高一物理追及和相遇问题(1)
- 格式:ppt
- 大小:473.00 KB
- 文档页数:33
高一物理追及相遇问题知识点一、知识概述“高一物理追及相遇问题知识点”①基本定义:所谓追及相遇问题呢,就是两个物体在同一直线上运动,一个追另一个,然后会出现追上或者相遇这些情况。
比如说你和你的小伙伴跑步,你在他后面跑,想要追上他,这就是一种简单的追及情况;而像两辆车相向而行,然后碰面了,这就是相遇的情况。
②重要程度:在高一物理里这可是很重要的内容哦。
它能让我们更好地理解物体的运动状态和运动过程中的关系,如果这个搞不明白,那后面更复杂的运动相关的知识学起来就费劲了。
③前置知识:得对基本的位移、速度、加速度这些概念有一定的掌握。
就像你盖房子得先有砖头一样,这些基础概念就是解决追及相遇问题的“砖头”。
举个例子,如果不知道速度是描述物体运动快慢的量,那在追及相遇里去分析谁快谁慢都无从下手。
④应用价值:在生活里可太多这种情况啦。
像交通领域,车与车之间的安全距离设定就跟追及相遇问题有关,要是不考虑这些很容易追尾;还有体育赛事里,赛跑的选手之间追及和超越也用到这个知识。
二、知识体系①知识图谱:追及相遇问题是在运动学这个大框架里的小模块,就像是墙上的一块砖,和整个墙面(运动学)息息相关,与速度、位移、时间这些知识都是紧密相连的。
②关联知识:和速度- 时间图像、位移- 时间图像关系很大。
比如说速度- 时间图像里面,图像里面积的表示就可能涉及到追及相遇时两者的位移关系。
还和运动的合成与分解有点联系,不过这个联系更隐晦一点,在复杂一点的追及相遇场景可能会用到。
③重难点分析:重点呢,就是要能准确分析两个物体在追及相遇过程中的位移关系、速度关系。
就像两个人赛跑,你得知道谁跑的路程长(位移关系),谁跑得快(速度关系)这很关键。
难点在于有的场景下物体的运动不是一直匀速或者一直加速这些简单情况,可能是先加速后匀速再减速这种复杂的运动组合。
比如说一辆车在行驶过程中,遇到红绿灯,先以某个加速度加速,然后到了路口看到红灯又以一定的加速度减速,在分析后面追上来的车是否能追上它的时候就复杂多了。
高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
【典型例题】(一).匀加速运动追匀速运动的情况:(开始时v1<v2):v1<v2时,两者距离变大;v1=v2时,两者距离最大;v1>v2时,两者距离变小,相遇时满足x1=x2+Δx,全程只相遇(即追上)一次。
【例1】一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?(二).匀速运动追匀加速运动的情况:(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
【例2】一个步行者以6m/s的最大速率跑步去追赶被红绿灯阻停的公共汽车,当它距离公共汽车25m时,绿灯亮了,车子以1m/s2的加速度匀加速起动前进,则()A.人能追上汽车,追车过程中共跑了36mB.人不能追上汽车,人和车最近距离为7mC.人不能追上汽车,自追车开始后人和车间距越来越大D.人能追上汽车,追上车前人共跑了43m(三).匀减速运动追匀速运动的情况(同上)【例3】A、B两列火车,在同轨道上同向行驶,A车在前,其速度v A=10 m/s,B车在后,其速度v B=30 m/s.因大雾能见度低,B车在距A车700 m时才发现前方有A车,这时B车立即刹车,但B车要经过1 800 m才能停止.问A车若按原速度前进,两车是否会相撞?说明理由.(四).匀速运动追匀减速运动的情况:若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。
相遇和追及问题【要点梳理】要点一、机动车的行驶安全问题:1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。
2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。
停车距离的长短由反应距离和刹车距离共同决定。
安全距离大于一定情况下的停车距离。
`要点二、追及与相遇问题的概述1、追及问题的两类情况(1)速度小者追速度大者|¥(2)速度大者追速度小者说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;…③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.,特点归类:(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度. (2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近. 2、 相遇问题的常见情况(1) 同向运动的两物体的相遇问题,即追及问题.(2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.(【典型例题】类型一、机动车的行驶安全问题例1、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速为v=120km/h 。
假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要(即反应时间),刹车时汽车所受阻力是车重的倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离【答案】156m【解析】v 120km /h 33.3m /s ==匀减速过程的加速度大小为2a kmg /m 4m /s ==。