变量间的相关关系优秀教案
- 格式:doc
- 大小:1.55 MB
- 文档页数:7
变量间的相关关系教案一、教学目标1. 让学生理解变量间的相关关系的概念。
2. 让学生掌握如何判断两个变量之间的相关关系。
3. 让学生学会如何绘制相关系数图。
4. 让学生能够运用相关关系解决实际问题。
二、教学内容1. 变量间的相关关系定义。
2. 相关关系的判断方法。
3. 相关系数图的绘制。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:变量间的相关关系概念,判断方法,相关系数图的绘制。
2. 教学难点:相关系数图的绘制,实际问题中的应用。
四、教学方法1. 讲授法:讲解变量间的相关关系定义、判断方法和绘制相关系数图的步骤。
2. 案例分析法:分析实际问题,让学生学会运用相关关系解决问题。
3. 互动教学法:引导学生提问、讨论,提高学生的参与度。
五、教学过程1. 导入:通过一个实例引入变量间的相关关系概念。
2. 讲解:讲解变量间的相关关系定义、判断方法,并进行相关系数图的绘制演示。
3. 案例分析:分析实际问题,让学生学会运用相关关系解决问题。
4. 练习:让学生独立完成相关系数图的绘制,并分析实际问题。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评价1. 评价方式:采用课堂表现、练习完成情况和课后作业三种方式进行评价。
2. 评价内容:(1)课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。
(2)练习完成情况:检查学生练习题的完成质量,包括相关系数图的绘制和实际问题的分析。
(3)课后作业:评估学生作业的完成情况,巩固所学知识。
七、教学反思1. 反思内容:(1)教学内容:回顾本节课的教学内容,确认是否全面覆盖了变量间的相关关系概念、判断方法和实际应用。
(3)课堂互动:评估学生的参与程度,思考如何提高学生的积极性和主动性。
(4)作业布置:检查作业的难度和量,确保学生能够通过作业巩固所学知识。
八、拓展与延伸1. 相关研究:介绍变量间相关关系在学术研究中的应用,如心理学、经济学等领域。
2. 实际案例:分析更多实际问题,让学生了解相关关系在生活中的重要作用。
第四节 变量间的相关关系、统计案例变量间的相关关系、统计案例 1.变量间的相关关系(1)会作两个有关联变量的数据的散点图,会利用数点图认识变量间的相关关系. (2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题. (1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用. (2)回归分析了解回归分析的基本思想、方法及其简单应用. 知识点一 回归分析 1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)回归方程为y ^=b ^x +a ^,其中b ^=∑ni =1x i y i -n x y∑ni =1x 2i -n x 2,a ^=y -b ^x . (3)通过求Q =∑ni =1(y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫作最小二乘法.(4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.易误提醒1.易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(x ,y )点,可能所有的样本数据点都不在直线上 .3.利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).[自测练习]1.已知x ,y 的取值如下表,从散点图可以看出y 与x 线性相关,且回归方程为y ^=0.95x +a ^,则a ^=( )x 0 1 3 4 y2.24.3 4.86.7A.3.25 B .2.6 C .2.2D .0解析:∵回归直线必过样本点的中心(x ,y ),又x =2,y =4.5,代入回归方程,得a ^=2.6.答案:B2.(2016·镇江模拟)如图所示,有A ,B ,C ,D ,E 5组(x ,y )数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.解析:由散点图知呈带状区域时有较强的线性相关关系,故去掉D . 答案:D知识点二 独立性检验 独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dK2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)(其中n=a+b+c+d为样本容量).易误提醒(1)独立性检验是对两个变量有关系的可信程度的判断,而不是对其是否有关系的判断.(2)独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表.在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果做出错误的解释.[自测练习]3.下面是2×2列联表:y1y2总计x1 a 2173x2222547总计 b 46120则表中a,b的值分别为()A.94,72B.52,50C.52,74 D.74,52解析:∵a+21=73,∴a=52,又a+22=b,∴b=74.答案:C考点一相关关系的判断|1.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3解析:易知题中图(1)与图(3)是正相关,图(2)与图(4)是负相关,且图(1)与图(2)中的样本点集中分布在一条直线附近,则r2<r4<0<r3<r1.答案:A2.(2015·高考湖北卷)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关解析:因为y=-0.1x+1,x的系数为负,故x与y负相关;而y与z正相关,故x与z 负相关.答案:C相关关系的判断的两种方法(1)散点图法.(2)相关系数法:利用相关系数判定,当|r|越趋近于1相关性越强.考点二回归分析|(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw∑8i =1(x i -x)2∑8i =1(w i -w)2∑8i =1(x i -x )(y i-y )∑8i =1(w i -w )(y i -y ) 46.6 563 6.8 289.8 1.6 1 469108.8表中w i =x i ,w =18∑i =1w i.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑ni =1 (u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^ u . [解] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于 d ^=∑8i =1(w i -w )(y i -y )∑8i =1 (w i -w )2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6, 年利润z 的预报值 z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.回归直线方程的求法(1)利用公式,求出回归系数b ^,a ^.(2)待定系数法:利用回归直线过样本点中心求系数.1.(2016·银川一中模拟)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.x 3 4 5 6 y2.5344.5(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^. (2)已知该厂技改前,100吨甲产品的生产能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)解:(1)由对照数据,计算得∑4i =1x 1y 1=66.5,∑4i =1x 21=32+42+52+62=86,x =4.5,y =3.5,b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35,所求的回归方程为y ^=0.7x +0.35.(2)x =100,y ^=100×0.7+0.35=70.35,预测生产100吨甲产品的生产能耗比技改前降低90-70.35=19.65(吨标准煤).考点三 独立性检验|(2016·邯郸模拟)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表.平均每天喝500 mL 以上为常喝,体重超过50 kg 为肥胖.常喝 不常喝 合计 肥胖 2 不肥胖 18 合计30已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为415.(1)请将上面的列联表补充完整.(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.(3)设常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:K 2≥k 0 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .[解] (1)设常喝碳酸饮料肥胖的学生有x 人,x +230=415,解得x =6.常喝 不常喝 合计 肥胖 6 2 8 不肥胖 4 18 22 合计102030(2)由已知数据可求得K 2=30×(6×18-2×4)210×20×8×22≈8.523>7.879.因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.(3)设常喝碳酸饮料的肥胖男生为A ,B ,C ,D ,女生为E ,F ,任取两人的取法有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中一男一女的取法有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,共8种.故抽出一男一女的概率是P =815.解独立性检验的应用问题的关注点(1)两个明确: ①明确两类主体; ②明确研究的两个问题. (2)两个关键:①准确画出2×2列联表; ②准确理解K 2.提醒:准确计算K 2的值是正确判断的前提.2.通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:男 女 总计 走天桥 40 20 60 走斑马线 20 30 50 总计6050110K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .附表:P (K 2≥k 0)0.050 0.010 0.001 k 03.8416.63510.828A .有99%以上的把握认为“选择过马路的方式与性别有关”B .有99%以上的把握认为“选择过马路的方式与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关” 解析:K 2=110×(40×30-20×20)260×50×60×50≈7.8.P (K 2≥6.635)=0.01=1-99%,∴有99%以上的把握认为“选择过马路的方式与性别有关”,故选A.答案:A12.独立性检验与概率交汇综合问题的答题模板【典例】(12分)(2016·保定调研)某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:(1)判断是否有(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生做进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.下面的临界值表供参考:(参考公式:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)[规范解答](1)由公式K2=55×(20×20-10×5)230×25×25×30≈11.978>7.879,(3分) 所以有99.5%的把握认为喜欢“应用统计”课程与性别有关.(6分)(2)设所抽样本中有m个男生,则630=m20,得m=4,所以样本中有4个男生,2个女生,分别记作B1,B2,B3,B4,G1,G2.从中任选2人的基本事件有(B1,B2),(B1,B3),(B1,B4),(B1,G1),(B1,G2),(B2,B3),(B2,B4),(B2,G1),(B2,G2),(B3,B4),(B3,G1),(B3,G2),(B4,G1),(B4,G2),(G1,G2),共15个,(9分)其中恰有1个男生和1个女生的事件有(B1,G1),(B1,G2),(B2,G1),(B2,G2),(B3,G1),(B3,G2),(B4,G1),(B4,G2),共8个.(11分)所以恰有1个男生和1个女生的概率为815.(12分)[模板形成]分析2×2列联表数据↓利用K 2公式计算K 2值↓对分类变量的相关性作出判断↓求相应事件的概率↓反思解题过程,注意规范化[跟踪练习] 某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据见下表所示:(1)加社团活动且学习积极性一般的学生的概率是多少?(2)运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d );其中n =a +b +c +d .解:(1)随机从该班抽查一名学生,抽到参加社团活动的学生的概率是2250=1125;抽到不参加社团活动且学习积极性一般的学生的概率是2050=25.(2)因为K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=50×(17×20-5×8)225×25×22×28≈11.688>10.828,所以大约有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.A 组 考点能力演练1.根据如下样本数据得到的回归方程为y ^=b ^x +a ^,则( )A.a ^>0,b ^>0 B.a >0,b <0 C.a ^<0,b ^>0D.a ^<0,b ^<0解析:把样本数据中的x ,y 分别当作点的横、纵坐标,在平面直角坐标系xOy 中作出散点图(图略),由图可知b ^<0,a ^>0.故选B.答案:B2.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能为( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y^=-0.3x +4.4解析:依题意知,相应的回归直线的斜率应为正,排除C ,D.且直线必过点(3,3.5),代入A ,B 得A 正确.答案:A3.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附表及公式K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .则下面的正确结论是( )A .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”解析:由2×2列联表得到a =45,b =10,c =30,d =15,则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100,计算得K 2的观测值k 0=100×(675-300)255×45×75×25≈3.030.因为2.706<3.030<3.841,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,故选A.答案:A4.根据如下样本数据:得到的回归方程为y =b x +a .若样本点的中心为(5,0.9),则当x 每增加1个单位时,y 就( )A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位解析:依题意得,a +b -25=0.9,故a ^+b ^=6.5①;又样本点的中心为(5,0.9),故0.9=5b ^+a ^②,联立①②,解得b ^=-1.4,a ^=7.9,则y ^=-1.4x +7.9,可知当x 每增加1个单位时,y 就减少1.4个单位,故选B.答案:B5.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′解析:由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑6i =1x i y i -6x ·y ∑6i =1x 2i -6x2=58-6×72×13691-6×⎝⎛⎭⎫722=57,a ^=y -b ^x =136-57×72=-13,所以b ^<b ′,a ^>a ′.答案:C6.(2016·忻州联考)已知x ,y 的取值如下表:从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a ^的值为________. 解析:x =2+3+4+54=3.5,y =2.2+3.8+5.5+6.54=4.5,回归方程必过样本的中心点(x ,y ).把(3.5,4.5)代入回归方程,计算得a ^=-0.61.答案:-0.617.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:(请用百分数表示).解析:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=50×(20×15-5×10)225×25×30×20≈8.333>7.879.答案:0.5%8.已知下表所示数据的回归直线方程为y ^=4x +242,则实数a =________.解析:回归直线y ^=4x +242必过样本点的中心点(x ,y ),而x =2+3+4+5+65=4,y =251+254+257+a +2665=1 028+a 5,∴1 028+a 5=4×4+242,解得a =262.答案:2629.(2015·东北三校联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列2×2列联表:主食蔬菜主食肉类合计 50岁以下 50岁以上 合计(2)能否有99% 解:(1)2×2列联表如下:主食蔬菜主食肉类合计 50岁以下 4 8 12 50岁以上 16 2 18 合计201030(2)因为K 2=30×(8-128)212×18×20×10=10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.10.(2015·高考重庆卷)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t12345(1)求y 关于t 的回归方程y =b t +a ;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 附:回归方程y ^=b ^t +a ^中, b ^=∑ni =1t i y i -n t y ∑ni =1t 2i -n t2,a ^=y -b ^t .解:(1)列表计算如下这里n =5,t =1n ∑n i =1t i =155=3,y =1n ∑n i =1y i =365=7.2. 又l tt =∑ni =1t 2i -n t2=55-5×32=10,l ty =∑ni =1t i y i-n t y =120-5×3×7.2=12,从而b ^=l ty l tt =1210=1.2,a ^=y -b ^t =7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).B 组 高考题型专练1.(2015·高考福建卷)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C.12.0万元D.12.2万元^=0.76,∴a^=8-0.76×10=0.4,∴回归方程为y^=0.76x 解析:∵x=10.0,y=8.0,b+0.4,把x=15代入上式得,y^=0.76×15+0.4=11.8(万元),故选B.答案:B2.(2015·高考北京卷)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.解析:(1)由题图分析乙的语文成绩名次略比甲的语文成绩名次靠前,但总成绩名次靠后,所以甲、乙两人中语文成绩名次比总成绩靠前的是乙;(2)丙同学的数学成绩名次位于中间稍微靠后,而总成绩名次相对靠后,所以丙同学的语文成绩名次比较靠后,所以丙同学的成绩名次靠前的科目是数学.答案:乙数学。
变量之间的相关关系两个变量的线性相关整体设计教学分析变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.三维目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想.课时安排2课时教学过程第1课时导入新课思路1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?推进新课新知探究提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图年龄23 27 38 41 45 49 50 脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄53 54 56 57 58 60 61 脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6 分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加.我们可以作散点图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例思路1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例 2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分品牌所含热量的百分比口味记录A 25 89B 34 89C 20 80D 19 78E 26 75F 20 71G 19 65H 24 62I 19 60J 13 52(1)作出这些数据的散点图.(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.性别身高/cm 右手一拃长/cm 性别身高/cm 右手一拃长/cm 女152 18.5 女153 16.0女156 16.0 女157 20.0女158 17.3 女159 20.0女160 15.0 女160 16.0女160 17.5 女160 17.5(1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线. 同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线. 同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x(个)10 20 30 40 50 60 70 80 90 100 加工时间62 68 75 81 89 95 102 108 115 122y(min)关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升房屋面积(m2)115 110 80 135 105销售价格(万元)24.8 21.6 18.4 29.2 22(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系. 课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.。
高中数学变量间关联教案
教学目标:
1. 熟练掌握变量间的关联性概念;
2. 能够运用相关概念解决实际问题;
3. 提高学生的数学推理和解决问题能力。
教学内容:
1. 变量间的关联性概念介绍;
2. 如何判断变量之间的关联程度;
3. 使用相关系数等工具进行变量间的关联性分析。
教学步骤:
一、导入(5分钟)
通过一个实际的例子引入变量间的关联性概念,激发学生的思考和探索欲望。
二、概念讲解(15分钟)
1. 讲解变量的概念及其分类;
2. 介绍相关系数的定义和计算方法;
3. 分析变量之间的线性关联和非线性关联。
三、案例分析(20分钟)
1. 案例一:某城市的降雨量和地表径流量之间的关系;
2. 案例二:身高和体重之间的关联性分析。
四、实践操作(15分钟)
让学生自行从网上或书籍中搜索相关数据,利用相关系数等工具对两个变量之间的关联性进行分析。
五、总结与展望(5分钟)
总结今天的学习内容,鼓励学生多关注身边的变量间的关联关系,培养数学思维。
教学评估:
1. 学生对变量间关联性概念的理解;
2. 学生分析案例的能力;
3. 学生的实践操作结果和分析能力。
拓展延伸:
1. 鼓励学生自主探索更多关于变量间关联性的案例;
2. 可以让学生设计自己的实验或调查,收集数据进行相关性分析;
3. 拓展学生的数学思维,探讨更多实际应用场景下变量间的关联性。
(注:以上内容仅供参考,具体实施时应根据学生实际情况做出调整。
)。
变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,能够识别和描述两种变量之间的相关关系。
2. 学生能够运用相关系数来衡量两个变量之间的相关程度。
3. 学生能够运用图表和数学模型来分析变量之间的相关关系。
4. 培养学生的数据分析能力和问题解决能力。
二、教学内容:1. 相关关系的概念和类型。
2. 相关系数的计算和解读。
3. 散点图在分析相关关系中的应用。
4. 线性回归方程的构建和应用。
5. 实际案例分析,运用相关关系解决实际问题。
三、教学重点与难点:重点:相关关系的概念和类型,相关系数的计算和解读,散点图在分析相关关系中的应用。
难点:线性回归方程的构建和应用,实际案例分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实际案例来理解和应用相关关系。
2. 使用多媒体教学资源,如图表和数学软件,辅助学生直观地理解相关关系。
3. 组织小组讨论和合作活动,培养学生的团队合作能力和问题解决能力。
4. 提供充足的练习机会,让学生通过实践来巩固所学知识。
五、教学过程:1. 引入:通过一个简单的实际案例,引导学生思考两种变量之间的关系。
2. 讲解相关关系的概念和类型,解释相关系数的意义。
3. 演示如何通过散点图来分析两种变量之间的相关关系。
4. 讲解线性回归方程的构建过程,并演示如何应用线性回归方程来预测未知数据。
5. 提供实际案例分析,让学生运用相关关系来解决实际问题。
7. 布置作业,让学生通过练习来巩固所学知识。
六、教学评估与反馈:1. 通过课堂练习和作业,评估学生对相关关系概念的理解程度。
2. 通过小组讨论和案例分析,评估学生在实际问题中运用相关关系的能力。
3. 收集学生的疑问和困难,及时给予反馈和解答。
4. 鼓励学生提出自己的观点和思考,促进学生的主动学习。
七、拓展与深化:1. 介绍相关关系在社会科学、自然科学和工程科学中的应用。
2. 探讨非线性相关关系和多变量相关关系的研究方法。
《用表格表示的变量间关系》教案一、教学目标1. 让学生理解什么是变量,能够识别常量和变量。
2. 让学生掌握表格表示变量间关系的方法。
3. 培养学生运用表格解决实际问题的能力。
二、教学重点与难点1. 教学重点:识别变量和常量。
运用表格表示变量间的关系。
2. 教学难点:理解变量间关系的表达方式。
将实际问题转化为表格表示。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、操作、交流等活动,发现变量间的关系。
2. 利用实例讲解,让学生在实际问题中体验变量间关系的表达方法。
3. 组织小组讨论,培养学生合作学习的能力。
四、教学准备1. 教学课件或黑板。
2. 实例材料。
3. 纸张、笔等学习用具。
五、教学过程1. 导入新课利用生活中的实例,如身高、体重等,引导学生认识变量。
讲解常量和变量的概念。
2. 讲解变量间关系通过实例,讲解变量间的关系,如身高与体重之间的关系。
引导学生观察、分析实例,发现变量间的规律。
3. 学习用表格表示变量间关系讲解如何用表格表示变量间的关系。
示例:以身高和体重为例,制作一个表格,展示身高和体重之间的对应关系。
4. 实践操作让学生分组,每组选择一个实际问题,如“某班级学生的身高和体重数据”,用表格表示变量间的关系。
学生分组讨论、操作,教师巡回指导。
5. 总结与拓展对学生进行总结,巩固所学知识。
提出拓展问题,激发学生思考,如“如何用表格表示复杂的多变量关系?”6. 布置作业让学生完成课后练习,运用表格表示变量间关系。
选择一个实际问题,制作表格,并分析变量间的关系。
六、教学评价1. 评价内容:学生对变量和常量的理解程度。
学生运用表格表示变量间关系的能力。
学生解决实际问题的能力。
2. 评价方法:课堂提问,检查学生对概念的理解。
作业批改,评估学生的实际操作能力。
小组讨论,观察学生的合作和问题解决能力。
七、教学反思1. 教师在课后应对本节课的教学效果进行反思,包括:学生对课堂内容的掌握情况。
教案二:如何通过相关系数体现变量之间的关系?。
一、什么是相关系数?相关系数是一种度量两个连续变量之间相关性的统计指标。
具体地说,它描述的是一个变量的改变与另一个变量的改变之间的关系。
相关系数的值在-1到1之间,值越接近1,说明两个变量之间的关系越强,值越接近-1,说明两个变量之间的关系越弱,值为0时说明两个变量之间不存在相关性。
二、相系数的类型相关系数主要有两种类型:皮尔逊相关系数和斯皮尔曼相关系数。
1.皮尔逊相关系数皮尔逊相关系数(Pearson correlation coefficient)是用于度量两个连续变量之间线性关系强度的统计指标。
当两个变量线性相关时,其皮尔逊相关系数的值为1或-1,当两个变量不相关时,其皮尔逊相关系数的值为0。
皮尔逊相关系数的计算公式如下:其中,x和y分别是两个变量的观测值,n是变量的数量,μx和μy是两个变量的均值,σx和σy是两个变量的标准差。
皮尔逊相关系数可以用来衡量两个变量之间的线性关系。
如果变量之间不是线性关系,皮尔逊相关系数就不是一个很好的度量了。
2.斯皮尔曼相关系数斯皮尔曼相关系数(Spearman's rank correlation coefficient)是用于度量两个连续变量之间的“等级”关系的统计指标。
斯皮尔曼相关系数是基于对两个变量进行等级转换之后的结果来计算的,它可以用来对非线性关系进行度量。
斯皮尔曼相关系数的计算公式如下:其中,di=x[i]-y[i],n是变量的数量,r是斯皮尔曼相关系数,P是秩次和公式,而P1和P2分别是x和y的秩次和,d是P1和P2的差。
当变量之间存在一个单调的关系时,斯皮尔曼相关系数为1或-1,当变量之间不存在单调关系时,斯皮尔曼相关系数为0。
三、如何解释相关系数了解相关系数是很重要的,但它们有什么意义呢?相关系数可以给你关于两个变量之间的关系提供重要信息。
通常来说,相关系数是通过检查数据点是否散布在一个线性模型周围来计算的,这个模型的形状是由公式y=mx+b定义的。
《变化的量》教案《变化的量》教案1目标1.结合具体的情境,体会生活中存在着大量相关联的变量;明白一个量变化,另一个量也会随着发生变化的特点。
2.让学生通过观察图表等活动,尝试着用自己的语言描述两个变量之间的关系。
3.培养学生认真观察的良好习惯,感受生活中处处有数学。
重点找出变量并体会量之间存在着的关系。
重点突破引导学生通过观察、分析,寻找表格、图象中变量之间的变化情况,掌握变量之间的关系。
难点用语言描述两个变量之间的关系。
难点突破掌握了变量之间的关系后,引导学生用合适的语言把这种关系表达出来。
教法主要有讲解法、谈话法、引导发现法、以教促学法。
学法通过动手实践、自主探究和合作交流的学习方式,理解具体情境中的各种变量之间的关系。
课前准备教师课件。
学生调查自己从出生到现在的身高和体重变化情况。
过程引入1.同学们,你们从出生到现在,身高是如何变化的?先估计一下,再说一说?(引导学生交流与讨论。
)2.我们不但只有身高在变化,我们的体重也在变化,你们知道自己从出生到现在的体重变化情况吗?请个别学生说说自己出生到现在体重的变化情况。
3.我们知道从出生到现在,身高和体重都在随着年龄的增长而增长,也就是说身高和体重都是两个变化的量。
今天这节课,我们就来认识变化的量。
(板书课题:变化的量)【设计意图】通过让学生课前调查自己身高和体重的变化,引出课题,让学生感受到生活中存在着许多变化的量,引起学生探究这些变化的量的欲望。
探新(一)探究妙想的体重变化情况。
过渡:同学们,刚才我们调查了几名同学从出生到现在的身高和体重变化情况,淘气和笑笑也在调查妙想的体重变化情况。
他们还画出了图表,我们一起去看看吧!课件出示教材第39页妙想体重变化情况的表格和图。
1.请同学们仔细观察表格和图,看看表格和图中都有哪些数学信息?(学生认真观察,寻找数学信息。
)2.提问:通过观察,你发现哪些量在发生变化?引导学生回答:妙想的年龄和体重在变化。
3.追问:妙想6周岁前的体重是如何随年龄的增长而变化的?学生回答预测:生A:妙想的体重随年龄的增长,越来越重。
变量间的相关关系优秀教案第一章:引言1.1 教学目标让学生理解变量间的相关关系概念让学生掌握绘制散点图的方法让学生了解相关系数的概念1.2 教学内容变量间的相关关系定义散点图的绘制方法相关系数的概念及计算方法1.3 教学过程1.3.1 导入通过实际例子引入变量间的相关关系概念,如身高与体重的关系。
1.3.2 新课导入讲解变量间的相关关系定义,解释相关系数的概念。
演示如何绘制散点图,让学生跟随操作。
1.3.3 案例分析提供一些实际数据,让学生绘制散点图,并计算相关系数。
1.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的变量间相关关系。
1.4 教学评价通过课堂练习和讨论,评估学生对变量间的相关关系的理解和应用能力。
第二章:线性相关关系2.1 教学目标让学生理解线性相关关系的概念让学生掌握线性相关关系的判断方法让学生学会绘制线性回归直线2.2 教学内容线性相关关系的定义线性相关关系的判断方法线性回归直线的绘制方法2.3 教学过程2.3.1 导入通过实际例子引入线性相关关系概念,如房价与面积的关系。
2.3.2 新课导入讲解线性相关关系的定义,解释线性回归直线的概念。
演示如何判断线性相关关系,让学生跟随操作。
2.3.3 案例分析提供一些实际数据,让学生判断线性相关关系,并绘制线性回归直线。
2.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的线性相关关系。
2.4 教学评价第三章:非线性相关关系3.1 教学目标让学生理解非线性相关关系的概念让学生掌握非线性相关关系的判断方法让学生学会绘制非线性回归直线3.2 教学内容非线性相关关系的定义非线性相关关系的判断方法非线性回归直线的绘制方法3.3 教学过程3.3.1 导入通过实际例子引入非线性相关关系概念,如温度与冰点的关系。
3.3.2 新课导入讲解非线性相关关系的定义,解释非线性回归直线的概念。
演示如何判断非线性相关关系,让学生跟随操作。
变量间的相关关系与统计案例教师版教师版:变量间的相关关系与统计案例引言:在统计学中,了解变量间的相关关系是非常重要的。
相关关系描述了两个或更多变量之间的连接,帮助我们理解它们如何相互影响和变化。
本文将介绍变量间相关关系的基本概念,并提供一些统计案例来帮助教师教授有关此主题的课程。
第一部分:相关性的定义和计算相关性是指两个或多个变量之间的关系程度。
直观上,当一个变量的值增加时,另一个变量的值是否也随之增加或减少。
相关性可以是正面的(变量之间的关系是正向的),也可以是负面的(变量之间的关系是反向的)。
相关性的计算可以通过两种方法来完成:Pearson相关系数和Spearman等级相关系数。
Pearson相关系数用于度量两个连续变量之间的线性关系,它的值介于-1和1之间。
当其值接近1时,表示两个变量之间的关系很强;当其值接近-1时,表示两个变量之间的关系是反向的;当其值接近0时,表示两个变量之间的关系较弱。
Spearman等级相关系数用于度量两个等级变量之间的关系,它的计算方式类似于Pearson相关系数,但在计算前将变量转换为等级。
第二部分:相关关系的案例研究案例1:学生的学习时间和学生成绩在这个案例中,我们研究了学生的学习时间和他们的学生成绩之间的相关关系。
我们收集了一组学生的学习时间(以小时为单位)和他们的学生成绩(以百分制为单位)数据。
通过计算Pearson相关系数,我们发现学习时间和学生成绩之间存在较强的正面相关关系(r = 0.8)。
这意味着学习时间越多,学生成绩越高。
案例2:家庭收入和孩子的学习成绩在这个案例中,我们研究了家庭收入与孩子学习成绩之间的相关关系。
我们收集了一组家庭收入水平(以年收入为单位)和孩子的学习成绩(以百分制为单位)数据。
通过计算Pearson相关系数,我们发现家庭收入和孩子学习成绩之间存在较弱的正面相关关系(r = 0.4)。
这意味着家庭收入较高的孩子往往有更好的学习成绩,但这种关系不是很强。
第六章 - 变量之间的关系教案教案:第三章变量之间的关系一、教学目标1.经历探索具体情境中两个变量之间关系的过程,进一步发展符号感和抽象思维.2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量.3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力.4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.5.体验从运动变化的角度认识数学对象的过程,发展对数学的认识.二、课时安排建议1小车下滑的时间~~~~~~~~~~~~~1课时 2变化中的三角形~~~~~~~~~~~~~1课时 3温度的变化~~~~~~~~~~~~~~~1课时 4速度的变化~~~~~~~~~~~~~~~1课时回顾与思考~~~~~~~~~~~~~~~~1课时三、教学建议1.创设丰富的现实情境,使学生在对变化规律的丰富经历中理解变量之间的相依关系.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论函数的有关概念.教师可以充分利用教科书中提供的问题,也可以根据学生实际创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论. 2.注重使学生亲身经历探索现实世界变化规律的过程.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实验或实践其他可操作性的实验,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对函数思想的理解,必须使他们对函数的多种表示――数值表示、解析表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表达.当学生运用语言进行表达时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.四、评价建议1.关注对学生探索现实世界变化规律的过程的评价.在本章的学习中,学生花费了较多的时间经历从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程的考查应当成为评价的首要方面.对这一方面评价的重点显然不是记忆概念的准确性和使用技能、法则的熟练程度,而是对以下诸方面的考查:从事活动的投入程度,从表格、关系式、图象中获取信息的准确性和广泛性,对具体情境中变量之间关系的敏感性,运用语言等描述变量之间关系的合理性等.例如,在对学生探索小车下滑时间与支撑物高度关系的过程进行评价时,可以关注以下几个方面:学生是否积极地进行活动,并在活动中进行独立思考;能否从实际操作或表格中意识到下滑时间与支撑物高度之间存在着相依关系;能否从表格中获取尽可能多的信息;能否运用自己的语言描述下滑时间与支撑物高度之间的关系等.2.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对函数性质本身(如单值对应、三种表达形式)进行讨论.§3.1 小车下滑的时间一、[教学目标]1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
北师大版七下数学3.2用关系式表示的变量间关系教案一. 教材分析本节课的主题是“用关系式表示的变量间关系”,属于北师大版七下数学的第三章“多变量的关系”的第二节。
通过本节课的学习,学生能够理解变量间的关系,并能够用关系式进行表示。
教材通过丰富的实例,引导学生探究变量之间的关系,从而达到理解并掌握关系式的目的。
二. 学情分析学生在学习本节课之前,已经掌握了变量和函数的概念,能够理解一个变量随另一个变量的变化而变化。
但是,对于用关系式表示变量间的关系,可能还存在一定的困难。
因此,在教学过程中,教师需要通过实例引导学生,让学生能够逐步理解和掌握关系式的表示方法。
三. 教学目标1.理解变量间的关系,并能够用关系式进行表示。
2.能够分析实际问题中的变量关系,并用关系式进行表达。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:理解变量间的关系,并能够用关系式进行表示。
2.教学难点:对于复杂的关系式,能够理解和运用。
五. 教学方法采用问题驱动的教学方法,通过丰富的实例,引导学生探究变量之间的关系,从而达到理解并掌握关系式的目的。
在教学过程中,注重学生的参与和思考,培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的实例,用于引导学生探究变量之间的关系。
2.准备关系式的模板,方便学生进行填写和练习。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出变量间的关系,例如“两个人共同完成一项任务,他们的工作效率与工作时间之间的关系是什么?”让学生思考并回答。
2.呈现(10分钟)呈现一些实例,让学生观察并分析变量间的关系。
例如,一个人跑步的速度与时间的关系,一个人的工资与工作时间的关系等。
引导学生发现,变量间的关系可以用关系式进行表示。
3.操练(10分钟)让学生分组讨论,每组找出一个实例,分析变量间的关系,并用关系式进行表示。
教师巡回指导,给予学生帮助和指导。
4.巩固(10分钟)让学生独立完成一些练习题,巩固所学的关系式的表示方法。
变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,掌握相关系数的定义和计算方法。
2. 培养学生运用相关系数分析实际问题,判断变量间的关系。
3. 引导学生利用图表和数据进行推理和分析,提高学生的数据分析能力。
二、教学内容:1. 相关关系的概念和性质2. 相关系数的定义和计算方法3. 相关系数的大小与变量间关系的强度和方向4. 实际问题中的相关关系分析三、教学重点与难点:1. 重点:相关关系的概念、相关系数的定义和计算方法,相关系数的大小与变量间关系的判断。
2. 难点:相关系数计算公式的理解和应用,实际问题中的相关关系分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实例认识相关关系。
2. 利用图表和数据进行分析,帮助学生理解相关系数的含义和作用。
3. 结合生活中的实际问题,培养学生运用相关系数分析和解决问题的能力。
五、教学准备:1. 准备相关关系的实例和数据,制作PPT进行展示。
2. 准备相关系数计算器,方便学生进行实践操作。
3. 准备一些实际问题,用于课堂讨论和分析。
六、教学过程:1. 引入:通过一个简单的实例,如身高和体重之间的关系,引导学生思考变量间的关系。
2. 讲解相关关系的概念和性质,解释相关系数的作用。
3. 讲解相关系数的定义和计算方法,引导学生理解相关系数的大小与变量间关系的强度和方向。
4. 进行实际问题分析,让学生运用相关系数判断变量间的关系。
5. 总结本节课的重点内容,布置课后作业。
七、课堂练习:1. 让学生使用相关系数计算器,计算给定数据集的相关系数。
2. 让学生分析实际问题中的相关关系,判断变量间的关系强度和方向。
3. 让学生解释相关系数在实际问题中的应用和意义。
八、课堂讨论:1. 引导学生讨论实际问题中的相关关系,分享彼此的想法和观点。
2. 引导学生从相关系数的角度分析实际问题,提出解决方案。
3. 鼓励学生提出问题,促进课堂互动和思考。
九、课后作业:1. 让学生完成相关关系练习题,巩固所学知识。
随机变量及其与事件的联系教学能手教案教学目标:1. 理解随机变量的概念及其在实际问题中的应用。
2. 掌握随机变量与事件之间的联系,能够运用随机变量描述不确定现象。
3. 学会运用数学方法分析和解决与随机变量相关的问题。
教学内容:一、随机变量的概念1. 引入随机试验和样本空间的概念。
2. 讲解随机变量的定义及其分类(离散型随机变量和连续型随机变量)。
二、随机变量与事件的关系1. 引入事件的概念。
2. 讲解随机变量与事件的联系,如何通过随机变量来描述事件。
3. 举例说明随机变量可以用来解决事件的概率问题。
三、离散型随机变量的概率分布1. 引入离散型随机变量的概率分布的概念。
2. 讲解概率分布的性质和意义。
3. 学习常见的离散型随机变量概率分布(如二项分布、泊松分布等)。
四、离散型随机变量的期望和方差1. 讲解离散型随机变量的期望的定义和计算方法。
2. 讲解离散型随机变量的方差的定义和计算方法。
3. 举例说明期望和方差在实际问题中的应用。
五、连续型随机变量1. 引入连续型随机变量的概念。
2. 讲解连续型随机变量的概率密度函数及其性质。
3. 学习常见的连续型随机变量(如正态分布、均匀分布等)。
教学方法:1. 采用讲授法,系统讲解随机变量及其与事件的关系。
2. 利用案例分析,让学生通过实际问题理解随机变量的应用。
3. 运用数形结合的方法,直观展示随机变量的概率分布和期望方差的概念。
教学评估:1. 课堂练习:及时检测学生对随机变量的理解和运用能力。
2. 课后作业:布置相关题目,巩固学生对随机变量知识的学习。
3. 课程报告:让学生选取实际问题,运用随机变量和相关知识进行分析,培养学生的综合运用能力。
六、随机变量的数字特征1. 讲解随机变量的数字特征的概念和重要性。
2. 学习随机变量的期望、方差、协方差等数字特征的定义和计算方法。
3. 举例说明数字特征在描述随机变量的集中趋势和离散程度方面的应用。
七、随机变量函数1. 引入随机变量函数的概念。
变量间的相关关系优秀教案第一章:引言1.1 课程介绍本课程旨在帮助学生理解变量间的相关关系,并学会如何进行相关性分析。
通过本章的学习,学生将能够掌握相关性概念,并了解相关性在实际应用中的重要性。
1.2 变量间的相关关系概念1.2.1 变量概念变量是研究对象的特征或属性,可以用来衡量或描述。
在本课程中,我们将关注两种类型的变量:定量变量和分类变量。
1.2.2 相关关系概念相关关系是指两个变量之间的相互关系或关联程度。
相关关系可以是正相关的,即一个变量增加时,另一个变量也增加;也可以是负相关的,即一个变量增加时,另一个变量减少。
第二章:皮尔逊相关系数2.1 皮尔逊相关系数的概念皮尔逊相关系数是衡量两个定量变量之间线性相关程度的一种统计方法。
它的取值范围在-1到1之间,当相关系数为1时,表示完全正相关;当相关系数为-1时,表示完全负相关;当相关系数为0时,表示没有相关关系。
2.2 计算皮尔逊相关系数2.2.1 数据收集收集两组定量变量的数据,并将其整理成表格形式。
2.2.2 计算步骤(1)计算两组数据的均值;(2)计算两组数据的标准差;(3)计算协方差;(4)计算皮尔逊相关系数。
2.3 应用案例通过实际案例,让学生了解如何使用皮尔逊相关系数进行相关性分析,并解释结果。
第三章:斯皮尔曼等级相关系数3.1 斯皮尔曼等级相关系数的概念斯皮尔曼等级相关系数是衡量两个变量之间单调相关程度的一种非参数方法。
它适用于非正态分布的数据或有序分类变量。
3.2 计算斯皮尔曼等级相关系数3.2.1 数据收集收集两组有序分类变量的数据,并将其整理成表格形式。
3.2.2 计算步骤(1)将数据进行等级排序;(2)计算等级差的积;(3)计算等级差的平均值;(4)计算斯皮尔曼等级相关系数。
3.3 应用案例通过实际案例,让学生了解如何使用斯皮尔曼等级相关系数进行相关性分析,并解释结果。
第四章:肯德尔等级相关系数4.1 肯德尔等级相关系数的概念肯德尔等级相关系数是衡量多于两个变量之间单调相关程度的一种非参数方法。
变量间的相关关系一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。
教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。
为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。
二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。
2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。
②通过动手操作培养学生观察、分析、比较和归纳能力。
3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。
三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。
难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。
四、教学设计)(一)、创设情境导入新课1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。
生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。
这就是我们这节课要共同探讨的内容————变量间的相关关系。
生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。
通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。
让学生体会研究变量之间相关关系的重要性。
感受数学来源于生活。
(二)、初步探索,直观感知1、根据样本数据作出散点图,直观感知变量之间的相关关系。
在研究相关关系前,先回忆一下函数的表示方法有哪些——列表,画图象,求解析式。
下面我们就用这些方法来研究相关关系。
看这样一组数据:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,根据样本数据,人体的脂肪含量与年龄之间有怎样的关系?一个点。
21中释:即图1、2(三)、循序渐进、延伸拓展 1、找回归直线师:下面我们再来看一下年龄与脂肪的散点图, 从整体上看,它们是线性相关的。
如果可以求出回归直线的方程,我们就可以清楚地了解年龄与体内脂肪含量的相关性。
这条直线可以作为两个变量具有线性相关关系的代表。
能否画出这条直线? 数学实验1: 画出回归直线图12图图3图4假设我们已经得到两个具有线性相关关系的变量的一组数据:11(,)x y 22(,)x y ……(,)n n x y 。
当自变量x 取i x (i =1,2,……,n )时,可以得到ˆi ybx a =+(i =1,2,……,n ),它与实际收集到的i y 之间的偏差是ˆ()i i i i y yy bx a -=-+(i =1,2,……,n ),这样用n 个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的。
总的偏差为1ˆ()ni i i y y=-∑,偏差有正有负,易抵消,所以采用绝对值1ˆni i i y y=-∑,由于带绝对值计算不方便所以换成平方,222221122331ˆ()()()()()ni i n n i Q y yy bx a y bx a y bx a y bx a ==-=--+--+--+⋅⋅⋅+--∑现在的问题就归结为:当a ,b 取什么值时Q 最小。
将上式展开、再合并,就可以得到可以求出Q 取最小值时1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx====---==--=-∑∑∑∑(其中11n i i x x n ==∑,11n ii y y n ==∑) 推导过程用到偏差的平方,由于平方又叫二乘方,所以这种使“偏差的和”最小的方法叫 “最小二乘法”。
3、求出回归直线方程,并分析它的意义利用最小二乘法就可以求出回归系数,进一步求出回归方程。
下面我们具体操作一下。
我们先明确几个符号的含义:i x 表示年龄,1x 是23,2x 是27,直到14x 是61。
i 从1到14, i y 表示脂肪,1y 是9.5,2y 是17.8 。
i i x y 表示年龄与脂肪的成绩,2i x 表示 年龄的平方218.5 529 480.6 729 826.8 1521 1061.9 1681 1237.520252221221221111()()()()()()()()()n ni i i i n n i i i i n n i i i i i i x x y y x x y y Q n a y bx x x b y y x x x x ======⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥=--+---+-⎣⎦⎢⎥--⎢⎥⎣⎦∑∑∑∑∑∑2x ix y ix y i i11ni i x x n ==∑表示自变量年龄的平均数,11ni i y y n ==∑表示因变量脂肪的平均数,21nii x=∑表示自变量的平方和,1ni i i x y =∑表示自变量与因变量乘积的和。
要求出 a ,b ,必须先求出这些量。
数学实验2:求出下列各式的值(n=14)11ni i x x n ==∑= 11ni i y y n ==∑= 1n i ii x y =∑= 21nii x=∑=1221ni ii nii x y nx yb xnx==-==-∑∑ a y bx =-=ˆybx a =+ 通过计算,求出了0.448,0.5765a b =-= ˆ0.57650.448yx =- 求出回归直线方程有什么用呢?表格中选取年龄x 的一个值代入上述回归直线的方程,看看得出的数据与真实数值之间的关系。
ˆ0.5765500.44829.272y=⨯-=估计值是29.272,与实际值28.2有偏差,为什么会出现这样的结果?回归直线是估计出的,把a 带入肯定有误差。
试预测某人37岁时,他体内的脂肪含量。
并说明结果的含义。
代入计算ˆ0.5765370.44820.882y=⨯-=我们不能说他的体内脂肪含量的百分比一定是20.882%?只能说他体内的脂肪含量在20.90%,附近的可能性比较大。
(四)、线性回归分析思想在实际中的应用总结:我们利用回归直线对年龄与脂肪的关系做了上述分析,这种分析方法叫做线性回归分析。
利用这种分析方法可以对生活中的很多问题进行分析与预测。
例2有一个同学家开了一个小卖部,他为了研究气温对销售热饮的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:1288.7 2401 1410 2500 1568.8 2809 1630.8 2916 1758.4 3136 1755.6 3249 1943 3364 2112 3600 2110.6 3721 19403.234181(1)画出散点图 (2)从散点图中发现气温与热饮销售杯数之间关系的一般规律 (3)求回归方程(4)如果某天的气温是2℃,预测这天卖出的热饮杯数 数学实验3:求出下列各式的值(n=11)11ni i x x n ==∑= 11ni i y y n ==∑= 1n i ii x y =∑= 21nii x=∑=1221ni ii ni i x y nx yb x nx==-==-∑∑ a y bx =-=ˆybx a =+ (五)利用相关系数判断线性相关程度利用最小二乘法求出回归直线的方程后,可以对上面两个变量的关系进行分析与预测。
是不是所有的相关关系都可以求出回归直线的方程?请大家观察这4幅图怎注意它的符号:当0r >时,x ,y 正相关,当0r <时,x ,y 负相关,统计学认为: 对于r ,若[]1,0.75r ∈--,那么负相关很强,若[]0.75,1r ∈,那么正相关很强, 若(][)0.75,0.30r ∈--∈或r 0.30,0.75,那么相关性一般, 若[]0.25,0.25r ∈-,那么相关性较弱,不同的相关性可以从散点图上直观地反应出来,观察这几幅散点图,判断图中的两个变----量的相关关系的强弱。
图1、2正线性相关,图1中的点密集,相关性比图2好。
利用相关系数也0.97r =图120.84r =-图0.27r =图30.05r =-图4可以看出相关性,图1中r=0.97接近1,图2中r=-0.85,所以可以总结出相关系数的绝对值越大,线性相关关系就越强。
(五)、归纳总结,内化知识 回归直线方程的求法: ①先判断变量是否线性相关②若线性相关,利用公式计算出a 、b③利用回归方程对生活实际问题进行分析与预测高考统计部分线性回归方程具体如何应用线性回归方程为ˆˆˆybx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n =+++⋅⋅⋅+(2) 求变量y 的平均值,既1231()n y y y y y n=+++⋅⋅⋅+ (3) 求变量x 的系数ˆb,有两个方法 法1121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=⎡⎤-+-++-⎣⎦(需理解并会代入数据)法2121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]1122222212...,...n n n x y x y x y nx y x x x nx ++-⋅=⎡⎤+++-⎣⎦(这个公式需要自己记忆,稍微简单些)(4) 求常数ˆa,既ˆˆa y bx =- 最后写出写出回归方程ˆˆˆybx a =+。
可以改写为:ˆˆy bx a =-(ˆy y 与不做区分) 例:已知,x y 之间的一组数据:求y 与x 的回归方程:解:(1)先求变量x 的平均值,既1(0123) 1.54x =+++=(2)求变量y 的平均值,既1(1357)44y =+++=(3)求变量x 的系数ˆb,有两个方法 法1ˆb =[]11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=⎡⎤-+-+-+-⎣⎦--+--+--+--==⎡⎤-+-+-+-⎣⎦法2ˆb =[][]11222222222212...011325374 1.5457...0123n n n x y x y x y nx y x x x nx ++-⋅⨯+⨯+⨯+⨯-⨯⨯==⎡⎤⎡⎤+++-+++⎣⎦⎣⎦(4)求常数ˆa,既525ˆˆ4 1.577a y bx =-=-⨯= 最后写出写出回归方程525ˆˆˆ77ybx a x =+=+ 数学实验1、画出回归直线221ii xnx=-∑ =ˆybx a =+=。