,sin B=12,C=π6,则b= .解答:由sin B=12且B∈(0,π)∴B=π6或5π6,又C=π6,则B=π6可得A=π−B−C=2π3,又a=√3由正弦定理asin A =bsin B,代入可得b=1可得答案b=1考点:正弦定理,难度:★☆☆☆☆☆例9、(共5分,2分钟)设∆ABC的内角A,B,C,所对的边分别是a,b,c,若(a+b−c)(a+b+c)=ab,则角C= .解答:由(a+b+c)(a+b−c)=a2+b2−c2+2ab=ab得a2+b2−c2=−ab由余弦定理cos C=a2+b2−c22ab =−ab2ab=−12,C=2π3可得答案C=2π3考点:余弦定理,难度:★☆☆☆☆☆例10、(共5分,2分钟)在∆ABC中,内角A,B,C所对的边分别是a,b,c..已知b−c=14a,2sin B=3sin C,则cos A的值为 .解答:由正弦定理知2b=3c,解得b=3c2,a=2c.则由余弦定理知cos A=b2+c2−a22bc =−14可得答案cos A=−14考点:三角形面积公式,余弦定理,难度:★☆☆☆☆☆例11、(共5分,3分钟)在∆ABC中,内角A,B,C所对的边分别为a,b,c,已知∆ABC的面积为3√15,b−c=2,cos A=−14,则a的值为 .解答:因为0<A<π,所以sin A=√1−cos2A=√154,又S∆ABC=12bc sin A=√158bc=3√15,∴bc=24解方程组{b−c=2bc−−24得b=6,c=4由余弦定理得a2=b2+c2−2bc cos A=64, 所以a=8可得答案a=8考点:同角三角函数关系,三角形面积公式,余弦定理,难度:★☆☆☆☆☆例12、(共5分,3分钟)在∆ABC中,B=120°,AB=√2,A的角平分线AD=√3,则AC=_______.解答:由正弦定理得ABsin∠ADB =ADsin B,即√2sin∠ADB=√3sin120°,解得sin∠ADB=√22,∠ADB=45°,从而∠BAD=15°=∠DAC , 即C=30° ,|AC|=2|AB|cos30°=√6.可得答案AC=√6考点:正弦定理, 难度:★☆☆☆☆☆例13、(共12分,8分钟)∆ABC的内角A,B,C所对的边分别为a,b,c,向量m⃗⃗⃗ =(a,√3b)与n⃗=(cos A,sin B)平行,(I)求A;(II)若a=√7,b=2,求∆ABC的面积.解答:(I)由m⃗⃗⃗ 与n⃗平行,则a sin B−√3b cos A=0,由正弦定理,得sin A sin B−√3sin B cos A=0又sin B≠0 ,从而tan A=√3由于0<A<π ,所以A=π3(II)由余弦定理,得a2=b2+c2−2bc cos A,而a=√7,b=2,A=π3, 得7=4+c2−2c因为c>0所以c=3故∆ABC的面积为12bc sin A=3√32可得答案(I)π3;(II)3√32.考点:平行向量的坐标运算,正弦定理,3、余弦定理,4、三角形的面积公式,难度:★☆☆☆☆☆例14、(共12分,8分钟)在△ABC中,角A,B,C的对边分别为a,b,c,点(a,b)在直线x(sin A-sin B)+y sin B=c sin C上.(1)求角C 的值;(2)若a 2+b 2=6(a +b )-18,求△ABC 的面积.解答:(1)由题意得a (sin A -sin B )+b sin B =c sin C , 由正弦定理,得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab , 由余弦定理,得cos C =a 2+b 2-c 22ab=12, 结合0<C <π,得C =π3.(2)由a 2+b 2=6(a +b )-18,得(a -3)2+(b -3)2=0, 从而得a =b =3, 所以△ABC 的面积S =12×32×sinπ3=934.可得答案(1) C =π3,(2)S ∆ABC =9√34.考点:正弦定理,余弦定理,三角形面积公式, 难度:★☆☆☆☆☆例15、(共12分,8分钟)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c 。
一、选择题1.(文)在△ABC 中,AB =3,A =45°,C =75°,则BC 等于( ) A .3-3 B. 2 C .2 D .3+ 3[答案] A[解析] 由AB sin C =BC sin A得BC =3- 3.(理)(教材改编题)已知△ABC 中,a =2,b =3,B =60°,那么角A 等于( )A .135°B .45°或30°C .45°D .30° [答案] C[解析] 由正弦定理a sin A =b sin B ,得2sin A =332,解得sin A =22. 又a =2<b =3,所以A <B ,所以A =45°.2.(教材改编题)△ABC 的边分别为a 、b 、c ,且a =1,c =42,B =45°,则△ABC 的面积为( )A .4 3B .5C .2D .6 2[答案] C[解析] S △ABC =12ac sin B =12×1×42×sin45°=2.3.(2011·四川理,6)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .(0,π6]B .[π6,π)C .(0,π3]D .[π3,π)[答案] C[解析] 本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C ,∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:cos A =b 2+c 2-a 22bc ≥bc 2bc =12,∴0<A ≤π3,故选C.4.在△ABC 中,cos 2A2=b +c 2c,则△ABC 的形状为( )A .直角三角形B .等腰三角形或直角三角形C .正三角形D .等腰直角三角形 [答案] A[解析] ∵cos 2A2=b +c 2c ,∴1+cos A 2=b +c2c,即cos A =bc ,又由余弦定理知, cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc=b c ,∴a 2+b 2=c 2,∴△ABC 为直角三角形.5.(文)(2012·德州模拟)在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.85B.58 C.53 D.35[答案] D[解析] 由余弦定理,得cos A =b 2+c 2-a 22bc ,即-12=b 2+52-722·b ·5,∴b 2+5b -24=0,∴b =3或b =-8(舍去), ∴由正弦定理,得sin B sin C =b c =35,故选D. (理)△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos2B +3cos(A +C )+2=0,b =3,则c :sin C 等于( )A .3:1 B.3:1 C.2:1 D .2:1[答案] D[解析] ∵cos2B +3cos(A +C )+2=0, ∴2cos 2B -1-3cos B +2=0, 即2cos 2B -3cos B +1=0, ∴cos B =12或cos B =1(舍去),∴sin B =1-cos 2B =32,∴c sin C =bsin B =332=2:1,故选D. 6.锐角三角形ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,设B =2A ,则ba 的取值范围是( )A .(-2,2)B .(0,2)C .(2,2)D .(2,3)[答案] D[解析] ∵b a =sin B sin A =sin2Asin A=2cos A ,又△ABC 是锐角三角形,∴⎩⎨⎧B =2A <90°A +2A >90°∴30°<A <45°,则ba =2cos A ∈(2,3),故选D.二、填空题7.(2011·北京理,9)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A=________;a =________.[答案] 255;210[解析] 本题主要考查了解斜三角形及正弦定理. 依题意:0<A <π,tan A =2,∴sin A =25=255.由正弦定理得:a =bsin B ·sin A =5×2×25=210.8.(2012·东营模拟)在△ABC 中,BC =a ,AC =b ,a 、b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,则AB =________.[答案]10[解析] 设AB =c , ∵⎩⎪⎨⎪⎧a +b =23,ab =2,cos (A +B )=12,∴cos C =-12.又∵cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab=8-c 24=-12,∴c 2=10,∴c =10,即AB =10. 三、解答题9.(2011·江西文,17)在△ABC 中,角A 、B 、C 的对边是a 、b 、c ,已知3a cos A =c cos B +b cos C .(1)求cos A 的值;(2)若a =1,cos B +cos C =233,求边c 的值.[解析] (1)由余弦定理b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ,有c cos B +b cos C =a ,代入已知条件得3a cos A =a ,即cos A =13(2)由cos A =13得sin A =223则cos B =-cos(A +C )=-13cos C +223sin C ,代入cos B +cos C =233得cos C +2sin C =3,从而得sin(C +φ)=1,其中sin φ=33,cos φ=630<φ<π2,则C +φ=π2,于是sin C =63,由正弦定理得c =a sin C sin A =32.一、选择题 1.(2011·天津理,6)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33B.36C.63D.66[答案] D [解析]本题主要考查正余弦定理知识,如图,根据条件,设BD =2 在△ABC 中,由正弦定理: 3sin C =4sin A在△ABD 中,由余弦定理:cos A =3+3-42×3×3=13,∴sin A =223∴sin C =3sin A4=3×2234=2612=66,故选D. 2.(文)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2且∠A =75°,则b =( )A .2B .4+2 3C .4-23 D.6- 2[答案] A[解析] 考查正弦定理与两角和的正弦公式. sin A =sin75°=sin(30°+45°)=sin30°cos45°+sin45°cos30°=2+64,由a=c=6+2及A=75°可知,∠C=75°,所以∠B=30°,sin B=12,由正弦定理得b=asin A·sin B=2+62+64×12=2,故选A.(理)如图所示,将平面直角坐标系中的纵轴绕点O顺时针旋转30°(坐标轴的长度单位不变)构成一个斜坐标系xOy,平面上任一点P关于斜坐标系的坐标(x,y)用如下方式定义:过P作两坐标轴的平行线分别交坐标轴Ox于点M,Oy于点N,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.在斜坐标系中,若A,B两点的坐标分别为(1,2),(-2,3),则线段AB的长为()A.7B.13C.10 D.2 2[分析]这是一个知识迁移题,在斜坐标系中求线段AB的长,根据斜坐标系的定义不难发现,可将线段AB放在一个三角形中进行求解,这样就转化为利用正余弦定理解三角形的问题.[答案] A[解析] 如图,分别过A 作x 轴平行线,过B 作y 轴的平行线,设两条平行线交于点C ,根据题意可得,△ABC 中,∠C =60°,AC =3,BC =1,根据余弦定理有AB 2=BC 2+AC 2-2AC ×BC ×cos C ,解得AB =7.[点评] 解决此题的关键是理解题意,根据题中对斜坐标系的定义将求距离问题转化为解三角形问题,这里涉及知识的迁移能力,这也是近几年高考试题中经常考查的内容,体现了数学知识的灵活应用.二、填空题3.(2011·安徽理,14)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.[答案] 15 3[解析] 本题主要考查等差数列的概念,余弦定理的应用与三角形的面积公式.设三角形的三边依次为a -4,a ,a +4,最大角为θ.由余弦定理得(a +4)2=a 2+(a -4)2-2a (a -4)cos120°,则a =10,所以三边长为6,10,14,S △ABC =12×6×10×sin120°=15 3.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.[答案] π6[解析] 本题考查了三角恒等变形,给值求角及正弦定理等知识点,考查学生灵活解三角形的能力,属中档题,sin B +cos B =2⇒2sin(B +π4)=2,∴sin(B +π4)=1,∴B +π4=π2,∴B =π4,又a =2,b =2,由正弦定理:2sin A =2sin π4.解得:sin A =12,又a <b ,∴A <B =π4, ∴A =π6为所求.三、解答题5.(文)(2011·辽宁文,17)△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,a sin A sin B +b cos 2A =2a .(1)求b a ;(2)若c 2=b 2+3a 2,求B .[解析] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以ba = 2.(2)由余弦定理知c 2=b 2+3a 2,得cos B =(1+3)a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°. (理)(2011·全国大纲卷文,18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .[解析] (1)∵a sin A +c sin C -2a sin C =b sin B ∴a 2+c 2-2ac =b 2∴a 2+c 2-b 2=2ac∴cos B =a 2+c 2-b 22ac =2ac 2ac =22∴B =45°(2)由(1)得B =45°∴C =180°-A -B =180°-75°-45°=60°由正弦定理a sin A =b sin B =c sin C∴a =b ·sin A sin B =2×sin75°sin45°=2×6+2422=3+1 c =b ·sin C sin B =2×sin60°sin45°=2×3222=6.6.(2011·湖北理,16)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a =1,b =2,cos C =14. (1)求△ABC 的周长;(2)求cos(A -C )的值.[解析] (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4, ∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.(2)∵cos C =14, ∴sin C =1-cos 2C =1-(14)2=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角,∴cos A =1-sin 2A =1-(158)2=78, ∴cos(A -C )=cos A cos C +sin A sin C=78×14+158×154=1116. 7.(文)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值.[解析] 本题主要考查正弦、余弦定理、三角公式变换、三角形面积公式及向量运算等基础知识,同时考查运算求解能力.(1)因为cos A 2=255, 所以cos A =2cos 2A2-1=35,sin A =45. 又由AB →·AC→=3,得bc cos A =3,所以bc =5. 因此S △ABC =12bc sin A =2. (2)由(1)知,bc =5,又b +c =6,所以b =5,c =1或b =1,c =5由余弦定理,得a 2=b 2+c 2-2bc cos A =20,所以a =2 5.(理)设△ABC 是锐角三角形,a ,b ,c 分别是内角A ,B ,C 所对边长,并且sin 2A =sin(π3+B )sin(π3-B )+sin 2B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ). [解析] 本题考查两角和的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.解题思路是:(1)利用三角恒等变形结合同角三角函数的平方关系式求sin A 的值,然后确定A 的值.(2)利用数量积的定义,余弦定理并结合(1)中的结论再联系韦达定理求解.(1)因为sin 2A =(32cosB +12sin B )(32cos B -12sin B )+sin 2B =34cos 2B -14sin 2B +sin 2B =34, 所以sin A =±32,又A 为锐角,所以A =π3.① (Ⅱ)由AB →·AC→=12,可得cb cos A =12. 由(Ⅰ)知A =π3,所以cb =24.② 由余弦定理知a 2=c 2+b 2-2bc cos A ,将a =27及①代入,得c 2+b 2=52,③③+②×2,得(c +b )2=100,所以c +b =10.因此,c ,b 是一元二次方程t 2-10t +24=0的两个根.解此方程并由c >b 知c =6,b =4.。
数学试卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1. 在△ABC 中,,,1046A B a ππ===,则b =( )A.B.C.D. 2. 已知等比数列{}n a 满足:2512,4a a ==,则公比q 为( ) A. 12-B.12C. -2D. 23. 《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布。
(不作近似计算)( )A.12B.815C.1629D.16314. 等比数列{}n a 的前n 项和为n S ,已知321510,9S a a a =+=,则1a =( ) A. 13-B.13C. 19-D.195. 在△ABC 中,角A ,B ,C 的对边分别为,,a b c ,若cos cos sin b C c B a A +=,则△ABC 的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定6. 由正数组成的等比数列{}n a 满足:489a a =,则57,a a 的等比中项为( ) A. ±3B. 3C. ±9D. 97. 在△ABC 中,内角A ,B ,C 依次成等差数列,AB =8,BC =5,则△ABC 外接圆的面积为( ) A. 16πB.493πC.473πD. 15π8. 设等差数列{}n a 的前n 项和为n S ,若112,0,3m m m S S S -+=-==,则m =( ) A. 3B. 4C. 5D. 69. 已知等比数列{}n a 的公比为q ,记(1)1(1)2n m n m n m n mb a aa-+-+-+=+++,n c =(1)1m n a -+·(1)2(1)(,)m n m n m a a m n N -+-++⋅⋅∈,则以下结论一定正确的是( )A. 数列{}n b 为等差数列,公差为mq B. 数列{}n b 为等比数列,公比为2mqC. 数列{}n c 为等比数列,公比为mm q D. 数列{}n c 为等比数列,公比为2m q10. 设△ABC 的内角,,A B C 的所对的边,,a b c 成等比数列,则sin sin BA的取值范围是( ) A. (0,)+∞B. 10,2⎛⎫⎪ ⎪⎝⎭C. 11,22⎛⎫⎪ ⎪⎝⎭D. 1,2⎛⎫+∞ ⎪⎪⎝⎭二、填空题:本大题共5小题,每小题5分,共25分。
正余弦定理1.定理内容:(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。
即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-(3)面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: (1)已知一边和两角:(2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .26.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )或5π6 或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )B .2 3 或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .26解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6解析:选=45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .2解析:选=180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A , sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或32解析:选=AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3. 答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°则a +b +csin A +sin B +sin C =________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C=a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C ,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B ,∴b =215. 当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .46 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选∠A =b 2+c 2-a 22bc =-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) 或5π6 或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选△ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .23 或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得 AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值; (2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC=255, 于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。
正弦定理 余弦定理 3.141.在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( ) A.1010 B.31010 C.55 D.2552,cos A4A 、B 、.-2235a ,[解析] 由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a -b )2+6,∴ab =6,∴S △ABC =12ab sin C =12×6×32=332.(理)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A.1010 B.105 C.31010 D.55[答案] C[解析] 本题考查了余弦定理、正弦定理.由余弦定理得AC 2=AB 2+BC 2-2AB ×BC ·cos π6()∴y -x <0,∴y <x .7.(2015·昆明市质检)设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,若AB 边上的高为c2,且a 2+b 2=22ab ,则C =( )A.π6 B.π4C.π3D.π2 [答案] B[解析] 由已知得:S △ABC =12ab sin C =12×c ×c 2,∴sin C =c 22ab , sin C8b ,c ,已知 )[=π2,则B =π6,3sin A ,由正弦定理得:b =3a ,又由余弦定理得:c 2=a 2+b 2-2ab cosC ,即7=a 2+9a 2-3a 2=7a 2,∴a =1,b =3,S △ABC =12ab sin C =12×1×3×32=334,选D. (理)(2015·衡水中学三调)已知△ABC 的内角A 、B 、C 对的边分别为a 、b 、c ,sin A +2sin B =2sin C ,b =3,当内角C 最大时,△ABC 的面积等于( )A.9+334B.6+324C.326-24D.36-324 [答案] A[解析] 根据正弦定理及sin A +2sin B =2sin C 得a +2b =2c ,c =a +322,cos C ×6(的[方法点拨] 有关数列与三角函数知识交汇的题目,利用正余弦定理将数列关系式或数列问题转化为三角函数问题,用三角函数知识解决.10.(文)(2014·福建理,12)在△ABC 中,A =60°,AC =4,BC =23,则△ABC的面积等于________.[答案] 2 3[解析] 本题考查正弦定理及三角形的面积公式,由正弦定理得,2332=4sin B , ∴sin B =1,∴B =90°,∴AB =2,S =12×23×2=2 3.(理)(2014·天津理,12)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已⊥AC ,[解析] 利用余弦定理求出AC 的长度,再利用面积公式求出BD ,最后利用数量积的定义求解.在△ABC 中,由余弦定理可得AC 2=4+9-2×2×3×12=7,所以AC =7,由△ABC 的面积公式可得12×2×3×32=12×7BD ,解得BD =337.所以BD →·BC →=BD →·(BD →+DC →)=|BD →|2=277.[方法点拨] 解答三角函数与平面向量交汇的题目,先运用向量的有关知识(平行、垂直、数量积的坐标表示等)脱去向量外衣再运用三角函数知识解决.或先利用三角函数或解三角形的有关知识求出需要的量(边的长度、角的大小)再进行向量运C 的对[c 的关cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a = 2.所以△ABC 的面积为S △ABC =12ac =1.(理)(2015·山西太原市一模)已知a ,b ,c 分别是△ABC 的角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin2A ,求A 的值.ab ,∴b 2=a 2+c 2,∵C =π3,∴A =π6,综上所述,A =π2或A =π6.13.(文)(2015·天津文,16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值. [分析] 考查1.正弦定理、余弦定理及面积公式;2三角变换.(1)由面积公式可得bc 的值,结合b -c =2,可解得b ,c .再由余弦定理求得a .最后由正弦定理求sin C 的值; (2)直接展开求值. =16. (理)(2014·安徽理,16)设△ABC 的内角A 、B 、C 所对边的长分别是a 、b 、c 且b=3,c =1,A =2B .(1)求a 的值;(2)求sin(A +π4)的值.[解析] (1)因为A =2B ,所以sin A =sin2B =2sin B cos B ,由正、余弦定理得a =2b ·a 2+c 2-b 22ac ,因为b =3,c =1,b ,c . ∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac ,由余弦定理得cos B=a2+c2-b22ac=a2+c2-ac2ac≥2ac-ac2ac=12,当且仅当a=c时,等号成立.∴cos B的最小值为12.(理)在△ABC中,角A,B,C的对边分别为a、b、c,已知sin A sin B+sin B sin C[状.[解析]解法1:由正弦定理得a=2R sin A,b=2R sin B.∴(2R sin A)2sin Bcos B=(2R sin B)2sin A cos A,∴sin A cos A =sin B cos B .∴sin2A =sin2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.(理)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,π3<C <π2且b a -b =sin2C sin A -sin2C .(1)判断△ABC 的形状;(2)若|BA →+BC →|=2,求BA →·BC→的取值范围.[解析] (1)由b a -b =sin2Csin A -sin2C得, a -b b =sin A -sin2C sin2C ,∴a b =sin Asin2C .由正弦定理得sin B =sin2C .所以B =2C 或B +2C =π.∴a 2+c 2+2ac cos B =4,∴cos B =2ac =a 2, ∴BA →·BC→=ac cos B =2-a 2, ∵cos B =cos(π-2C )=-cos2C ,由π3<C <π2知2π3<2C <π,∴-1<cos2C <-12,∴12<cos B <1,∴12<2-a 2a 2<1,∴1<a 2<43,∴23<2-a 2<1,∴BA →·BC →的取值范围是(2,1).[。
正余弦定理1.在锐角∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=b . (Ⅰ)求角A 的大小;(Ⅱ)若a=6,b+c=8,求∆ABC 的面积.2.在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知.(1)求的值; (2)若cosB=,∆ABC 的周长为5,求b 的长.3.在∆ABC 中,角A ,B ,C 的对边是a ,b ,c ,已知3acosA=ccosB+bcosC(1)求cosA 的值(2)若a=1,,求边c 的值.4.在∆ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c .已知. (1)若∆ABC 的面积等于,求a ,b ;(2)若sinC+sin (B ﹣A )=2sin2A ,求∆ABC 的面积.5.∆ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且cosB=.(1)求C anA tan 1t 1+的值; (2)若•=,求a+c 的值.6.已知∆ABC 的面积为S ,角A ,B ,C 的对边分别为a ,b ,c ,. (1)求cosA 的值;(2)若a ,b ,c 成等差数列,求sinC 的值.7.在∆ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,设S 为∆ABC 的面积,满足.(Ⅰ)求角C 的大小;(Ⅱ)若,且,求c 的值.8. 在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cosC+(cosA ﹣sinA )cosB=0.(1)求角B 的大小;(2)若a+c=1,求b 的取值范围.9.在锐角三角形ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且a ﹣2csinA=0. (Ⅰ)求角C 的大小;(Ⅱ)若c=2,求a+b 的最大值.10.在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知a 2+c 2=2b 2. (Ⅰ)若,且A 为钝角,求内角A 与C 的大小;(Ⅱ)若b=2,求∆ABC 面积的最大值.11.已知∆ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角A ;(2)若a=1,求∆ABC 的面积S 的最大值.12.在∆ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且. (Ⅰ)求的值; (Ⅱ)若,求bc 的最大值. 13.在锐角∆ABC 中,三个内角A ,B ,C 所对的边依次为a ,b ,c ,设m =(sin (﹣A ),1),n =(2sin (+A ),﹣1),a=2,且m •n=﹣. (1)若b=2,求∆ABC 的面积;(2)求b+c 的最大值.14.己知在锐角∆ABC 中,角A ,B ,C 所对的边分别为a 、b 、c ,向量m =(a 2+b 2﹣c 2,ab ),n =(sinC ,﹣cosC ),且⊥m n .(I )求角C 的大小;(II )当c=1时,求a 2+b 2的取值范围.15.在锐角∆ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .且. (1)求角A 的大小及角B 的取值范围;(2)若,求b 2+c 2的取值范围.。
正余弦典型例题及详细答案
一、解答题(题型注释)
1.
(1
(2
【答案】(1(2
【解析】
试题分析:(1
(2)利用(1
.
试题解析:(1
(2
考点:正余弦定理的综合应用及面积公式.
2
(1
(2.
【答案】(1(2
【解析】
试题分析:(1)利用正弦定理,化简得
(2)由余弦定理得
试题解析:
(1
(2)由余弦定理得,又,∴
=”
考点:解三角形,正余弦定理,基本不等式.
3
(1
(2
【答案】(1(2
【解析】
试题分析:(1)
6
4
+
=
s i n
2
2
⇒=
试题解析:(1
2分
2
4分
6
6
4
+
=分
2
2
⇒=
10分
12分
考点:1.正弦定理解三角形;2.三角恒等变形.
4.已知A、B、C为三角形ABC的三内角,其对应边分别为a,b,c,若有2acosC=2b+c
成立.
(1)求A的大小;(2ABC的面积.
【答案】(1(2
【解析】
试题分析:(1)利用正弦定理边化角的功能,化为
得关于角A的余弦值,从而求出角A;(2
A.
试题解析:(1)
(2
即:,∴.故得:
考点:正弦定理,余弦定理,三角形两边一夹角的面积公式,化归与转化的数学思想.。
正弦定理和余弦定理测试题1.若△ABC 的角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B .8-4 3C .1D.232.(文)在△ABC 中,已知A =60°,b =43,为使此三角形只有一解,a 满足的条件是( )A .0<a <4 3B .a =6C .a ≥43或a =6D .0<a ≤43或a =6(理)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值围是( )A .(1,2)B .(2,3)C .(3,2)D .(1,2)3.在△ABC 中,已知a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,且a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°4.(文)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12B.12C. -1D. 1(理)△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b a=( )A .2 3B .2 2 C. 3D. 25.(文)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c =42,B =45°,则sin C 等于( )A.441B.45C.425D.44141.(理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 36.(文)(在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =42,B =45°,面积S =2,则b 等于( )A .5B.1132C.41 D .25(理)在△ABC 中,面积S =a 2-(b -c )2,则cos A =( ) A.817 B.1517 C.1315D.13177.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.8.(文)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC→=3,则△ABC 的面积为________.(理)在直角坐标系xOy 中,已知△ABC 的顶点A (-1,0),C (1,0),顶点B 在椭圆x 24+y 23=1上,则sin A +sin C sin B的值为________.9.(文)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,b =2,sin B +cos B =2,则∠A 的大小为________.(理)在锐角△ABC 中,边长a =1,b =2,则边长c 的取值围是________.10.(文)△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B2),-1),且m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.(理)△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos2B,2cos2B2-1)且m ∥n .(1)求锐角B 的大小;(2)如果b =2,求△ABC 的面积S △ABC 的最大值.11.(文)在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形(理)△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb<cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形12.(文)已知△ABC 中,∠A =30°,AB ,BC 分别是3+2,3-2的等差中项与等比中项,则△ABC 的面积等于( )A.32B.34C.32或 3 D.32或34(理)△ABC 的三个角A 、B 、C 的对边分别为a 、b 、c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120°13.(文)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值围是( )A .(0,π6]B .[π6,π)C .(0,π3]D .[π3,π)(理)若AB =2,AC =2BC ,则S △ABC 的最大值为( ) A .2 2 B.32 C.23D .3 214.判断下列三角形解的情况,有且仅有一解的是________. ①a =1,b =2,B =45°;②a =5,b =15,A =30°; ③a =6,b =20,A =30°; ④a =5,B =60°,C =45°.15.(文)在△ABC 中,角A 、B 、C 的对边是a 、b 、c ,已知3a cos A =c cos B +b cos C (1)求cos A 的值;(2)若a =1,cos B +cos C =233,求边c 的值.(理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .已知cos A -2cos C cos B =2c -ab .(1)求sin Csin A的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =22,且三角形有两解,则角A 的取值围是( )A.⎝ ⎛⎭⎪⎫0,π4B.⎝ ⎛⎭⎪⎫π4,π2C.⎝ ⎛⎭⎪⎫π4,3π4 D.⎝ ⎛⎭⎪⎫π4,π3 2.在ΔABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >b B .a <bC .a =bD .a 与b 的大小关系不能确定3.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°4.在△ABC 中,tan A =12,cos B =31010,若最长边为1,则最短边的长为( )A.455 B.355 C.255D.555.、如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33 B.36C.63D.666.△ABC 的三个角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π3,a =2b ,则b 的值为________.7.在△ABC 中,a cos 2C 2+c cos 2A 2=32b ,且△ABC 的面积S =a sin C ,则a +c 的值为________.8.(2011·月考)在△ABC 中,C =60°,a ,b ,c 分别为A ,B ,C 的对边,则ab +c +bc +a=________.正弦定理和余弦定理参考答案1、[答案] A[解析] 在△ABC 中,C =60°,∴a 2+b 2-c 2=2ab cos C =ab ,∴(a +b )2-c 2=a 2+b 2-c2+2ab =3ab =4,∴ab =43,选A.2、(文)[答案] C[解析] ∵b ·sin A =43·sin60°=6,∴要使△ABC 只有一解,应满足a =6或a ≥4 3. 如图顶点B 可以是B 1、B 2或B 3.(理)[答案] C[解析] 由条件知,a sin60°<3<a ,∴3<a <2.3、[答案] D[解析] 由正弦定理得asin A=bsin B,所以4sin30°=43sin B ,sin B =32.又0°<B <180°,因此有B =60°或B =120°,选D.4、(文)[答案] D[解析] 由a cos A =b sin B 可得,sin A cos A =sin 2B =1-cos 2B 所以sin A cos A+cos 2B =1.(理)[答案] D[解析] ∵a sin A sin B +b cos 2A =2a ,∴sin 2A sinB +sin B cos 2A =2sin A ,∴sin B =2sin A ,∴b =2a ,∴b a= 2.5、(文)[答案] B[解析] 依题意得b =a 2+c 2-2ac cos B =5,又c sin C =bsin B,所以sin C=c sin B b =42sin45°5=45,选B(理)[答案] C[解析]12ac sin B =12,∴ac =2,又2b =a +c ,∴a 2+c 2=4b 2-4,由余弦定理b 2=a 2+c 2-2ac cos B 得,b =3+33.6、(文)[答案] A[解析] 由于S =12ac sin B =2,c =42,B =45°,可解得a =1,根据余弦定理得,b 2=a 2+c 2-2ac cos B =1+32-2×1×42×22=25,所以b =5,故选A. (理)[答案] B[解析] S =a 2-(b -c )2=a 2-b 2-c 2+2bc =2bc -2bc cos A =12bc sin A ,∴sin A =4(1-cos A ),16(1-cos A )2+cos 2A =1,∴cos A =1517.7、[答案] 2[解析] 由S =12BC ·AC sin C 知3=12×2×AC sin60°=32AC ,∴AC =2,∴AB 2=28、(文)[答案] 2[解析] 依题意得cos A =2cos 2A 2-1=35,∴sin A =1-cos 2A =45,∵AB →·AC →=AB ·AC ·cos A =3,∴AB ·AC =5,∴△ABC 的面积S =12AB ·AC ·sin A =22+22-2×2×2cos60°=4,∴AB =2.(理)[答案] 2[解析] 由题意知△ABC 中,AC =2,BA +BC =4,由正弦定理得sin A +sin Csin B =BC +BAAC=2. 9、(文)[答案]π6[解析] ∵sin B +cos B =2sin(B +π4)=2,∴sin(B +π4)=1,∵0<B <π,∴B =π4,∵b sin B =a sin A ,∴sin A =a sin Bb=2×222=12,∵a <b ,∴A <B ,∴A =π6. (理)[答案]3<c <5[解析] 边c 最长时(c ≥2):cos C =a 2+b 2-c 22ab =1+4-c 22×1×2>0,∴c 2<5.∴2≤c < 5.边b 最长时(c <2):cos B =a 2+c 2-b 22ac =1+c 2-42c>0,∴c 2>3.∴3<c <2.综上,3<c < 5.10、(文)[解析] (1)∵m ⊥n ,∴m ·n =0,∴4sin B ·sin 2(π4+B 2)+cos2B -2=0,2sin B [1-cos(π2+B )]+cos2B -2=0,∴2sin B +2sin 2B +1-2sin 2B -2=0,∴sin B =12.∵0<B <π,∴B=π6或56π. (2)∵a =3>b ,∴此时B =π6,由余弦定理得b 2=a 2+c 2-2ac cos B ,∴c 2-3c +2=0,∴c=2或c =1.(理)[分析] (1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决.[解析] (1)∵m ∥n ,∴2sin B ⎝⎛⎭⎪⎫2cos 2B 2-1=-3cos2B ∴sin2B =-3cos2B ,即tan2B =-3又∵B 为锐角,∴2B ∈(0,π)∴2B =2π3,∴B =π3.(2)∵B =π3,b =2,∴由余弦定理cos B =a 2+c 2-b 22ac得,a 2+c 2-ac -4=0又∵a 2+c 2≥2ac ,∴ac ≤4(当且仅当a =c =2时等号成立)S △ABC =12ac sin B =34ac ≤3(当且仅当a =c =2时等号成立).11、(文)[答案] C[解析] 因为a =2b cos C ,所以由余弦定理得:a =2b ×a 2+b 2-c 22ab,整理得b 2=c 2,∴b =c ,∴则此三角形一定是等腰三角形.[点评] 也可以先由正弦定理,将a =2b cos C 化为sin A =2sin B cos C ,利用sin A =sin(B +C )代入展开求解.(理)[答案] A[解析] 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形,选A. 12、(文)[答案] D[解析] 依题意得AB =3,BC =1,易判断△ABC 有两解,由正弦定理得AB sin C =BC sin A ,3sin C=1sin30°,即sin C =32.又0°<C <180°,因此有C =60°或C =120°.当C =60°时,B =90°,△ABC 的面积为12AB ·BC =32;当C =120°时,B =30°,△ABC 的面积为12AB ·BC ·sin B =12×3×1×sin30°=34.综上所述,选D.(理)[答案] B[解析] 依题意得a cos C +c cos A =2b cos B ,根据正弦定理得,sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,又0°<B <180°,所以cos B =12,所以B =60°,选B.13(文)[答案] C[解析] 根据正弦定理,由sin 2A ≤sin 2B +sin 2C -sin B sin C 得a 2≤b 2+c 2-bc ,根据余弦定理cos A =b 2+c 2-a 22bc ≥bc 2bc =12,又0<A <π,∴0<A ≤π3,故选C.(理)[答案] A[解析] 设BC =x ,则AC =2x ,根据面积公式得S △ABC =12×AB ×BC sin B =x 1-cos 2B ①,根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x②,将②代入①得,S △ABC =x1-4-x24x2=128-x 2-12216,由三角形的三边关系得⎩⎪⎨⎪⎧2x +x >2x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A. 14、[答案] ①④[解析] ①一解,a sin B =22<1<2,有一解.②两解,b ·sin A =152<5<15,有两解;③无解,b ·sin A =10>6,无解.④一解,已知两角和一边,三角形唯一确定.15、(文)[解析] (1)由余弦定理b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C有c cos B +b cos C =a ,代入已知条件得3a cos A =a ,即cos A =13(2)由cos A =13得sin A =223,则cos B =-cos(A +C )=-13cos C +223sin C ,代入cos B +cos C =233得cos C +2sin C =3,从而得sin(C +φ)=1,其中sin φ=33,cos φ=63 (0<φ<π2),则C +φ=π2,于是sin C =63,由正弦定理得c =a sin C sin A =32. (理)[解析](1)由正弦定理asin A=bsin B=csin C=2R 知cos A -2cos Ccos B=2·2R sin C -2R sin A2R sin B,即cos A sin B -2cos C sin B =2cos B sin C -cos B sin A ,即sin(A +B )=2sin(B +C ),又由A +B +C =π知,sin C =2sin A ,所以sin Csin A=2. (2)由(1)知sin C sin A =2,∴c =2a ,则由余弦定理得b 2=a 2+(2a )2-2·a ·2a cos B =4a 2∴b =2a ,∴a +2a +2a =5,∴a =1,∴b =2.1、[答案] A[解析] 由条件知b s in A <a ,即22sin A <2,∴sin A <22,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4.2、[答案] A[解析] ∵∠C =120°,c =2a ,c 2=a 2+b 2-2ab cos C ∴a 2-b 2=ab ,又∵a >0,b >0,∴a-b =aba +b>0,所以a >b .3、[答案] A[解析] 由余弦定理得:cos A =b 2+c 2-a 22bc,由题知b 2-a 2=-3bc ,c 2=23bc ,则cos A =32,又A ∈(0°,180°),∴A =30°,故选A. 4、[答案] D[解析] 由tan A >0,cos B >0知A 、B 均为锐角,∵tan A =12<1,∴0<A <π4,cos B =31010>32,∴0<B <π6,∴C 为最大角,由cos B =31010知,tan B =13,∴B <A ,∴b 为最短边,由条件知,sin A =15,cos A =25,sin B =110,∴sin C =sin(A +B )=sin A cos B +cos A sin B=15×310+25×110=22,由正弦定理,b sin B =c sin C 知,b 110=122,∴b =555、.[答案] D[解析] 如图,根据条件,设BD =2,则AB =3=AD ,BC =4.在△ABC 中,由正弦定理:3sin C =4sin A- .- -.可修编- 在△ABD 中,由余弦定理:cos A =3+3-42×3×3=13,∴sin A =223∴sin C =3sin A 4=3×2234=66,故选D. 6、[答案]3[解析] 依题意及余弦定理得c 2=a 2+b 2-2ab cos C ,即9=(2b )2+b 2-2×2b ×b cos π3,解得b 2=3,∴b = 3. 7、[答案] 48、[答案] 1[解析] ∵C =60°,∴a 2+b 2-c 2=ab ,∴(a 2+ac )+(b 2+bc )=(b +c )(a +c ), ∴a b +c +b a +c =1.。
必修5综合测试
1.在ABC △中,已知4,6a b ==,60B = ,则sin A 的值为
2.在ABC △中,已知4,6a b ==,60B = ,则sin A 的值为
A.
26 B. 23 C. 36 D. 3
3 3.在锐角..三角形ABC 中,,,a b c 分别为内角,,A B C 的对边,若2A B =,给出下列命题:
①
ππ64B <<;②a b
∈;③22
a b bc =+.其中正确的个数是( ) A .0 B .1 C .2 D .3
4.在各项均为正数的等比数列{}n a 中,若389a a =,则31310log log a a +=( ) A 、1 B 、4 C 、2 D 、3log 5
5.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A . 81 B .120 C .168 D .192
6.数列{a n }的首项为1,{b n }是以2为首项,以2为公比的等比数列,且b n =a n +1-a n (n ∈N *)
则
n a =( )
A .21n
-
B .
2n C .121n +-
D .22n
-
7.在数列{}n a 中,若对于任意的n N *∈均有12n n n a a a ++++为定值,且
79982,3,4a a a ===,则数列{}n a 的前100项的和100S = ( )
A .132
B .299
C .68
D .99
8.等差数列}{n a 中,,33,39852741=++=++a a a a a a 则=++963a a a ( ) A 、30 B 、27 C 、24 D 、21
第II 卷(非选择题)
9.已知等比数列{}n a 的公比13
q =-,则
1357
2468
a a a a a a a a ++++++等于____________
10.在数列{}n a 中,已知11=a ,121+=+n n a a ,则其通项公式为=n a 11.已知11a =,12n n a a --=()2,*n n N ≥∈,则{}n a 的前n 项和为 12在数列
{}n a 中,112,21,.n n n a a a n a +==+-求
13.在锐角ABC ∆中,内角C B A ,,所对的边分别为c b a ,,.已知
)4
sin()4sin(2sin B B B -+=π
π
(Ⅰ)求角B 的大小;
(Ⅱ)若1=b ,求ABC ∆的面积的最大值.
14.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知
cos 2cos 2cos A C c a
B b --=
. (1)求sin sin C
A 的值;
(2)若1
cos 4B =
,2b =,求△ABC 的面积S
15.在△ABC 中,角,,A B C 的对边分别为,,a b c .已知5a b +=,c = 且
.27
2cos 2sin 42
=-+C B A
(1) 求角C 的大小; (2)求△ABC 的面积.
16. 数列{}n a 的前n 项和13
,2,1()2
n n n S a S a n N *==-∈ (1)求数列{}n a 的通项公式;
(2)设n n b na =,求数列{}n b 的前n 项和n T 。
17.(本小题满分12分)
已知数列{}n a 满足()
12111,3,32,2n n n a a a a a n N n *+-===-∈≥, (I )证明:数列{}1n n a a +-是等比数列,并求出{}n a 的通项公式; (II )设数列{}n b 满足()2
42log 1n n b a =+,证明:对一切正整数
222121111
,1112
n n b b b ++⋅⋅⋅+<
---有
.
19.已知{}n a 是正数组成的数列,11a =
,且点1)(*)n a n N +∈在函数2
1y x =+的图象上。
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)若数列{}n b 满足12(*)n n n b a n N -=∈,求数列{}n b 的前n 项和.
1.如果33log log 4m n +=,那么n m +的最小值是( ) A .4
B .34
C .9
D .18
2、数列{}n a 的通项为n a =12-n ,*N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为( )
A .7
B .8
C .9
D .10
3、若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( )
A .a =﹣8 b =﹣10
B .a =﹣4 b =﹣9
C .a =﹣1 b =9
D .
a =﹣1
b =2
4、△ABC 中,若2cos c a B =,则△ABC 的形状为( )
A .直角三角形
B .等腰三角形
C .等边三角形
D .锐角三角
形 5、在首项为21,公比为
1
2
的等比数列中,最接近1的项是( ) A .第三项 B .第四项 C .第五项 D .第六项 6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则10
20
a a 等于( )
A .
3
2 B .
2
3 C .
23或3
2 D .﹣
32或﹣2
3 7、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )
A .120
B .60
C .150
D .30
8、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是( )
A .2221a a
B .2322a a
C .2423a a
D .2524a a
18、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区
A 1
B 1
C 1
D 1(阴影部分)和环公园人行道组成。
已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长11A B x =米,求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;
(2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?
A
16.如图,在离地面高200m 的热气球上,观测到山顶C 处的仰角为15︒,山脚A 处的俯角
为45︒,已知60BAC ∠=︒,则山的高度BC 为_______ m .
20.(本小题满分8分)
已知函数2()1f x ax ax =+-,其中a ∈R .
(Ⅰ)当2a =时,解不等式()0f x <;
(Ⅱ)若不等式()0f x <的解集为R ,求实数a 的取值范围.
22.(本小题满分10分)
若数列{}n a 满足21n n n a a a +=+,且112
a =. (Ⅰ)求2a 和3a ; (Ⅱ)求证:
1
111
1n n n a a a +=-+; (Ⅲ)记[]x 表示不超过x 的最大整数,如[3.6]3=,[ 3.6]4-=-等.设1
1n n
b a =
+,数列{}n b 的前n 项和为n T ,求2015[]T .
A
第16题图。