高二数学变量间的相关关系
- 格式:ppt
- 大小:484.50 KB
- 文档页数:14
高二选择性必修二数学知识点(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二选择性必修二数学知识点本店铺为各位同学整理了《高二选择性必修二数学知识点》,希望对你的学习有所帮助!1.高二选择性必修二数学知识点篇一一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.二、两个变量的线性相关从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.当rXX0时,表明两个变量正相关;当r r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.三、解题方法1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.2.高二选择性必修二数学知识点篇二求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
数学高二三苏版第二章知识点:变量间的相关关系数学是学习和研究现代科学技术必不可少的差不多工具。
小编预备了数学高二必修三人教版第二章知识点,具体请看以下内容。
知识点1:变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系,如长方体的高与体积之间的关系确实是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等差不多上相关关系。
注意:两个变量之间的相关关系又可分为线性相关和非线性相关,假如所有的样本点都落在某一函数曲线的邻近,则变量之间具有相关关系(不确定性的关系),假如所有样本点都落在某一直线邻近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不说明他们之间的因果关系,也可能是一种相伴关系。
点睛:两个变量相关关系与函数关系的区别和联系相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时刻t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是相伴关系。
知识点2.散点图.1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。
2.从散点图能够看出假如变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常能够用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。
3.关于相关关系的两个变量,假如一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。
1.相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.2.散点图:将样本中的每一个序号下的成对样本数据都用直角坐标系中的点表示出来,由这些点组成的统计图叫做散点图.3.正相关与负相关:如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关(1)按变量间的增减性分为正相关和负相关.①正相关:当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势; ②负相关:当一个变量的值增加时,另一个变量的相应值呈现减少的趋势. (2)按变量间是否有线性特征分为线性相关和非线性相关(曲线相关).①线性相关:如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们称这两个变量线性相关;②非线性相关或曲线相关:如果两个变量具有相关性,但不是线性相关,我们称这两个变量非线性相关或曲线相关.称⎩⎪⎨⎪⎧Y =bx +a +e ,E e =0,D e =σ2为Y 关于x 的一元线性回归模型.其中Y 称为因变量或响应变量,x 称为自变量或解释变量,a 称为截距参数,b 称为斜率参数;e 是Y 与bx +a 之间的随机误差,如e =0,那么Y 与x 之间的关系就可以用一元线性函数模型来描述.1.残差图法残差图中,如残差比较均匀地集中在以横轴为对称轴的水平带状区域内,说明经验回归方程较好地刻画两个变量的关系. 2.残差平方和法第八章 成对数据的统计分析残差平方和∑i =1n(y i -y ^i )2越小,模型的拟合效果越好.3.R 2法可以用R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2来比较两个模型的拟合效果,R 2越大,模型拟合效果越好,R 2越小,模型拟合效果越差.1.定义:利用χ2的取值推断分类变量X 和Y 是否独立的方法称为χ2独立性检验,读作“卡方独立性检验”.简称独立性检验. 2.χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .3.独立性检验解决实际问题的主要环节(1)提出零假设H 0:X 和Y 相互独立,并给出在问题中的解释.(2)根据抽样数据整理出2×2列联表,计算χ2的值,并与临界值x α比较. (3)根据检验规则得出推断结论.(4)在X 和Y 不独立的情况下,根据需要,通过比较相应的频率,分析X 和Y 间的影响规律.售件进行了统计对比,得到如下表格:人数x i 10 15 20 25 30 35 40 件数y i471215202327其中i =1,2,3,4,5,6,7.(1)以每天进店人数为横坐标,每天商品销售件数为纵坐标,画出散点图;一元线性回归模型及其应用1.该知识点是具有线性相关关系的两变量的一种拟合应用,目的是借助函数的思想对实际问题做出预测和分析.2.主要培养数学建模和数据分析的素养.题型探究(2)求经验回归方程;(结果保留到小数点后两位)(3)预测进店人数为80时商品销售的件数.(结果保留整数)参考公式:经验回归方程y ^=b ^x +a ^,b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^x .解(1)由表中数据,画出7个数据点, 可得散点图如图所示.(2)∵∑i =17x i y i =3 245,x =25,y ≈15.43,∑i =17x 2i =5 075,7x 2=4 375. ∴b ^=∑i =17x i y i -7x·y∑i =17x 2i -7x 2≈0.777,a ^=y -b ^x =-4.00.∴经验回归方程是y ^=0.78x -4.00.(3)进店人数为80时,商品销售的件数y ^=0.78×80-4.00≈58(件).奥运会期样方法从该校调查了60人,结果如下:是否愿意提供志愿者服务 性别愿意不愿意男生 20 10 女生1020(1)用分层随机抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?(2)依据小概率值α=0.01的独立性检验,能否据此推断该校高中生是否愿意提供志愿者服务与性别有关? 下面的临界值表供参考:α 0.10 0.05 0.010 0.005 0.001 x α2.7063.8416.6357.87910.828χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .解 (1)由题意,男生抽取6×2020+10=4(人).(2)零假设H 0:该校高中生是否愿意提供志愿者服务与性别无关. 则χ2=60×20×20-10×10230×30×30×30≈6.667>6.635=x 0.01,所以依据小概率值α=0.01的独立性检验,可以认为该校高中生是否愿意提供志愿者服务与性别有关.独立性检验1.主要考查根据样本制作2×2列联表,由2×2列联表计算χ2,查表分析并判断相关性结论的可信程度.2.通过计算χ2值,进而分析相关性结论的可信程度,提升数学运算、数据分析素养.。
高中数学变量间关联教案
教学目标:
1. 熟练掌握变量间的关联性概念;
2. 能够运用相关概念解决实际问题;
3. 提高学生的数学推理和解决问题能力。
教学内容:
1. 变量间的关联性概念介绍;
2. 如何判断变量之间的关联程度;
3. 使用相关系数等工具进行变量间的关联性分析。
教学步骤:
一、导入(5分钟)
通过一个实际的例子引入变量间的关联性概念,激发学生的思考和探索欲望。
二、概念讲解(15分钟)
1. 讲解变量的概念及其分类;
2. 介绍相关系数的定义和计算方法;
3. 分析变量之间的线性关联和非线性关联。
三、案例分析(20分钟)
1. 案例一:某城市的降雨量和地表径流量之间的关系;
2. 案例二:身高和体重之间的关联性分析。
四、实践操作(15分钟)
让学生自行从网上或书籍中搜索相关数据,利用相关系数等工具对两个变量之间的关联性进行分析。
五、总结与展望(5分钟)
总结今天的学习内容,鼓励学生多关注身边的变量间的关联关系,培养数学思维。
教学评估:
1. 学生对变量间关联性概念的理解;
2. 学生分析案例的能力;
3. 学生的实践操作结果和分析能力。
拓展延伸:
1. 鼓励学生自主探索更多关于变量间关联性的案例;
2. 可以让学生设计自己的实验或调查,收集数据进行相关性分析;
3. 拓展学生的数学思维,探讨更多实际应用场景下变量间的关联性。
(注:以上内容仅供参考,具体实施时应根据学生实际情况做出调整。
)。
备战高考数学复习考点知识与题型讲解第85讲变量间的相关关系及回归模型考向预测核心素养两个变量线性相关的判断及应用,经验回归方程的求法及应用是高考考查的热点,各种题型均会出现.数据分析、数学运算一、知识梳理1.变量的相关关系(1)相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.(2)散点图每一个成对样本数据都可用直角坐标系中的点表示出来,由这些点组成了统计图.我们把这样的统计图叫做散点图.(3)相关关系的分类:正相关和负相关.(4)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们称这两个变量线性相关.2.样本相关系数(1)r=∑ni=1(x i-x)(y i-y)∑ni=1(x i-x)2∑ni=1(y i-x)2.(2)当r>0时,称成对样本数据正相关;当r<0时,称成对样本数据负相关.(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越强;当|r|越接近0时,成对样本数据的线性相关程度越弱.3.一元线性回归模型参数的最小二乘估计(1)我们将y^=b^x+a^称为Y关于x的经验回归方程,其中⎩⎪⎨⎪⎧b ^=∑ni =1(x i-x )(y i-y )∑ni =1(x i-x )2,a ^=y -b ^x .(2)残差分析①对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.②残差的散点图比较均匀地集中在以横轴为对称轴的水平带状区域内,则满足一元线性回归模型对随机误差的假设.在R 2表达式中,∑i =1 n (y i -y )2与经验回归方程无关,残差平方和∑i =1n(y i -y ^i )2与经验回归方程有关.因此R 2越大,意味着残差平方和越小,即模型的拟合效果越好;R 2越小,表示残差平方和越大,即模型的拟合效果越差.[提醒](1)经验回归直线过样本的中点(x ,y ).(2)回归分析和独立性检验都是基于成对样本观测数据进行估计或推断 ,得出的结论都可能犯错误.二、教材衍化1.(人A 选择性必修第三册P 103习题8.1T 1改编)下列四个散点图中,变量x 与y 之间具有负的线性相关关系的是( )解析:选D.观察题图可知,只有D选项的散点图表示的是变量x与y之间具有负的线性相关关系,故选D.2.(人A选择性必修第三册P138复习T1改编)已知变量x与y正相关,且由观测数据算得样本平均数x-=3,y-=3.5,则由该观测数据算得的经验回归方程可能是( )A.y^=0.4x+2.3B.y^=2x-2.4C.y^=-2x+9.5D.y^=-0.3x+4.4解析:选A.由题意,x与y正相关,故排除C,D,将(x-,y-)代入经验回归方程检验得A正确.3.(人A选择性必修第三册P120习题8.2T2(2)改编)已知x,y的对应取值如下表,可得到经验回归方程为y^=0.95x+a^,则a^=( )x 013 4y 2.2 4.3 4.8 6.7A.3.25B.2.6C.2.2D.0解析:选B.经验回归直线过点(2,4.5),所以4.5=0.95×2+a^,所以a^=2.6.4.(人A选择性必修第三册P120习题8.2T2(2)改编)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得经验回归方程y^=0.67x+54.9.零件数x/个1020304050加工时间y/min62758189 现发现表中有一个数据看不清,请你推断出该数据的值为________.解析:由x=30,得y=0.67×30+54.9=75.设表中的“模糊数字”为a,则62+a+75+81+89=75×5,所以a=68.答案:68一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系来表示.( )(2)经验回归直线y^=b^x+a^至少经过点(x1,y1),(x2,y2),…,(x n,y n)中的一个点.( )(3)任何一组数据都对应着一个经验回归方程.( )答案:(1)√(2)×(3)×二、易错纠偏1.(回归模型意义不明致误)一位母亲记录了自己儿子3~9岁的身高数据(略),由此建立的身高与年龄的一元线性回归模型为y^=7.19x+73.93,用这个模型预报这个孩子10岁时的身高,则正确的叙述是( )A.身高一定是145.83 cmB.身高在145.83 cm以上C.身高在145.83 cm左右D.身高在145.83 cm以下解析:选C.由一元线性回归模型可得y^=7.19×10+73.93=145.83,所以预报这个孩子10岁时的身高在145.83 cm左右.2.(忽视经验回归直线过样本点中心致误)已知变量x和y的统计数据如下表:x 34567y 2.534 4.5 6根据上表可得经验回归方程为y^=b^x-0.25,据此可以预测当x=8时,y^=( ) A.6.4 B.6.25C.6.55D.6.45解析:选 C.由题中图表可知,x-=5,y-=4,因为经验回归方程经过样本的中心(x-,y-),则4=5b^-0.25,得b^=0.85,则经验回归方程为y^=0.85x-0.25,再将x=8代入方程,得y^=6.55.3.(决定系数的意义及应用不清致误)x和y的散点图如图所示,在相关关系中,若用y=c1e c2x拟合时的决定系数为R21,用y^=b^x+a^拟合时的决定系数为R22,则R21,R22中较大的是________.解析:由题图知,用y=c1e c2x拟合的效果比y^=b^x+a^拟合的效果要好,所以R21>R22,故较大者为R21.答案:R21考点一成对数据的相关性判断(自主练透)复习指导:通过收集现实问题中的成对数据作出散点图,并利用散点图直观认识变量间的相关关系.1.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图①,对变量u,v有观测数据(u,v i)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判i断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由题图可得两组数据均线性相关,且图①的经验回归方程斜率为负,图②的经验回归方程斜率为正,则由散点图可判断变量x与y负相关,u与v正相关.2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3解析:选A.由题图知图①与图③是正相关,故r1>0,r3>0,图②与图④是负相关,故r2<0,r4<0,且图①与图②的样本点集中在一条直线附近,因此r2<r4<0<r3<r1,故选A.3.某公司在2020年上半年的月收入x(单位:万元)与月支出y(单位:万元)的统计资料如表所示:月份1月份2月份3月份4月份5月份6月份收入x 12.314.515.017.019.820.6支出y 5.63 5.75 5.82 5.89 6.11 6.18 根据统计资料,则( )A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系解析:选C.月收入的中位数是15+172=16,收入增加,支出增加,故x 与y 有正线性相关关系.判定两个变量相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:当r >0时,正相关;当r <0时,负相关;|r |越接近于1,相关性越强.(3)经验回归方程:当b ^>0时,正相关;当b ^<0时,负相关.考点二 一元线性回归模型(多维探究)复习指导:经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的一元线性回归模型系数公式建立经验回归方程,并进一步了解回归的基本思想、方法及初步应用.角度1 经验回归方程(2022·贵州凯里第一中学高二期中)某市2017至2021年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2017 2018 2019 2020 2021 年份代号t12 3 4 5 人均纯收入y 3.13.53.94.64.9从表可以看出,人均纯收入y 与年份代号t 线性相关,已知i =15t i y i =64.70.(1)求y 关于t 的经验回归方程y ^=b ^t +a ^;(2)预测2025年的人均纯收入为多少.(附:参考公式:【解】 (1)由题中表格知,n =5,t -=15(1+2+3+4+5)=3,y -=15(3.1+3.5+3.9+4.6+4.9)=4,i =15t 2i =12+22+32+42+52=55,则b ^==64.7-5×3×455-5×32=0.47,a ^=y --b ^t -=4-0.47×3=2.59,故经验回归方程为y ^=0.47t +2.59.(2)当年份为2025年时,对应的年份代码t =9, 所以y ^=0.47×9+2.59=6.82, 故2025年的人均纯收入约为6.82千元. 角度2 相关系数足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:年份x 2016 2017 2018 2019 2020 足球特色学校y (百个)0.30 0.60 1.00 1.40 1.70根据上表数据,计算y 与x 的相关系数r ,并说明y 与x 的线性相关程度. (已知:0.75≤|r |≤1,则认为y 与x 线性相关程度很强;0.3≤|r |<0.75,则认为y 与x 线性相关程度一般;|r |≤0.25,则认为y 与x 线性相关程度较弱.参考公式和数据:r =∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2,∑ni =1(x i -x )2=10,∑ni =1(y i -y )2=1.3,13≈3.605 6)【解】 由题得x =2 018,y =1,所以r=∑ni=1(x i-x)(y i-y)∑ni=1(x i-x)2∑ni=1(y i-y)2=3.610 × 1.3=3.63.605 6≈0.998>0.75,所以y与x的线性相关程度很强.一元线性回归模型应用要点(1)建立经验回归方程的步骤①计算出x,y,x21+x22+…+x2n,x1y1+x2y2+…+x n y n的值;②利用公式计算参数a^,b^;③写出经验回归方程y^=b^x+a^.(2)经验回归方程的拟合效果,可以利用相关系数判断,当|r|越接近于1时,两变量的线性相关程度越强.|跟踪训练|某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x年与年销售量y(单位:万件)之间的关系如下表:x 123 4y 12284256(1)在图中画出表中数据的散点图;(2)根据散点图选择合适的回归模型拟合y与x的关系(不必说明理由);(3)建立y 关于x 的经验回归方程,预测第5年的销售量.参考公式:经验回归方程y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为b ^=∑ni =1 (x i -x )(y i -y )∑ni =1 (x i -x )2=∑ni =1x i y i -nx y ∑n i =1x 2i -n x 2,a ^=y -b ^x . 解:(1)作出的散点图如图:(2)根据散点图观察,可以用一元线性回归模型拟合y 与x 的关系. (3)观察(1)中散点图可知各点大致分布在一条直线附近,列出表格:i x i y i x 2i x i y i 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 4 4 56 16 224 ∑1013830418可得x =52,y =692,所以b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y -b ^x =692-735×52=-2.故经验回归方程为y ^=735x -2.当x =5时,y ^=735×5-2=71.故预测第5年的销售量大约为71万件.考点三 非线性回归模型(综合研析)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到如图所示的散点图及一些统计量的值.x y w∑8i =1(x i -x )2∑8i =1(w i -w )2∑8i =1(x i -x )·(y i -y )∑8i =1(w i -w )·(y i -y ) 46.6 563 6.8 289.81.61469108.8表中w i =x i ,w =18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型;(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①当年宣传费x =49千元时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v^=a^+b^u的斜率和截距的最小二乘估计分别为:b^=∑ni=1(u i-u)(v i-v)∑ni=1(u i-u)2,a^=v-b^u.【解】(1)由散点图可以判断y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的经验回归方程,由d^=∑8i=1(w i-w)·(y i-y)∑8i=1(w i-w)2=108.81.6=68.得c^=y-d^w=563-68×6.8=100.6.所以y关于w的经验回归方程为y^=100.6+68w,因此y关于x的非线性经验回归方程为y^=100.6+68x.(3)①由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x +20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.非线性回归分析问题求解策略有些非线性回归分析问题并不给出经验公式,这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)的图象进行比较,挑选一种跟这些散点拟合得最好的函数,用适当的变量进行变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:|跟踪训练|中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品“排骨茶”,为了解每壶“排骨茶”中所放茶叶量x(单位:克)与食客的满意率y的关系,通过调查研究发现可选择函数模型y=1100e kx+c来拟合y与x的关系,根据以下数据:茶叶量x/克1234 5ln(100y) 4.34 4.36 4.44 4.45 4.51 可求得y关于x的回归方程为( )A.y^=1100e0.043x+4.291B.y^=1100e0.043x-4.291C.y^=e0.043x+4.291D.y^=e0.043x-4.291解析:选 A.由表中数据可知x-=1+2+3+4+55=3,4.34+4.36+4.44+4.45+4.515=4.42.对于A,y^=1100e0.043x+4.291化简变形可得100y^=e0.043x+4.291,两边同时取对数可得ln(100y^)=0.043x+4.291,将x-=3代入可得ln(100y^)=0.043×3+4.291=4.42,与题中数据吻合,故选项A正确;对于B,y^=1100e0.043x-4.291化简变形可得100y^=e0.043x-4.291,两边同时取对数可得ln(100y^)=0.043x-4.291,将x-=3代入可得ln(100y^)=0.043×3-4.291=-4.162≠4.42,所以选项B错误;对于C,y^=e0.043x+4.291,两边同时取对数可得ln y^= 0.043x+4.291,而表中所给数据为ln(100y^)的相关量,所以C错误;对于D,y^=e0.043x-4.291,两边同时取对数可知ln y^=0.043x-4.291,而表中所给数据为ln(100y^)的相关量,所以D错误;故选A.[A 基础达标]1.对两个变量x,y进行线性回归分析,计算得到相关系数r=-0.996 2,则下列说法中正确的是( )A.x与y正相关B.x与y具有较强的线性相关关系C.x与y几乎不具有线性相关关系D.x与y的线性相关关系还需进一步确定解析:选B.因为相关系数r=-0.996 2,所以x与y负相关,因为|r|=0.996 2,非常接近1,所以相关性很强,故选B.2.(2022·四川省彭山一中高三入学考试)下列命题错误的是( )A.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱B.抛掷均匀硬币一次,出现正面的次数是随机变量C.将一组数据中的每个数据都乘以同一个非零常数a后,标准差也变为原来的a倍D.若回归直线的斜率估计值为0.25,x=2,y=3,则回归直线的方程为y=0.25x+2.5解析:选A.对于A,线性相关系数|r|越接近于1,则相关性越强,所以A错误;对于B,抛掷均匀硬币一次,出现正面的次数是随机变量,所以B正确;对于C,由标准差的定义可知将一组数据中的每个数据都乘以同一个非零常数a后,标准差也变为原来的a倍,所以C正确;对于D,因为回归直线的斜率估计值为0.25,x=2,y=3,所以b^=0.25,a^=y-b^x=3-2×0.25=2.5,则回归直线的方程为y=0.25x+2.5,所以D 正确.3.(多选)(2022·重庆巴蜀中学高三月考)为了建立茶水温度y随时间x变化的函数模型,小明每隔1分钟测量一次茶水温度,得到若干组数据(x1,y1),(x2,y2),…,(x n,y),绘制了如图所示的散点图.小明选择了如下2个函数模型来拟合茶水温度y随时间nx的变化情况,函数模型一:y=kx+b(k<0,x≥0);函数模型二:y=ka x+b(k>0,0<a<1,x≥0),下列说法正确的是( )A.变量y与x具有负的相关关系B.由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况C.若选择函数模型二,利用最小二乘法求得y=ka x+b的图象一定经过点(x-,y-)D.当x=5时,通过函数模型二计算得y=65.1,用温度计测得实际茶水温度为65.2,则残差为0.1解析:选ABD.观察散点图,变量x与y具有负的相关关系,A正确;由于函数模型二中的函数y=ka x+b(k>0,0<a<1,x≥0),在x≥0时,函数单调递减,可得B正确;若选择函数模型二,利用最小二乘法求出的回归方程一定经过(a x,y),C错误;由于残差=真实值-预测值,因此残差为65.2-65.1=0.1,故D正确.4.经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的经验回归方程:y^=0.245x+0.321,可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:x变为x+1,y^=0.245(x+1)+0.321=0.245x+0.321+0.245,因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元.答案:0.2455.(2022·合肥检测)某公司一种型号的产品近期销售情况如下表:根据上表可得到经验回归方程y^=0.75x+a^,据此估计,该公司7月份这种型号产品的销售额为________万元.解析:由题意,x=2+3+4+5+65=4,y=15.1+16.3+17.0+17.2+18.45=16.8,经验回归直线y^=0.75x+a^过(x,y),可得a^=13.8,当x=7时,可得y^=0.75×7+13.8=19.05.答案:19.056.(2020·高考全国卷Ⅱ)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,yi)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑20i =1x i =60,∑20i =1y i =1 200,∑20i =1(x i -x )2=80,∑20i =1(y i -y )2=9 000,∑20i =1(x i -x )(y i -y )=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑ni =1(x i -x )(y i -y )∑ni =1 (x i -x )2∑ni =1(y i -y )2,2≈1.414.解:(1)由已知得样本平均数y =120∑20i =1y i =60,从而该地区这种野生动物数量的估计值为60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑20i =1(x i -x )(y i -y )∑20i =1 (x i -x )2∑20i =1(y i -y )2=80080×9 000=223≈0.94.(3)分层随机抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层随机抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层随机抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.7.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x 个月)和市场占有率(y %)的几组相关对应数据:(1)根据上表中的数据,用最小二乘法求出y 关于x 的经验回归方程;(2)根据上述经验回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精准到月).解:(1)根据表中数据,计算x -=15×(1+2+3+4+5)=3,y -=15×(0.02+0.05+0.1+0.15+0.18)=0.1,所以b ^=1×0.02+2×0.05+3×0.1+4×0.15+5×0.18-5×3×0.112+22+32+42+52-5×32=0.042,所以a ^=0.1-0.042×3=-0.026, 所以经验回归方程为y ^=0.042x -0.026.(2)由上面的经验回归方程可知,上市时间与市场占有率正相关, 即上市时间每增加1个月,市场占有率都增加0.042个百分点; 由y ^=0.042x -0.026>0.5, 解得x ≥13;预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.[B 综合应用]8.(2022·河南省湘豫名校联盟高三联考)如下表,根据变量x 与y 之间的对应数据可求出y ^=-0.32x +b .其中y -=8.现从这5个样本点对应的残差中任取一个值,则残差不大于0的概率为( )A.15B.25C.35D.45解析:选C.由表中的数据可知,x =10+15+20+25+305=20,设y 的最后一个数据为n ,则y =11+10+8+6+n5=8,所以n =5,将x ,y 代入y ^=-0.32x +b 得b =14.4, 这5个样本点对应的残差分别为:y 1-y ^1=11-(-0.32×10+14.4)=-0.2, y 2-y ^2=10-(-0.32×15+14.4)=0.4, y 3-y ^3=8-(-0.32×20+14.4)=0, y 4-y ^4=6-(-0.32×25+14.4)=-0.4, y 5-y ^5=5-(-0.32×30+14.4)=0.2, 所以残差不大于0的概率为35.9.(多选)(2022·石家庄市藁城新冀明中学阶段性测试)某市对2016年至2020年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的经验回归方程为y ^=b ^t +273,则下列说法正确的是( )A .该市2016年至2020年全市烧烤店盈利店铺个数的平均数y =219B .y 关于t 的经验回归方程为y ^=-18t +273 C .估计该市2022年烧烤店盈利店铺的个数为147D .预测从2027年起,该市烧烤店盈利店铺的个数将不超过100解析:选ABC.由已知数据得t -=3,y -=219,故A 正确;因为y 关于t 的经验回归直线过点(3,219),所以219=3b ^+273,所以b ^=-18,所以y 关于t 的经验回归方程为y ^=-18t +273.故B 正确;2022年的年份代码为7,故2022年该市烧烤店盈利店铺的个数约为y ^=-18×7+273=147.故C 正确;令-18t +273≤100,由t ∈N *,得t ≥10,故从2025年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选ABC.[C 素养提升]10.(2022·江苏省南通市高三教学质量监测)紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数呈增长的趋势.下表给出了2019年种植的一批试验紫甘薯在温度升高时6组死亡的株数.经计算,x =16∑i =16 x i =26,y =16∑i =16y i =33,∑i =16 (x i -x )·(y i -y )=557,∑i =16(x i -x )2=84,∑i =16 (y i -y )2=3 930,∑i =16(y i -y ^i )2=236.64,e 8.060 5≈3 167,其中x i ,y i 分别为试验数据中的温度和死亡株数,i =1,2,3,4,5,6.(1)若用一元线性回归模型,求y 关于x 的经验回归方程y ^=b ^x +a ^(结果精确到0.1);(2)若用非线性回归模型求得y 关于x 的非线性经验回归方程y ^=0.06e 0.230 3x ,且决定系数为R 2=0.884 1.①试与(1)中的回归模型相比,用R2说明哪种模型的拟合效果更好;②用拟合效果好的模型预测温度为35 ℃时该批紫甘薯的死亡株数(结果取整数).解:(1)由题意,得b^=∑i=16(x i-x-)(y i-y-)∑i=16(x i-x-)2=55784≈6.6,所以a^=33-6.6×26=-138.6,所以y关于x的经验回归方程为y^=6.6x-138.6. (2)①经验回归方程y^=6.6x-138.6对应的决定系数为R2=1-∑i=16(y i-y^i)∑i=16(y i-y-)2=1-236.643 930≈0.939 8,因为0.939 8>0.884 1,所以经验回归方程y^=6.6x-138.6比非线性经验回归方程y^=0.06e0.230 3x的拟合效果更好.②当x=35时,y=6.6×35-138.6=92.4≈92,即当温度为35 ℃时,该批紫甘薯的死亡株数为92.21 / 21。