2019届山东省中考数学《4.7相似三角形》随堂演练(含答案)
- 格式:doc
- 大小:144.50 KB
- 文档页数:3
第一节 实数及其运算随堂演练1.(2017·临沂)-12 017的相反数是( )A.12 017B .-12 017C .2 017D .-2 0172.(2017·聊城)64的立方根是( ) A .4B .8C .±4D .±83.20年前,N A S A 航天器 “卡西尼”号发射升空开启了探索土星的旅程;13年前它到达土星轨道;现在,它准备好了旅程的最后一步,前所未有地接近土星.地球到土星距离约12.8亿千米,12.8亿用科学记数法表示为( ) A .12.8×108B .1.28×109C .128×107D .0.128×1084.(2017·济南)2017年5月5日国产大型客机C919首飞成功圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5 550公里.数字 5 550 用科学记数法表示为( ) A .0.555×104B .5.55×103C .5.55×104D .55.5×1035.(2017·威海)计算-(2)2+(2+π)0+(-12)-2的结果是( )A .1B .2C.114D .36.(2017·潍坊)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于 之间( )A .B 与CB .C 与DC .E 与FD .A 与B7.判断311-4的值介于下列哪两个整数之间( ) A .3,4B .4,5C .5,6D .6,78.(2017·青岛)近年来,国家重视精准扶贫,收效显著,据统计约 65 000 000人脱贫.65 000 000用科学记数法可表示为_______. 9.计算(-3)2-(π-1)0+3+|3-2|=_____. 10.(2017·临沂)计算:|1-2|+2cos 45°-8+(12)-1.参考答案1.A 2.A 3.B 4.B 5.D 6.A 7.C8.6.5×1079.410.解:原式=2-1+2×22-22+2=2-1+2-22+2=1.第二节 整式与因式分解随堂演练1.(2017·潍坊)下列计算,正确的是( ) A .a 3·a 2=a 6B .a 3÷a=a 3C .a 2+a 2=a 4D .(a 2)2=a 42.(2017·济宁)单项式9x m y 3与单项式4x 2y n 是同类项,则m +n 的值是( ) A .2B .3C .4D .53.(2017·青岛)计算6m 6÷(-2m 2)3的结果为( ) A .-mB .-1C.34D .-344.已知x 2-3x -4=0,则代数式x x -x -4的值是( )A .3B .2 C.13D.125.(2017·淄博)若a +b =3,a 2+b 2=7,则ab 等于( ) A .2B .1C .- 2D .-16.(2017·济宁)计算(a 2)3+a 2·a 3-a 2÷a -3,结果是( ) A .2a 5-a B .2a 5-1aC .a 5D .a 67.(2017·聊城)因式分解:2x 2-32x 4=_________. 8.已知a +b =2,ab =1,则a 2b +ab 2的值为________. 9.(2017·天水)观察下列的“蜂窝图”:则第n 个图案中的的个数是_____.(用含有n 的代数式表示)10.(2017·宁德)化简并求值:x(x -2)+(x +1)2,其中x =-2.参考答案1.D 2.D 3.D 4.D 5.B 6.D7.2x2(1+4x)(1-4x) 8.2 9.3n+110.解:原式=x2-2x+x2+2x+1=2x2+1,当x=-2时,原式=8+1=9.分式随堂演练1.若分式x -2x +1的值为0,则x 的值为( )A .2或-1B .0C .2D .-12.(2016·台州)化简x 2-y2(y -x )2的结果是( )A .-1B .1 C.x +y y -xD.x +y x -y3.(2016·德州)化简a 2-b 2ab -ab -b2ab -a 2等于( )A.baB.abC .-b aD .- ab4.(2017·泰安)化简(1-2x -1x 2)÷(1-1x 2)的结果为( )A.x -1x +1B.x +1x -1C.x +1xD.x -1x5.如果分式2xx +3有意义,那么x 的取值范围是_________.6.(2017·潍坊)计算:(1-1x -1)÷x -2x 2-1=_________. 7.(2017·临沂)计算:x -y x ÷(x-2xy -y2x )=_________.8.(2017·滨州)(1)计算:(a -b)(a 2+ab +b 2);(2)利用所学知识以及(1)所得等式,化简代数式m 3-n 3m 2+mn +n 2÷m 2-n2m 2+2mn +n 2.9.(2016·烟台)先化简,再求值:(x 2-y x -x -1)÷x 2-y2x 2-2xy +y2,其中x =2,y = 6.参考答案1.C 2.D 3.B 4.A 5.x≠-3 6.x +1 7.1x -y8.解:(1)原式=a 3+a 2b +ab 2-a 2b -ab 2-b 3=a 3-b 3. (2)原式=(m -n )(m 2+mn +n 2)m 2+mn +n 2·(m +n )2(m +n )(m -n )=m +n. 9.解:原式=x 2-y -x 2-x x ÷(x +y )(x -y )(x -y )2=-(x +y )x ·x -y x +y =-x -yx ,当x =2,y =6时,原式=-2-62=3-1.二次根式随堂演练1.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是( ) A .x≥12B .x≤12C .x =12D .x≠122.(2017·滨州)下列计算:(1)(2)2=2;(2)(-2)2=2;(3)(-23)2=12;(4)(2+3)×(2-3)=-1.其中结果正确的个数为( ) A .1 B .2 C .3D .43.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是( )A .-2a +bB .2a -bC .-bD .b4.(2017·东营)若|x 2-4x +4|与2x -y -3 互为相反数,则x +y 的值为( )A .3B .4C .6D .95.对于任意的正数m ,n ,定义运算※,其规则为m※n=⎩⎨⎧m -n (m≥n),m +n (m<n ),计算(3※2)×(8※12)的结果为( ) A .2-4 6 B .2 C .2 5D .206.(2017·德州)计算:8-2=_____. 7.(2017·青岛)计算:(24+16)×6=____. 8.计算:13+1-sin 60°+32×18.9.计算:(3+2-1)(3-2+1).参考答案1.C 2.D 3.A 4.A 5.B 6. 2 7.13 8.解:原式=3-12-32+2 =32-12-32+2 =32. 9.解:原式=[3+(2-1)][3-(2-1)] =(3)2-(2-1)2=2 2.一次方程(组)随堂演练1.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1 B.32 C.23D .22.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10①,5x -3y =6 ②,下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×23.关于x ,y 的方程组⎩⎪⎨⎪⎧x +py =0,x +y =3的解是⎩⎪⎨⎪⎧x =1,y =●,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( ) A .-12B.12C .-14D.144.(2017·滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x =16(27-x)B .16x =22(27-x)C .2×16x=22(27-x)D .2×22x=16(27-x)5.(2016·聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A.27B .51C .69D .726.(2017·枣庄)已知⎩⎪⎨⎪⎧x =2,y =-3是方程组⎩⎪⎨⎪⎧ax +by =2,bx +ay =3的解,则a 2-b 2=____. 7.(2017·济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是____________.8.解下列方程(组). (1)2-3x -77=-x +75.(2)⎩⎪⎨⎪⎧2x +y =3,x -y =0.9.(2017·威海)某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?参考答案1.B 2.D 3.A 4.D 5.D 6.1 7.⎩⎪⎨⎪⎧x +12y =4823x +y =488.解:(1)去分母,得35×2-5(3x -7)=-7(x +7), 去括号,得70-15x +35=-7x -49, 移项、合并同类项,得-8x =-154, 方程两边同除以-8,得x =774. (2)⎩⎪⎨⎪⎧2x +y =3, ①x -y =0. ② ①+②得3x =3,解得x =1. 把x =1代入②,得y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =1.9.解:设去年计划生产玉米x 吨,小麦y 吨,根据题意得⎩⎪⎨⎪⎧x +y =200,(1+5%)x +(1+15%)y =225,解得⎩⎪⎨⎪⎧x =50,y =150,∴(1+5%)×50=52.5(吨),(1+15%)×150=172.5(吨). 答:该农场去年实际生产玉米52.5吨,小麦172.5吨.一元二次方程随堂演练1.(2017·滨州)一元二次方程x 2-2x =0根的判别式的值为( ) A .4B .2C .0D .-42.(2017·威海)若1-3是方程x 2-2x +c =0的一个根,则c 的值为( ) A .-2B .43-2C .3- 3D .1+ 33.(2017·泰安)一元二次方程x 2-6x -6=0配方后化为( ) A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15D .(x +3)2=34.已知实数a ,b 分别满足a 2-6a +4=0,b 2-6b +4=0,且a≠b,则b a +a b 的值是( )A .7B .-7C .11D .-115.(2017·济南)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根为( )A .-6B .-3C .3D .66.(2017·德州)方程3x(x -1)=2(x -1)的根为_____________.7.(2017·淄博)已知α,β是方程x 2-3x -4=0的两个实数根,则α2+αβ-3α的值为________.8.(2017·烟台)今年,我市某中学为响应习总书记“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率; (2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?参考答案1.A 2.A 3.A 4.A 5.B 6.x =1或x =237.08.解:(1)设平均每年降低的百分率为x.由题意得200(1-x)2=162,解得x=0.1或x=1.9(舍去).答:平均每年降低的百分率为10%.(2)A商场买十送一,买90个送9个,另外1个需要购买,∴需要购买91个,所需费用为162×91=14 742(元).B商场全场九折,所需费用为162×0.9×100=14 580(元).∵14 742>14 580,∴去B商场购买更优惠.分式方程随堂演练1.(2017·滨州)分式方程x x -1-1=3(x -1)(x +2)的解为( )A .x =1B .x =-1C .无解D .x =-22.对于非零实数a ,b ,规定a⊕b=1b -1a,若2⊕(2x -1)=1,则x 的值为( )A.56 B.54 C.32D .-163.(2017·聊城)如果解关于x 的分式方程m x -2-2x2-x =1时出现增根,那么m 的值为( )A .-2B .2C .4D .-44.(2017·德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A.240x -20-120x=4B.240x +20-120x =4 C.120x -240x -20=4D.120x -240x +20=4 5.(2017·泰安)分式7x -2与x2-x的和为4,则x 的值为_____.6.(2016·淄博)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出方程是_____.7.(2016·济宁)已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,这辆汽车原来的速度是_____km/h. 8.(2017·济宁)解方程:2x x -2=1-12-x .9.(2017·淄博)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420 km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了 2 h .求汽车原来的平均速度.参考答案1.C 2.A 3.D 4.D 5.3 6.60x +8=45x7.808.解:方程两边同乘(x -2)得2x =x -2+1. 解得x =-1.检验:当x =-1时,x -2≠0. ∴原分式方程的解为x =-1.9.解:设汽车原来的平均速度为x km/h , 根据题意得420x -420(1+50%)x =2,解得x =70.经检验,x =70是原分式方程的解,且符合题意. 答:汽车原来的平均速度为70 km/h.第四节 一元一次不等式(组)随堂演练1.不等式3(x -2)<7的正整数解有( ) A .2个B .3个C .4个D .5个2.(2017·临沂)不等式组⎩⎪⎨⎪⎧2-x>1,①x +52≥1 ②中,不等式①和②的解集在数轴上表示正确的是( )3.(2017·泰安)不等式组⎩⎪⎨⎪⎧2x +9>6x +1,x -k<1的解集为x<2,则k 的取值范围为( )A .k>1B .k<1C .k≥1D .k≤14.(2016·滨州)对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解集是-52<x≤25.(2017·滨州)不等式组⎩⎪⎨⎪⎧x -3(x -2)>4,2x -15≤x +12的解集为__________.6.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a>0,1-2x>-3只有五个整数解,则实数a 的取值范围是_________.7.已知不等式组⎩⎪⎨⎪⎧2x -a<1,x -2b>3的解集为-3<x <2,则a24b =_________.8.(2017·枣庄)x 取哪些整数值时,不等式5x +2>3(x -1)与12x≤2-32x 都成立?9.(2017·泰安)某水果商从批发市场用8 000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8 000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案1.C 2.B 3.C 4.B5.-7≤x<1 6.-4≤a<-3 7.-348.解:解不等式5x +2>3(x -1),得x>-52;解不等式12x≤2-32x ,得x≤1;∴x 的取值必须满足-52<x≤1.故满足条件的整数有-2,-1,0,1.9.解:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,则⎩⎪⎨⎪⎧200x +200y =8 000,y -x =20,解得⎩⎪⎨⎪⎧x =10,y =30. ∴大樱桃进价为30元/千克,小樱桃进价为10元/千克. 200×[(40-30)+(16-10)]=3 200(元), ∴该水果商共赚了3 200元. (2)设大樱桃的售价为y 元/千克,(1-20%)×200×16+200y -8 000≥3 200×90%, 解得y≥41.6,∴大樱桃的售价最少应为41.6元/千克.平面直角坐标系与函数随堂演练1.若点A(m,n)在第二象限,那么点B(-m,|n|)在( ) A.第一象限B.第二象限C.第三象限D.第四象限2.(2016·威海)函数y=x+2x的自变量x的取值范围是( )A.x≥-2 B.x≥-2且x≠0C.x≠0 D.x>0且x≠-23.(2017·淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )4.(2017·潍坊)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( )A.(-2,1) B.(-1,1)C .(1,-2)D .(-1,-2)5.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1 cm /s .若P ,Q 同时开始运动,设运动时间为t(s ),△BPQ 的面积为y(cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是( )A .AE =6 cmB .sin ∠EBC=45C .当0<t≤10时,y =25t 2D .当t =12 s 时,△PBQ 是等腰三角形 6.(2017·营口)函数y =x -1x +1中,自变量x 的取值范围是_________. 7.如图,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合,试写出重叠部分面积y(cm 2)与MA 长度x(cm )之间的函数关系式(指出自变量取值范围)是________________________.参考答案1.A 2.B 3.D 4.B 5.D6.x≥1 7.y =12x 2(0<x≤10)第二节一次函数随堂演练1.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )2.(2017·滨州)若点M(-7,m),N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是( )A.m>n B.m<n C.m=n D.不能确定3.若点(x1,y1 (x2,y2 (x3,y3)都是一次函数y=-x-1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x3<x2<x14.(2017·聊城)端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500 m的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示.下列说法错误的是( )A.乙队比甲队提前0.25 min到达终点B.当乙队划行110 m时,此时落后甲队15 mC.0.5 min后,乙队比甲队每分钟快40 mD.自1.5 min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m/min5.(2016·荆州)若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k -1)x+k的图象不经过第______象限.6.(2016·贵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a 与b的大小关系是______.7.(2017·青岛)A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系.请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是_____(填l1或l2);甲的速度是_____ km/h;乙的速度是_____km/h ;(2)甲出发多少小时两人恰好相距5 km?8.(2017·潍坊)某蔬菜加工公司先后两批次收购蒜薹(t ái)共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元. (1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?参考答案1.B 2.B 3.D 4.D 5.一 6.a>b 7.解:(1)l 2 30 20(2)设直线l 2的表达式为s 1=k 1t +b 1,由题意得⎩⎪⎨⎪⎧b 1=60,2k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-30,b 1=60,∴直线l 1的表达式为s 1=-30t +60. 设直线l 2的表达式为s 2=k 2t +b 2,由题意得⎩⎪⎨⎪⎧0.5k 2+b 2=0,3.5k 2+b 2=60,解得⎩⎪⎨⎪⎧k 2=20,b 2=-10, ∴直线l 2的表达式为s 2=20t -10.∵两人恰好相距5 km ,∴s 1-s 2=5或s 1-s 2=-5,即-30t +60-(20t -10)=5或-30t +60-(20t -10)=-5, 解得t =1.3或t =1.5.答:甲出发1.3 h 或1.5 h 时,两人恰好相距5 km.8.解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨,由题意得⎩⎪⎨⎪⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80. 答:第一批次购进20吨,第二批次购进80吨.(2)设蒜薹精加工m 吨,总利润为w 元,则粗加工(100-m)吨,由题意得m≤3(100-m),解得m≤75.利润w =1 000m +400(100-m)=600m +40 000. ∵w 随m 的增大而增大,∴当m =75,即精加工75吨时,w 取最大值,最大利润为 85 000 元.反比例函数随堂演练1.(2017·日照)反比例函数y =kbx 的图象如图所示,则一次函数y =kx +b(k≠0)的图象大致是( )2.(2017·青岛)一次函数y =kx +b(k≠0)的图象经过A(-1,-4),B(2,2)两点,P 为反比例函数y =kbx 图象上一动点,O 为坐标原点,过点P 作y 轴的垂线,垂足为C ,则△PCO的面积为( ) A .2B .4C .8D .不确定3.(2016·张家界)在同一平面直角坐标系中,函数y =mx +m(m≠0)与y =mx (m≠0)的图象可能是( )4.(2017·滨州)在平面直角坐标系内,直线AB 垂直x 轴于点C(点C 在原点的右侧),并分别与直线y =x 和双曲线y =1x 相交于点A ,B ,且AC +BC =4,则△OAB 的面积为()A .23+3或23-3 B.2+1或2-1 C .23-3D.2-15.(2017·枣庄)如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC的面积为______.6.(2017·烟台)如图,直线y =x +2与反比例函数y =kx 的图象在第一象限交于点P ,若OP=10,则k 的值为____.7.在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x 的图象有2个公共点,则b 的取值范围是____________.8.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A ,C 分别在坐标轴上,点B 的坐标为(4,2),直线y =-12x +3交AB ,BC 分别于点M ,N ,反比例函数y =kx 的图象经过点M ,N.(1)求反比例函数的表达式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.参考答案1.D 2.A 3.D 4.A 5.4 6.3 7.b>2或b<-28.解:(1)∵B(4,2),四边形OABC 是矩形,∴OA=BC =2. 将y =2代入y =-12x +3,得x =2,∴M(2,2).把M 点坐标代入y =kx ,得k =4,∴反比例函数的表达式是y =4x .(2)S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-12×2×2-12×4×1=4,由题意得12OP·AM=4,∵AM=2,∴OP=4,∴点P 的坐标是(0,4)或(0,-4).第四节 二次函数随堂演练1.(2017·德州)下列函数中,对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2的是( ) A .y =-3x +2 B .y =2x +1 C .y =2x 2+1D .y =-1x2.(2016·滨州)抛物线y =2x 2-22x +1与坐标轴的交点个数是( ) A .0B .1C .2D .33.(2017·威海)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则正比例函数y =(b +c)x 与反比例函数y =a -b +cx在同一坐标系中的大致图象是( )4.(2017·泰安)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:x<1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有( ) A .1个B .2个C .3个D .4个5.(2017·日照)已知抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点; ②4a+b +c =0; ③a-b +c<0;④抛物线的顶点坐标为(2,b); ⑤当x<2时,y 随x 增大而增大. 其中结论正确的是( ) A .①②③ B .③④⑤ C .①②④D .①④⑤6.二次函数y =x 2-2x -3的图象如图所示,当y <0时,自变量x 的取值范围是____________.7.(2016·泸州)若二次函数y =2x 2-4x -1的图象与x 轴交于点A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为_________. 8.如图,在平面直角坐标系中,Rt △ABC 的顶点A ,C 分别在y 轴,x 轴上,∠ACB=90°,OA =3,抛物线y =ax 2-ax -a 经过点B(2,33),与y 轴交于点D. (1)求抛物线的表达式;(2)点B 关于直线AC 的对称点是否在抛物线上?请说明理由; (3)延长BA 交抛物线于点E ,连接ED ,试说明ED∥AC 的理由.参考答案1.A 2.C 3.C 4.B 5.C 6.-1<x <3 7.-48.解:(1)把点B 的坐标代入抛物线的表达式, 得33=a×22-2a -a ,解得a =33, ∴抛物线的表达式为y =33x 2-33x -33. (2)如图,连接CD ,过点B 作BF⊥x 轴于点F , 则∠BCF+∠CBF=90°.∵∠ACB=90°,∴∠ACO+∠BCF=90°, ∴∠ACO=∠CBF.∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴AO CF =OCFB .设OC =m ,则CF =2-m ,则有32-m =m33.解得m =1,∴OC=CF =1. 当x =0时,y =-33,∴OD=33,∴BF=OD. ∵∠DOC=∠BFC=90°,∴△OCD≌△FCB, ∴DC=CB ,∠OCD=∠FCB, ∴点B ,C ,D 在同一直线上, ∴点B 与点D 关于直线AC对称, ∴点B 关于直线AC 的对称点在抛物线上.(3)如图,过点E 作EG⊥y 轴于点G ,设直线AB 的表达式为y =kx +b , 则⎩⎪⎨⎪⎧b =3,33=2k +b ,解得⎩⎪⎨⎪⎧k =-33,b =3,∴直线AB 的表达式为y =-33x + 3. 代入抛物线的表达式,得-33x +3=33x 2-33x -33. 解得x =2或x =-2. 当x =-2时,y =-33x +3=533, ∴点E 的坐标为(-2,533).∵tan∠EDG=EG DG =2533+33=33,∴∠EDG=30°.∵tan∠OAC=OC OA =13=33,∴∠OAC=30°,∴∠OA C =∠EDG,∴ED∥AC.几何的初步认识随堂演练1.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A.35° B.45° C.55° D.70°2.(2017·日照)如图,AB∥CD,直线l交AB于点E,交CD于点F.若∠1=60°,则∠2等于( )A.120° B.30° C.40° D.60°3.(2017·临沂)如图,将直尺与含30°角的三角尺摆放在一起.若∠1=20°,则∠2的度数是( )A.50° B.60° C.70° D.80°4.(2016·漳州)下列尺规作图,能判断AD是△ABC边上的高的是( )5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 6.(2017·德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________________.7.(2017·威海)如图,直线l1∥l2,∠1=20°,则∠2+∠3=________.8.(2016·淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.参考答案1.C 2.D 3.A 4.B 5.C6.同位角相等,两直线平行7.200°8.解:AC∥OB,BC∥OA.理由如下:∵∠1=∠2,∴AC∥OB.∵∠2+∠3=180°,∴BC∥OA.三角形与全等三角形随堂演练1.(2017·新疆)如图,AB ∥CD ,∠A=50°,∠C=30°,则∠AEC 等于( )A .20°B .50°C .80°D .100°2.(2016·枣庄)如图,在△ABC 中,AB =AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于( )A .15°B .17.5°C .20°D .22.5°3.如图,在△ABC 中,D ,E 分别是边AC ,BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为( )A .15°B .20°C .25°D .30°4.如图是跷跷板示意图,横板AB 绕中点O 上下转动,立柱OC 与地面垂直,设B 点的最大高度为h 1.若将横板AB 换成横板A′B′,且A′B′=2AB ,O 仍为A′B′的中点,设B′点的最大高度为h 2,则下列结论正确的是( )A .h 2=2h 1B .h 2=1.5h 1C .h 2=h 1D .h 2=12h 15.(2017·滨州)如图,点P 为定角∠AO B 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M ,N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为( )A.4 B.3 C.2 D.16.若a,b,c为三角形的三边,且a,b满足a2-9+(b-2)2=0,则第三边c的取值范围是__________.7.Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,那么AE=__________cm.8.(2017·聊城)如图,AB∥DE,AB=DE,BE=CF.求证:AC∥DF.9.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC,延长CB至点F,使BF=BC.连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF.参考答案1.C 2.A 3.D 4.C 5.B6.1<c<5 7.38.证明:∵AB∥DE,∴∠ABC=∠DEC. ∵BE=CF ,∴BE+CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠ABC=∠DEF,BC =EF ,∴△ABC≌△DEF, ∴∠ACB=∠DFE,∴AC∥DF.9.证明:(1)∵AB=AC ,∠BAC=90°, ∴∠ABC=∠ACB=45°,∴∠ABF=135°.∵∠BCD=90°,∴∠ACD=135°,∴∠ABF=∠ACD. ∵CB=CD ,CB =BF ,∴BF=CD. 在△ABF 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠ABF=∠ACD,BF =CD ,∴△ABF≌△A CD ,∴AD=AF. (2)由(1)知,AF =AD ,△ABF≌△ACD, ∴∠FAB=∠DAC.∵∠BAC=90°,∴∠EAB=∠BAC=90°, ∴∠EAF=∠BAD.∵AB=AC ,AC =AE ,∴AB=AE. 在△AEF 和△ABD 中, ⎩⎪⎨⎪⎧AE =AB ,∠EAF=∠BAD,AF =AD , ∴△AEF≌△ABD, ∴BD=EF.等腰三角形与直角三角形随堂演练1.(2017·滨州)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .30°D .25°2.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE⊥AB,垂足为E ,DE =1,则BC =( )A. 3B .2C .3D.3+23.(2016·德州)如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD的度数为( )A .65°B .60°C .55°D .45°4.(2017·聊城)如图是由8个全等的矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上.如果点P 是某个小矩形的顶点,连接PA ,PB ,那么使△ABP 为等腰直角三角形的点P 的个数是( )A .2B .3C .4D .55.(2016·东营)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则另一边BC 等于( ) A .10B .8C .6或10D .8或106.如图,△ABC 中,CD⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于______.7.(2017·淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=_____.8.将n+1个腰长为1的等腰直角三角形按如图所示放在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S n=_____.参考答案1.B 2.C 3.A 4.B 5.C6.8 7.2 3 8.n2n+2解直角三角形随堂演练1.(2017·聊城)在Rt△A BC 中,cos A =12,那么sin A 的值是( )A.22B.32C.33D.122.(2017·日照)在Rt△ABC 中,∠C=90°,AB =13,AC =5,则sin A 的值为( )A.513B.1213C.512D.1253.(2017·滨州)如图,在△ABC 中,AC⊥BC,∠ABC=30°,点D 是CB 延长线上的一点,且BD =BA ,则tan∠DAC 的值为( )A .2+ 3B .2 3C .3+ 3D .3 34.(2017·烟台)如图,数学实践活动小组要测量学校附近楼房CD 的高度,在水平地面A 处安置测倾器测得楼房CD 顶部点D 的仰角为45°,向前走20米到达A′处,测得点D 的仰角为67.5°.已知测倾器AB 的高度为1.6米,则楼房CD 的高度约为(结果精确到0.1米,2≈1.414)( )A .34.14米B .34.1米C .35.7米D .35.74米5.已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=__________.6.(2017·东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B 处测得塔顶的仰角为β,又测量出A ,B 两点的距离为s 米,则塔高为__________________米.7.如图,某建筑物BC 上有一旗杆AB ,从与BC 相距38 m 的D 处观测旗杆顶部A 的仰角为50°,观测旗杆底部B 的仰角为45°,则旗杆的高度约为______.(结果精确到0.1 m ,参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.19)8.(2017·潍坊)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5 m ;上面五层居住,每层高度相等.测角仪支架离地1.5 m ,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14 m .求居民楼的高度(精确到0.1 m ,参考数据:3≈1.73).参考答案1.B 2.B 3.A 4.C5.75° 6.tan α·tan β·s tan β-tan α 7.7.28.解:设每层高为x m ,由题意得 MC′=MC -CC′=2.5-1.5=1, 则DC′=5x +1,EC′=4x +1. 在Rt△DC′A′中,∠DA′C′=60°,∴C′A′=DC′tan 60°=33(5x +1).在Rt△EC′B′中,∠EB′C′=30°, ∴C′B′=EC′tan 30°=3(4x +1).∵A ′B′=C′B′-C′A′=AB , ∴3(4x +1)-33(5x +1)=14, 解得x≈3.17.∴居民楼高为5×3.17+2.5≈18.4(m).多边形与平行四边形随堂演练1.如图,点E ,F 是▱ABCD 对角线上两点,在条件①DE=BF ;②∠ADE=∠CBF;③AF=CE; ④∠AEB=∠CFD 中,选择一个条件,使四边形DEBF 是平行四边形,可选择的条件是( )A .①②③B .①②④C .①③④D .②③④2.(2016·福州)平面直角坐标系中,已知▱ABCD 的三个顶点坐标分别是A(m ,n),B(2,-1),C(-m ,-n),则点D 的坐标是( ) A .(-2,1)B .(-2,-1)C .(-1,-2)D .(-1,2)3.(2017·青岛)如图,▱ABCD 的对角线AC 与BD 相交于点O ,AE⊥BC,垂足为E ,AB =3,AC =2,BD =4,则AE 的长为( )A.32B.32C.217D.22174.(2017·威海)如图,在▱ABCD 中,∠DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE.下列结论错误的是( )A .BO =OHB .DF =CEC .DH =CGD .AB =AE5.(2017·泰安)如图,四边形ABCD 是平行四边形,点E 是边CD 上的一点,且BC =EC ,CF⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论: ①BE 平分∠CBF;②CF 平分∠DCB;③BC=FB ; ④PF=PC.其中正确结论的个数为( )A .1B .2C .3D .46.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=_____.7.(2017·临沂)在▱ABCD 中,对角线AC ,BD 相交于点O.若AB =4,BD =10,sin∠BDC=35,则▱ABCD 的面积是_____.8.(2016·淄博)已知:如图,E ,F 为▱ABCD 对角线AC 上的两点,且AE =CF.连接BE ,DF.求证:BE =DF.9.如图,已知四边形ABCD 是平行四边形,若点E ,F 分别在边BC ,AD 上,连接AE ,CF.若∠AEB=∠CFD,求证:四边形AECF 是平行四边形.参考答案1.D 2.A 3.D 4.D 5.D6.24°7.248.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又∵AE=CF,∴△ABE≌△C DF,∴BE=DF. 9.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴BE=DF,∴AF=CE.∵四边形ABCD是平行四边形,∴AF∥CE,∴四边形AECF是平行四边形.矩形、菱形、正方形随堂演练1.(2017·聊城)如图,△ABC 中,DE∥BC,EF∥AB,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .AB =AC B .AD =BD C .BE⊥ACD .BE 平分∠ABC2.如图,将矩形ABCD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB =6,△ABF 的面积是24,则FC 等于( )A .1B .2C .3D .43.(2017·泰安)如图,正方形ABCD 中,M 为BC 上一点,ME⊥AM,ME 交AD 的延长线于点E.若AB =12,BM =5,则DE 的长为( )A .18B.1095C.965D.2534.(2017·临沂)在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE∥AC,DF∥AB,分别交AB ,AC 于E ,F 两点.下列说法正确的是( )A .若AD⊥BC,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD =CD ,则四边形AEDF 是菱形 D .若AD 平分∠BAC,则四边形AEDF 是菱形5.(2017·枣庄)如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x轴的负半轴上,函数y =kx(x<0)的图象经过顶点B ,则k 的值为( )A .-12B .-27C .-32D .-366.如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,且OA =OB ,∠OAD=65°,则∠ODC=______.7.(2017·枣庄)如图,在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC =_____ (结果保留根号).8.(2017·日照)如图,已知BA =AE =DC ,AD =EC ,CE⊥AE,垂足为E. (1)求证:△DCA≌△EAC;(2)只需添加一个条件,即_____,可使四边形ABCD 为矩形.请加以证明.9.(2017·青岛)如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF.(1)求证:△BCE≌△DCF;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.参考答案1.D 2.B 3.B 4.D 5.C 6.25° 7.62+38.(1)证明:在△DCA 和△EAC 中, ⎩⎪⎨⎪⎧DC =AE ,AD =EC ,AC =CA , ∴△DCA≌△EAC.(2)解:添加条件不唯一,例如:AB∥CD.证明如下: ∵AB=CD ,AB∥CD,∴四边形ABCD 为平行四边形. ∵△DCA≌△EAC,且CE⊥AE, ∴∠ADC=∠CEA=90°. ∴四边形ABCD 为矩形.9.(1)证明:∵四边形ABCD 为菱形,E ,F 分别是AB ,AD 的中点, ∴BE=DF ,∠B=∠D,BC =DC. ∴△BCE≌△DCF.(2)解:当AB⊥BC 时,四边形AEOF 是正方形. 理由如下:∵E,O ,F 分别是AB ,AC ,AD 的中点, ∴AE=AF ,AF =EO ,AF∥EO,∴四边形AEOF 是菱形. ∵AB⊥BC,∴AE⊥EO, ∴四边形AEOF 是正方形.圆的有关概念及性质随堂演练1.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=20°,则∠AOD等于( )A.160° B.150° C.140° D.120°2.(2017·青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD 的度数为( )A.100° B.110°C.115° D.120°3.(2017·泰安)如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于( )A.180°-2αB.2αC.90°+αD.90°-α4.(2017·潍坊)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )A.50° B.60°C.80° D.85°5.如图,⊙C过原点,与x轴,y轴分别交于A,D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是( )A.433B.233C .4 3D .26.如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A=55°,∠E =30°,则∠F=______.7.如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为 0.8 m ,则排水管内水的深度为_____m.8.(2017·临沂)如图,∠BAC 的平分线交△ABC 的外接圆于点D ,∠ABC 的平分线交AD 于点E.(1)求证:DE =DB ;(2)若∠BAC=90°,BD =4.求△ABC 外接圆的半径.参考答案1.C 2.B 3.D 4.C 5.B 6.40° 7.0.88.(1)证明:∵AD平分∠BAC,BE 平分∠ABC, ∴∠BAD=∠CAD,∠ABE=∠CBE,。
要题随堂演练1.(2018·凉州区中考)已知a 2=b3(a≠0,b≠0),下列变形错误的是( )A.a b =23 B .2a =3b C.b a =32D .3a =2b 2.如图的两个四边形相似,则∠α的度数是( )A .87°B .60°C .75°D .120°3.(2018·自贡中考)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( ) A .8 B .12 C .14 D .164.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( ) A.22 B.32 C .1 D.625. (2018·云南中考)如图,已知AB∥C D ,若AB CD =14,则OAOC= .6.如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶16,则S △BDE 与S △CDE 的比是 .7.(2018·泰安中考)如图,在菱形ABCD 中,AC 与BD 交于点O ,E 是BD 上一点,EF∥AB,∠EAB=∠EBA,过点B 作DA 的垂线,交DA 的延长线于点G. (1)∠DEF 和∠AEF 是否相等?若相等,请证明;若不相等,请说明理由; (2)找出图中与△AGB 相似的三角形,并证明;(3)BF 的延长线交CD 的延长线于点H ,交AC 于点M.求证:BM 2=MF·MH.参考答案1.B 2.A 3.D 4.C 5.146.1∶3 7.解:(1)∠DEF=∠AEF.理由如下: ∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB. 又∵∠EAB=∠EBA, ∴∠DEF=∠AEF.(2)△EOA∽△AGB,证明如下: ∵四边形ABCD 是菱形, ∴AB=AD ,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE. 又∵∠AEO=∠ABE+∠BAE=2∠ABE, ∴∠GAB=∠AEO.又∵∠AGB=∠AOE=90°, ∴△EOA∽△AGB. (3)如图,连接DM.∵四边形ABCD 是菱形,由对称性可知 BM =DM ,∠ADM=∠ABM. ∵AB∥CH,∴∠ABM=∠H, ∴∠ADM=∠H.又∵∠DMH=∠FMD,∴△MFD∽△MDH,∴DMMH=MFDM,∴DM2=MF·MH,∴BM2=MF·MH.。
初中数学经典相似三角形练习题(附参考答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学经典相似三角形练习题(附参考答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学经典相似三角形练习题(附参考答案)(word版可编辑修改)的全部内容。
相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.5.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.6.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?7.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.8.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?9.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P 的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.10.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.11.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?12.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.13.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.14.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.15.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作B E⊥DC于E,求BE的长.相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一已知条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.分析:(1)关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可,如本题中利用,△AMN的面积等于矩形ABCD面积的作为相等关系;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t值即可说明存在,反之则不存在.解答:(1)设经过x秒后,(6﹣2x)x=×3×6,得x1=1,x2=2,(2)假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或即①,或②解①,得t=;解②,得t=经检验,t=或t=都符合题意12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.分析:欲证△ADM∽△MCP,通过观察发现两个三角形已经具备一组角对应相等,即∠D=∠C,此时,再求夹此对应角的两边对应成比例即可.6.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A 出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?分析:要使以P、B、Q为顶点的三角形与△BDC相似,则要分两两种情况进行分析.分别是△PBQ∽△BDC或△QBP∽△BDC,从而解得所需的时间.解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.7.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:(1)当Rt△ABC∽Rt△ACD时,有=,∴AB==3;(2)当Rt△ACB∽Rt△CDA时,有=,∴AB==3.8.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?解答:解:设经过x秒后,两三角形相似,则CQ=(8﹣2x)cm,CP=xcm,∵∠C=∠C=90°,当或时,两三角形相似.(1)当时,,∴x=;(2)当时,,∴x=.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解答:解:(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,=,AP2﹣7AP+6=0,AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,=,∵∠A=∠B=90°,∴△APD∽△BPC.此,点P的位置有三处,即在线段AB距离点A的1、、6处.10.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.分析:若以点Q、A、P为顶点的三角形与△ABC相似,有四种情况:①△APQ∽△BAC,此时得AQ:BC=AP:AB;②△APQ∽△BCA,此时得AQ:AB=AP:BC;③△AQP∽△BAC,此时得AQ:BA=AP:BC;④△AQP∽△BCA,此时得AQ:BC=AP:BA.可根据上述四种情况所得到的不同的对应成比例线段求出t的值.11.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?分析:如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.12.阳光通过窗口照射到室内,在地面上留下2。
山东省潍坊市中考数学复习专题之相似三角形综合题姓名:________ 班级:________ 成绩:________一、浙教版2019中考数学复习专题之相似三角形综合题解答题 (共40题;共114分)1. (3分) (2019七下·胶州期末) 图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.2. (3分) (2017九上·下城期中) 如图,在中,,.(1)把绕点按顺时针方向旋转,得,交于点.①若,旋转角为,求的长.②若点经过的路径与,所围图形的面积与面积的比值是,求的度数.(2)点在边上,,把绕着点逆时针旋转度后,如果点恰好落在初始的边上,求的值.3. (3分)(2020·绥化) 如图,内接于,是直径,,与相交于点E ,过点E作,垂足为F ,过点O作,垂足为H ,连接、.(1)求证:直线与相切;(2)若,求的值.4. (3分)(2018·滨湖模拟) 如图(1),在矩形ABCD中,AB=4,BC=3,点E是射线CD上的一个动点,把△BCE 沿BE折叠,点C的对应点为F,(1)若点F刚好落在线段AD的垂直平分线上时,求线段CE的长;(2)若点F刚好落在线段AB的垂直平分线上时,求线段CE的长;(3)当射线AF交线段CD于点G时,请直接写出CG的最大值5. (2分)(2011·南宁) 如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE、CD相交于点B.(1)求证:直线AB是⊙O的切线.(2)当AC=1,BE=2,求tan∠OAC的值.6. (2分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O 上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)若PC=2 ,OA=5,求⊙O的半径和线段PB的长.7. (3分) (2015八下·扬州期中) 如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN 的中点.(1)求证:△MBA≌△NDC;(2)求证:四边形MPNQ是菱形.8. (3分)(2017·广东模拟) 如图,AB、CD为⊙O的直径,弦A E∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.9. (3分)(2018·阜宁模拟) 如图,已知抛物线与坐标轴交于A,B,C三点,其中C (0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值.10. (3分)(2016·深圳模拟) 如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.11. (3分)如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.(1)在运动过程中,求P,Q两点间距离的最大值;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3) P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数).12. (2分)(2014·贺州) 如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.13. (3分) (2018九上·长春开学考) 如图,已知AD为△ABC的角平分线,∠ADE=∠B。
(△S ABD =( ) ((冲刺 2019 届中考:2019 年全国各地中考模拟卷《相似三角形》压轴题集锦(含答案与解析)一.选择题1. 2019△?萧山区模拟)如图,已知在 ABC 中,点 D 为 BC 边上一点(不与点 B ,点 C 重合),连结 AD ,点 E 、点 F 分别为 AB 、AC 上的点,且 EF ∥BC ,交 AD 于点 G ,连结 BG ,并延长BG 交 AC 于点 H .已知=2,①若 AD 为 BC 边上的中线, 的值为 ;②若 BH ⊥AC ,当 BC >2CD 时,<2sin ∠DAC .则( )A .①正确;②不正确C .①不正确;②正确B .①正确;②正确D .①不正确;②正确2. 2019 春△?北碚区校级月考)如图, ABC 中,点 D 为边 BC 的中点,点 E 、F 分别是边 AB 、AC 上两点,且 EF ∥BC ,若 AE :EB =2:1,则: △S AEFA .2:1B .4:9C .2:3D .8:9 3. 2019•云南模拟)如图,点 D 、E 分别在△ABC 的边 AB 、AC 上,且 AB =9,AC =6,AD =3,若使△ADE 与△ABC 相似,则 AE 的长为()A .2B .C .2 或D .3 或(△S BDF ;4.(2019•郑州模拟)在平面直角坐标系中,已知两点 A (7,5),B (4,3),先将线段 AB向右平移 1 个单位,再向上平移 1 个单位,然后以原点 O 为位似中心,将其缩小为原来的 ,得到线段 CD ,则点 A 的对应点 C 的坐标为()A .(4,3)C .(﹣4,﹣3)B .(4,3)或(﹣4,﹣3)D .(3,2)或(﹣3,﹣2)5.(2019•平房区一模)如图,在矩形 ABCD 中,点 F 在 AD 上,射线 BF 交 AC 于点 G ,交 CD的延长线于点 E ,则下列等式正确的为()A .B .C . =D . =6. 2019•成华区模拟)如图,在平面直角坐标系中,已知点 A (4,2),过点 A 作 AB ⊥x 轴,垂足为点 △B ,将 AOB 以坐标原点 O 为位似中心缩小为原图形的 ,得到△COD ,则 OC 的长度是( )A .1B .2C .D .7.(2019•铁西区三模)如图,在 △R tABC 中,∠ABC =90°,AB =BC ,点 D 是线段 AB 上的一点,连结 CD .过点 B 作 BG ⊥CD ,分别交 CD 、CA 于点 E 、F ,与过点 A 且垂直于 AB 的直线相交于点 G ,连结 DF ,给出以下四个结论:①②若 AF =;AB ,则点 D 是 AB 的中点;③若△S ABC=1,则 =9④当 B 、C 、F 、D 四点在同一个圆上时,DF =DB ;其中正确的结论序号是()FA.①②B.①②④C.①②③D.①②③④8.(2019•杭州模拟)如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6B.8C.10D.12 9.(2019•宣州区一模)如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,分别在边AB,BC上,三角形①的边GD在边AD上,则的值是()A.B.C.D.10.(2019△?中原区校级模拟)如图,在ABC中,∠ACB=90°,CD⊥AB于点D,AC<BC,则下列结论中错误的是()A.CD2=AD•DBC.AD•BC=AC•CDB.AC•DB=BC•ADD.BC2=BD•AB11.(2019△?香坊区一模)如图,ABC中,G、E分别为AB、AC边上的点,GE∥BC,BD∥(CE交EG延长线于D,BE与CD相交于点F,则下列结论一定正确的是()A.=B.=C.=D.=二.填空题12.(2019△?沈阳模拟)如图,在ABC中,AB:AC=5:4,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在线段AF上,FG=FD,连接EG交AC于点H,若点H是AC的中点,AG=8,则线段DF的长是.13.2019•拱墅区校级模拟)如图,AC⊥BC,CD⊥AB,且AB=5,BC=3,则的值为.14.(2019△?福田区校级模拟)如图,分别以ABC中BC和AC为腰向外作等腰直角△EBC和等腰直角△DAC,连结DE,且DE∥BC,EB=BC=6,四边形EBCD的面积为24,则AB的长为.15.(2019•昆明模拟)如图所示,在ABCD中,点E在边DC上,DE:EC=7:2,连接AE交BD于点△F,则DEF的面积与△BAF的面积之比为.16.(2019•道外区一模)如图,AD为△ABC的角平分线,AC=BC,E在AC延长线上,且AD =DE,若AB=6,CE=2,则BD的长为.17.(2019春•和平区校级月考)如图,点A在线段BD上,在BD的同侧做等腰△R t ABC和等腰△R t ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是18.(2019•邗江区校级一模)如图,矩形ABCD中,AB=6,BC=8,E为AB的中点,P为BC上一动点,作PQ⊥EP交直线CD于点Q,设点P每秒以1个单位长度的速度从点B运动到点C停止,在此时间段内,点Q运动的平均速度为每秒个单位.19.(2019•咸宁模拟)如图,▱ABCD中,点E是边BC上一点,AE交BD于点F,若BE=2,EC=△3,BEF的面积是1,则▱ABCD的面积为.20.(2019•简阳市模拟)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A,作正方形A B C C;延长C B111111交x轴于点A,作正方形A B C C…按这样的规律进行下去,第1个正方形的面积为;22221第4个正方形的面积为.三.解答题21.(2019•徐汇区二模)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(△1)求证:ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.22.(2019青山区模拟)(1)如图1,AH⊥CG,EG⊥CG,点D在CG上,AD⊥CE于点F,求证:;(△2)在ABC中,记tan B=m,点D在直线BC上,点E在边AB上①如图2,m=3,点D在线段BC上,且AD⊥CE于点F,若AD=3CE,则=;②如图3,m==2AC,CD=,点D在线段BC的延长线上,连接DE交AC于M,∠CMD=60°,DE ,求BE的长.23.2019闵行区二模)如图1,点P为∠MAN的内部一点.过点P分别作PB⊥AM、PC⊥AN,(垂足分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂足为点E.(1)求证:∠BPD=∠MAN;(2)如果sin,AB=2,BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE∥QC,求的值.24.(2019•合肥二模)如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE 并延长交AD于点F,交CD的延长线于点G,连接DE.(△1)求证:ABE≌△ADE;(2)求证:EB2=EF•EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.25.(2019•安徽一模)如图,四边形ABCD内一点E满足EB=EC,EA=ED,∠BEC=∠AED=90°,AC交DE于点F,交BD于点G.(1)∠AGB的度数为.(2)若四边形AECD是平行四边形.①求证:AC=AB;②若AE=2,求AF•CG的值.26.(2019宣州区一模)将△ABC绕点A逆时针旋转α得到△ADE,ED的延长线与BC相交于点F,连接AF、EC.(1)如图1,若∠BAC=α=60°.①证明:AB∥EC;②证明:△DAF∽△DEC;(2)如图2,若∠BAC<α,EF交AC于G点,图中有相似三角形吗?如果有,请直接写出所有相似三角形.11/5727.(2019郊区一模)(1)问题发现如图(△1),在OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=36°,连接AC,BD 交于点M.①的值为;②∠AMB的度数为;(2)类比探究如图(△2),在OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数.(3)拓展延伸在(△2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=1,OB=,请直接写出当点C与点M重合时AC的长.12/5728.(2019都江堰市模拟)如图,在△ABC中,∠ACB=90°,tan A=,AC=6,以BC 为斜边向右侧作等腰直角△EBC,P是BE延长线上一点,连接PC,以PC为直角边向下方作等腰直角△PCD,CD交线段BE于点F,连接BD.(1)求证:PC:CD=CE:BC;(2)若PE=n(0<n≤△4),求BDP的面积;(用含n的代数式表示)(△3)当BDF为等腰三角形时,请直接写出线段PE的长度.13/5729.(2019曹县一模)如图1,ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(△1)求证:ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG,交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,求的值.14/5730.(2019春江岸区校级月考)如图(1),AB⊥BC,CD⊥BC,点E在线段BC上,AE⊥ED,求证:=.(△2)在ABC中,记tan B=m,点E在边AB上,点D在直线BC上.①如图(2),m=2,点D在线段BC上且AD⊥EC,垂足为F,若AD=2EC,求;②如图(3),m==2AC,若CD=3,点D在线段BC的延长线上,ED交AC于点H,∠CHD=60°,ED,BC=4△,直接写出BED的面积.15/5731.(2019春包河区校级月考)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,GF⊥CD.(1)①求证:四边形CEGF是正方形;②推断:的值为:(2)将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系;(3)正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,求正方形CEGF和正方形ABCD的边长.16/57(答案与解析一.选择题1.2019萧山区模拟)如图,已知在△ABC中,点D为BC边上一点(不与点B,点C重合),连结AD,点E、点F分别为AB、AC上的点,且EF∥BC,交AD于点G,连结BG,并延长BG交AC于点H.已知=2,①若AD为BC边上的中线,的值为;②若BH⊥AC,当BC>2CD时,<2sin∠DAC.则()A.①正确;②不正确C.①不正确;②正确B.①正确;②正确D.①不正确;②正确解:①过点B作BM∥AC,与AD的延长线相交于点M,∴∠C=∠MBD,在△ACD和△MBD中,,∴△ACD≌△MBD(ASA),∴AD=MD,∵EF∥BC,,∴∴,,∵BM∥AC,∴△MBG∽△AHG,∴∴,,17/57△S ABD =( ) (故①正确;(2)过点 D 作 DN ⊥AC 于点 N ,则 DN =AD sin ∠DAC ,∵BH ⊥AC ,DN ⊥AC ,∴BH ∥DN ,∴,即 ,∵BC >2CD ,∴∴,.故②错误;故选:A .2. 2019 春 北碚区校级月考)如图,△ABC 中,点 D 为边 BC 的中点,点 E 、F 分别是边 AB 、AC 上两点,且 EF ∥BC ,若 AE :EB =2:1,则: △S AEFA .2:1B .4:9C .2:318 / 57D .8:9△S ABC , (解:∵AE :EB =2:1,∴AE :AB =2:3,∵EF ∥BC ,∴△AEF ∽△ABC ,∴ =( )2=( )2= ,∵D 为 BC 的中点,∴BD =CD ,△S ABD∴ =∴= ,故选:D . 3. 2019•云南模拟)如图,点 D 、E 分别在△ABC 的边 AB 、AC 上,且 AB =9,AC =6,AD =3,若使△ADE 与△ABC 相似,则 AE 的长为()A .2B .C .2 或D .3 或解:①若∠AED 对应∠B 时,解得 AE = ;= ,即= ,②当∠ADE 对应∠B 时,= ,即 = ,解得 AE =2.故选:C .4.(2019•郑州模拟)在平面直角坐标系中,已知两点 A (7,5),B (4,3),先将线段 AB向右平移 1 个单位,再向上平移 1 个单位,然后以原点 O 为位似中心,将其缩小为原来的 ,得到线段 CD ,则点 A 的对应点 C 的坐标为()A .(4,3)B .(4,3)或(﹣4,﹣3)19 / 57C.(﹣4,﹣3)D.(3,2)或(﹣3,﹣2)解:∵点A(7,5),B(4,3),先将线段AB向右平移1个单位,再向上平移1个单位,∴点A,B平移后的对应点的坐标为A′(8,6),B(5,4),∵以原点O为位似中心,将其缩小为原来的,得到线段CD,∴则点A′的对应点C的坐标为:(4,3)或(﹣4,﹣3).故选:B.5.(2019平房区一模)如图,在矩形ABCD中,点F在AD上,射线BF交AC于点G,交CD 的延长线于点E,则下列等式正确的为()A.B.C.=D.=解:∵四边形ABCD为矩形,∴AD∥BC,AB∥CD,∴△ABF∽△DEF,△AFG∽△CBG,△EFD∽△EBC,△ABG∽△CEG,∵△ABF∽△DEF,∴=,故A错误;∵△AFG∽△CBG,△ABG∽△CEG,∴∴==,=,,故B正确;∵△AFG∽△CBG,∴=,故C错误;∵△EFD∽△EBC,∴=,故D错误;故选:B.20/57(△S BDF ;6. 2019•成华区模拟)如图,在平面直角坐标系中,已知点 A (4,2),过点 A 作 AB ⊥x 轴,垂足为点 △B ,将 AOB 以坐标原点 O 为位似中心缩小为原图形的 ,得到△COD ,则 OC 的长度是( )A .1B .2C .D .解:∵点 A (4,2),过点 A 作 AB ⊥x 轴于点 △B .将 AOB 以坐标原点 O 为位似中心缩小为原图形的 ,得到△COD ,∴C (2,1),则 OC 的长度=.故选:C .7.(2019•铁西区三模)如图,在 △R tABC 中,∠ABC =90°,AB =BC ,点 D 是线段 AB 上的一点,连结 CD .过点 B 作 BG ⊥CD ,分别交 CD 、CA 于点 E 、F ,与过点 A 且垂直于 AB 的直线相交于点 G ,连结 DF ,给出以下四个结论:①;②若 AF =AB ,则点 D 是 AB 的中点;③若△S ABC=1,则 =9④当 B 、C 、F 、D 四点在同一个圆上时,DF =DB ;其中正确的结论序号是()A .①②B .①②④C .①②③D .①②③④解:依题意可得 BC ∥AG ,∴△AFG ∽△BFC ,∴ = ,又AB=BC,∴=.故结论①正确;如右图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,∴△ABG≌△BCD(ASA),∴AG=BD,又BD=AD,∴AG=AD,在△AFG与△AFD中,∴△AFG≌△AFD(SAS),∵△ABC为等腰直角三角形,,,∴AC=AB;∵△AFG≌△A FD,∴AG=AD=AB=BC;∵△AFG∽△BFC,∴=,∴FC=2AF,∴AF=AC=AB.故结论②正确;当B、C、F、D四点在同一个圆上时,∴∠2=∠ACB∵∠ABC=90°,AB=BC,∴∠ACB=∠CAB=45°,∴∠2=45°,∴∠CFD=∠AFD=90°,△S ABC ;△S ABF ,△S BDF =△S BDF . ∴CD 是 B 、C 、F 、D 四点所在圆的直径,∵BG ⊥CD ,∴= ,∴DF =DB ,故③正确;∵∴= ,∵AG =BD , = ,= ,∴ = ,AF = AC ,△S ABF ∴ =△S BDF ∴ =△S ABC △S ABC ∴,即 =12故结论④错误.故选:B .8.(2019 杭州模拟)如图,在正方形 ABCD 中,G 为 CD 边中点,连接 AG 并延长,分别交对角线 BD 于点 F ,交 BC 边延长线于点 E .若 FG =2,则 AE 的长度为()A .6解:∵AB ∥DG ,∴△ABF ∽△GDF .∴=2.B .8C .10D .1223/57F,∴AG=6.在△ADG和△ECG中,∴△ADG≌△ECG(AAS).∴AG=EG.∴AE=2AG=12.故选:D.9.(2019•宣州区一模)如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,分别在边AB BC上,三角形①的边GD在边AD上,则的值是()A.B.C.D.解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,∴==.故选:C.10.(2019△?中原区校级模拟)如图,在ABC中,∠ACB=90°,CD⊥AB于点D,AC<BC,则下列结论中错误的是()A.CD2=AD•DB B.AC•DB=BC•ADC.AD•BC=AC•CD解:∵∠ACB=90°,CD⊥AB∴CD2=AD•DB,BC2=BD•AB,故A、D选项正确;∵△ACD∽△CBD,∴==,∴AC•DB=BC•CD,故B选项错误;AD•BC=AC•CD,故C选项正确;故选:B.D.BC2=BD•AB11.(2019△?香坊区一模)如图,ABC中,G、E分别为A B、AC边上的点,GE∥BC,BD∥CE 交EG延长线于D,BE与CD相交于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:如图,设AB交CD于点O.∵DG∥BC,∴△DOG∽△COB,∴=,∵BD∥AC,∴△DOB∽△COA,∴=,∵BD∥AC,DE∥BC,∴四边形DECB是平行四边形,∴BD=EC,∵GE∥BC,∴∴==,,故选:D.二.填空题(共9小题)12.(2019沈阳模拟)如图,在△ABC中,AB:AC=5:4,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在线段AF上,FG=FD,连接EG交AC于点H,若点H是AC的中点,AG=8,则线段DF的长是6.解:∵点H是AC的中点,∴AC=2AH∵FG=FD,EF⊥AD,∴EF为DG的中垂线∴GE=DE∴∠EDG=∠EGD∴∠AGH=∠ADB∵AD平分∠BAC(∴∠BAD=∠CAD,且∠AGH=∠ADB∴△AGH∽△ADB∴∴===,且AB:AC=5:4,∴AD=AG=20∴DG=AD﹣AG=12,∴DF=DG=×12=6故答案为:613.2019•拱墅区校级模拟)如图,AC⊥BC,CD⊥AB,且AB=5,BC=3,则的值为.解:∵AC⊥BC,∴∠ACB=90°,∴,∵CD⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC∴△ACD∽△ABC,∴.故答案为:.14.(2019△?福田区校级模拟)如图,分别以ABC中BC和AC为腰向外作等腰直角△EBC和等腰直角△DAC,连结DE,且DE∥BC,EB=BC=6,四边形EBCD的面积为24,则AB的长为.△S DEC=24﹣18=6 △S ABC = =3解:∵ = BC ×BE =18,四边形 EBCD 的面积为 24,△S BEC ∴∵△EBC 与△DAC 是等腰直角三角形∴BE =BC =6,AC =DA ,∠EBC =∠DAC =90°,∠ECB =45°=∠DCA ,∴EC =∵BC ,DC = AC ,∠BCA =∠DCE ,,且∠BCA =∠DCE ,∴△ABC ∽△DEC∴∠DEC =∠ABC ,∴∵DE ∥BC∴∠DEC =∠ECB =45°∴∠ABC =45°如图,过点 A 作 AM ⊥BC 于 M∵ = ×BC ×AM =3△S ABC∴AM =1∵∠ABC =45°,AM ⊥BC∴BM=AM=1,∴AB=故答案为:15.(2019•昆明模拟)如图所示,在ABCD中,点E在边DC上,DE:EC=7:2,连接AE交BD于点△F,则DEF的面积与△BAF的面积之比为49:81.解:∵=,∴=,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∴∠FDE=∠FBA,∠FED=∠FAB,=,∴△DFE∽△BFA,∴=()2=,故答案为:49:81.μ16.(2019•道外区一模)如图,AD为△ABC的角平分线,AC=BC,E在AC延长线上,且AD =DE,若AB=6,CE=2,则BD的长为2+.解:过D点作DF∥AB,∴∠1=∠4,∵∠1=∠3,∴∠3=∠4,∴AF=DF,∵AC=BC,∴∠B=∠BAC,∴∠FDE=∠2=∠B ∴CD=CF,∴BD=AF,∵AD=AF,∴∠3=∠E,∴∠E=∠1,在△ABD和EFD中,,△ABD≌△EFD(AAS)∴EF=AB=6,∵CE=2,∴CF=4,∵DF∥AB,∴△ABC∽FDC∴,∴,解得,(舍去)故答案为:2+.17.(2019春•和平区校级月考)如图,点A在线段BD上,在BD的同侧做等腰△R t ABC和等腰△R t ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是①②③解:∵△ABC是等腰直角三角形,∴=,∠BAC=45°,同理,=,∠EAD=45°,∴=,∠BAE=∠CAD,∴△BAE∽△CAD,①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,又∠PME=∠AMD,∴△PME∽△AMD,∴=,∴MP•MD=MA•ME,②正确;∵∠BEA=∠CDA,∴P、E、D、A四点共圆,∴∠APM=∠AED=90°,∵∠BAC=∠EAD=45°,∴∠CAM=90°,∴△CAP∽△CMA,∴=,∴AC2=CP•CM,∵AC2=2CB2,∴2CB2=CP•CM,③正确,故答案为:①②③.18.(2019•邗江区校级一模)如图,矩形ABCD中,AB=6,BC=8,E为AB的中点,P为BC 上一动点,作PQ⊥EP交直线CD于点Q,设点P每秒以1个单位长度的速度从点B运动到点C停止,在此时间段内,点Q运动的平均速度为每秒个单位.解:∵四边形ABCD是矩形∴AB=CD=6,∠B=∠C=90°,∴∠BEP+∠BPE=90°∵E为AB的中点,∴BE=3∵PQ⊥EP∴∠BPE+∠CPQ=90°,∴∠BEP=∠CPQ,且∠B=∠C=90°∴△BEP∽△CPQ∴∴CQ=∴CQ的最大值为=∴点Q路程=2×=∴点Q运动的平均速度=÷(8÷1)=故答案为:19.(2019•咸宁模拟)如图,▱ABCD中,点E是边BC上一点,AE交BD于点F,若BE=2,EC=△3,BEF的面积是1,则▱ABCD的面积为.△S DFA=△S BAF=△S AFD=+=解:▱ABCD中,BE∥AD,∴△BFE∽△DFA而△BEF的面积是1,∴又∵△BFE∽△DFA∴利用=,即可知△S ABD△S BAF△S DFA而=+∴∴▱ABCD的面积=×2=故答案为.20.(2019简阳市模拟)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A,作正方形A B C C;延长C B111111交x轴于点A,作正方形A B C C…按这样的规律进行下去,第1个正方形的面积为5;22221第4个正方形的面积为()3×5.解:∵点A的坐标为(1,0),点D的坐标为(0,2).在△R t AOD中,AD=∴正方形ABCD的面积为:(=,)2=5;∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=∠ABA=90°=∠DOA,1∴∠ADO+∠DAO=90°,∠DAO+∠BAA=90°,1∴∠ADO=∠BAA,1∵∠DOA=∠ABA,1∴△DOA∽△ABA,1∴=,即=,解得:A B=1,∴A C=A B+BC=11,∴正方形A B C C的面积为:(111)2=;∵第1个正方形ABCD的面积为:5;第2个正方形A B C C的面积为:=×5;111同理可得:第3个正方形A B C C的面积为:××5=()2×5;2221∴第4个正方形A B C C的面积为:()3×5.3332故答案为:5,()3×5.三.解答题(共11小题)21.(2019•徐汇区二模)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(△1)求证:ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.证明:(1)∵AD∥BC,∴∠DAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠DAF=∠B,∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,∴∠DEC=∠BAE,∵AD∥BC,∴∠DEC=∠ADF,∴∠BAE=∠ADF,∴△ABE∽△DAF.(2)∵AC•FC=AE•EC,AC=AB,∴AB•FC=AE•EC,∴=,∵∠B=∠FCE,∠BAE=∠FEC,∴△BAE∽△CEF,∴=,∴=,∴FC=EF,∴∠FEC=∠FCE,∵∠FCE=∠B,∴∠B=∠FEC,∴AB∥DE,∵AD∥BE,∴四边形ADEB是平行四边形,∴AD=BE.22.(2019青山区模拟)(1)如图1,AH⊥CG,EG⊥CG,点D在CG上,AD⊥CE于点F,求证:;(△2)在ABC中,记tan B=m,点D在直线BC上,点E在边AB上①如图2,m=3,点D在线段BC上,且AD⊥CE于点F,若AD=3CE,则=;②如图3,m==2AC,CD=,点D在线段BC的延长线上,连接DE交AC于M,∠CMD=60°,DE,求BE的长.(1)证明:∵AH⊥CG,EG⊥CG,AD⊥CE,∴∠AHD=∠G=∠AFC=90°,∴∠A+∠ADC=∠C+∠CDF=90°,∴∠A=∠C,∴△ADH∽△CEG,∴;(2)解:如图2,过点A作AM⊥BC于点M,过点E作EH⊥BC于点H,∵tan B=m=2==,∴设EH=2x,BH=x,AM=2BM∴BE==x,∵AF⊥EC,AM⊥CD∴∠ADC+∠DCE=90°,∠ADC+∠DAM=90°,∴∠DAM=∠DCE,且∠AMD=∠EHC=90°∴△EHC∽△DMA,且AD=2EC,∴===2,∴DM=2EH=4x,AM=2HC,∵AM=2HC,AM=2BM∴HC=BM∴HC﹣HM=BM﹣HM∴BH=MC=x∴DC=DM+MC=5x∴==,故答案为:;(3)解:如图3,作∠BCF=∠B,交AB于点F,过点D作GD⊥BD交BA的延长线于点G,过点F作FH⊥BC于点H,∵tan B=m=,∴∠B=30°,∵∠BCF=∠B=30°,∴BF=FC,且FH⊥BC,BC=4,∴BH=HC=2,且∠B=30°,FH⊥BC∴FH=2,BF=FC=4,∵CD=3∴BD=7,BC=4,,又∵∠BCF=∠B=30°,GD⊥BD,∴∠G=60°,∠AFC=60°,GD=7,BG=2DG=14,∵∠BCA=∠BDE+∠CMD=∠BDE+60°=∠BCF+∠ACF=30°+∠ACF,∴∠ACF=30°+∠BDE,且∠AEM=∠B+∠BDE=30°+∠BDE,∴∠ACF=∠AEM,且∠G=∠AFC=60°∴△GED∽△FCA(∴==,且DE=2AC,∴GD=2AF,EG=2FC=8,∴AF=,∴BE=BG﹣EG=14﹣8=6.23.2019闵行区二模)如图1,点P为∠MAN的内部一点.过点P分别作PB⊥AM、PC⊥AN,垂足分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂足为点E.(1)求证:∠BPD=∠MAN;(2)如果sin,AB=2,BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE∥QC,求的值.(1)证明:∵PB⊥AM,PC⊥AN,∴∠PBA=∠PCA=90°,∵∠BAC+∠PCA+∠BPC+∠PBA=360°,∴∠BAC+∠BPC=180°,∵∠BPD+∠BPC=180°,∴∠MAN=∠BPD;(2)解:∵BE⊥AP,∠D=90°,BE=BD,∴∠BPD=∠BPE.∴∠BPE=∠BAC,在△R t ABP中,由∠ABP=90°,BE⊥AP,∴∠APB=∠ABE,∴∠BAC=∠ABE,∴sin∠BAC=sin∠ABE==,,∵AB=2∴AE=6,∴BE==2,∴BD=BE=2;(3)解:过点B作BG⊥AC,垂足为点G.过点Q作QH∥BD,设BD=2a,PC=2b,∵∠BPD=∠MAN=45°,∴DP=BD=2a,∴CD=2a+2b,在△R t ABG和△R t BDP中,∠BAC=∠BPD=45°,∴BG=AG,DP=BD,∵QH∥BD,点Q为BP的中点,∴PH=PD=a.QH=BD=a,∴CH=PH+PC=a+2b,∵BD∥AC,CD⊥AC,BG⊥AC,∴BG=DC=2a+2b.∴AC=4a+2b,∵BE∥QC,BE⊥AP,∴∠CFP=∠BEP=90°,又∠ACP=90°,∴∠QCH=∠PAC,∴△ACP∽△QCH,∴=,即=,解得,a=b,∴CH=3a.由勾股定理得,CQ==a,∵∠QHC=∠PFC=90°,∠QCH=∠PCF,∴△QCH∽△PFC,∴=,即=,解得,FC=a,∴QF=QC﹣FC=a,∵BE∥QC,Q是PB的中点,∴PE=EF,∴△PQF与△CEF面积之比等于高之比,∴==.24.(2019•合肥二模)如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE 并延长交AD于点F,交CD的延长线于点G,连接DE.(△1)求证:ABE≌△ADE;(2)求证:EB2=EF•EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.解:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,又AE=AE,∴△ABE≌△ADE(SAS);(2)∵AB∥CG,∴∠ABG=∠EGD,由(△1)得ABE≌△ADE,∴ED=EB,∠ABG=∠ADE,∴∠EGD=∠ADE,∵∠FED=∠DEG,∴△EDF∽△EGD,∴,所以ED2=EF•EG;∴EB2=EF•EG;(3)∵AB=BC,∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=4.连接BD交AC于O,则AC⊥BD,OA=OC=2,OB=2,∵AE:EC=1:3,∴AE=OE=1..∴BE=∵AD∥BC,∴,∴EF=BE=.由(2)得EB2=EF•EG,∴EG=,∴BG=BE+EG=4.25.(2019•安徽一模)如图,四边形ABCD内一点E满足EB=EC,EA=ED,∠BEC=∠AED=90°,AC交DE于点F,交BD于点G.(1)∠AGB的度数为90°.(2)若四边形AECD是平行四边形.①求证:AC=AB;②若AE=2,求AF•CG的值.解:(△1)在DEB和△AEC中,,∴△DEB≌△AEC(SAS).∴∠EDB=∠EAC.∵∠EFA+∠EAF=90°,∠EFA=∠DFG,∴∠DFG+∠FDG=90°,∴∠AGB=90°.故答案为90°;(2)①∵四边形AECD是平行四边形,∴∠AED=∠EDC=90°,AE=AD.∵△ADE是等腰三角形,∴AE=ED.∴ED=EC,∠CED=45°.∴∠BED=90°+45°=135°.∵∠AED=∠BEC=90°,∴∠AEB=360°﹣90°﹣90°﹣45°=135°.又EB=EB,ED=EA,∴△BAE≌△BDE(SAS),∴DB=AB;∵∠BEC=∠AED=90°,∴∠BED=∠CEA.∵EB=EC,EA=ED,∴△BED≌△CEA(SAS),∴BD=CA,∴AC=AB.②∵△BAE≌△BDE,∴△CAE≌△BAE.∴∠BAE=∠CAE=∠BDE.∵∠EAF+∠AFE=90°,∴∠AFE+∠BAE=90°.∵∠GFD=∠AFE,∠EDB=∠EAB,∴∠EDB+∠GFD=90°,即∠CGD=90°.∵∠FAE=90°,∠GCD=∠AEF,∴△CGD∽△AEF,∴,∴AF•CG=CD•AE=4.故答案为90°.26.(2019△?宣州区一模)将ABC绕点A逆时针旋转α得到△ADE,ED的延长线与BC相交于点F,连接AF、EC.(1)如图1,若∠BAC=α=60°.①证明:AB∥EC;②证明:△DAF∽△DEC;(2)如图2,若∠BAC<α,EF交AC于G点,图中有相似三角形吗?如果有,请直接写出所有相似三角形.解:(△1)①∵ABC绕点A逆时针旋转α得到△ADE,∴△ABC≌△ADE,∴AC=AE,∵∠EAC=α=60°.∴△AEC为等边三角形,∴∠ACE=∠BAC=60°,∴AB∥EC;②∵△ABC≌△ADE,∴∠AED=∠ACB,又∵∠ADE=∠FDC,∴△ADE∽△FDC,∴=,∴=,又∵∠ADF=∠EDC,∴△DAF∽△DEC;(△2)①∵ABC≌△ADE,∴∠AED=∠ACB,又∵∠AGE=∠FGC,∴△AGE∽△F G C;②∵△AGE∽△FGC,∴∴==,,又∵∠AGF=∠EGC,△AGF∽△EGC;综上所述,△AGE∽△FGC,△AGF∽△EGC;27.(2019郊区一模)(1)问题发现如图(△1),在OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=36°,连接AC,BD 交于点M.①的值为1;②∠AMB的度数为36°;(2)类比探究如图(△2),在OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数.(3)拓展延伸在(△2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)①∵∠AOB=∠COD=36°,∴∠AOB+∠DOA=∠COD+∠DOA,∴∠COA=∠DOB,又∵OA=OB,OC=OD,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,故答案为:1;②设AO与BD交于点E,由①知,△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB+∠DBO=∠DEO,∠AMB+∠CAO=∠DEO,∴∠AOB=∠AMB=36°,故答案为:36°;(△2)在OAB和△OCD中,∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°,∴tan30°===,∵∠AOB+∠DOA=∠COD+∠DOA,即∠DOB=∠COA,∴△DOB∽△COA,∴==,∠DBO=∠CAO,∵∠DBO+∠OEB=90°,∠OEB=∠MEA,∴∠CAO+∠MEA=90°,∴∠AMB=90°,∴=,∠AMB=90°;(3)①如图3﹣1,当点M在直线OB左侧时,在△R t OCD中,∠OCD=30°,OD=1,∴CD=2,在△R t OAB中,∠OAB=30°,OB=∴AB=2,,由(2)知,∠AMB=90°,且=,∴设BD=x,则AC=AM=在△R t AMB中,AM2+MB2=AB2,x,∴(x)2+(x+2)2=(2)2,解得,x=3,x=﹣4(舍去),12∴AC=AM=3;②如图3﹣2,当点M在直线OB右侧时,在△R t AMB中,AM2+MB2=AB2,∴(x)2+(x﹣2)2=(2)2,解得,x=4,x=﹣3(舍去),12∴AC=AM=4,综上所述,AC的长为3或4.28.(2019都江堰市模拟)如图,在△ABC中,∠ACB=90°,tan A=,AC=6,以BC 为斜边向右侧作等腰直角△EBC,P是BE延长线上一点,连接PC,以PC为直角边向下方作等腰直角△PCD,CD交线段BE于点F,连接BD.(1)求证:PC:CD=CE:BC;(2)若PE=n(0<n≤△4),求BDP的面积;(用含n的代数式表示)(△3)当BDF为等腰三角形时,请直接写出线段PE的长度.(△1)证明:∵PCD,△EBC都是等腰直角三角形,∴CD=PC,BC=CE,∴∴===,==,(2)解:如图1中,作PH⊥BD于H,∵△PCD,△EBC都是等腰直角三角形,∴∠PCD=∠BCE=45°,∠PBC=∠PDC=45°,∴B、C、P、D四点共圆,∴∠DBP=∠PCD=45°,∴∠CBD=∠DBP+∠PBC=45°+45°=△90°,PBH是等腰直角三角形,∵∠BCE=∠DCP=45°,∴∠BCD=∠ECP,∵∠CEP=∠CBD=90°,∴△CBD∽△CEP,∴==,∵PE=n,∴BD=∵tan A=∴BC=4n,=,AC=6,,∴EC=BE=4,∴PB=4+n,PH=BH=(4+n),。
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;。
要题随堂演练1.(2018·湖州中考)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )A.20° B.35° C.40° D.70°2.(2018·福建中考)如图,等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C.45° D.60°3.(2018·雅安中考)已知:如图,在△ABC中,AB=AC,∠C=72°,BC=5,以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为( )A.2 2 B.2 3 C. 5 D. 64.(2018·成都中考)等腰三角形的一个底角为50°,则它的顶角的度数为______________.中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是________.6.(2018·天津中考) 如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为________________.7.如图,已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为点M,求证:M是BE的中点.参考答案1.B 2.A 3.C 4.80° 5. 3 6.19 2证明:如图,连接BD.∵在等边△ABC 中,D 是AC 的中点,∴∠DBC=12∠ABC=12×60° =30°,∠ACB=60°.∵CE=CD ,∴∠CDE=∠E.∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED ,∴△BDE 为等腰三角形. 又∵DM⊥BC,∴M 是BE 的中点.。
2019年中考数学一轮复习相似三角形一、选择题1.下列叙述正确的是()A.任意两个正方形一定是相似的B.任意两个矩形一定是相似的C.任意两个菱形一定是相似的D.任意两个等腰梯形一定是相似的2.Rt△ABC的两条直角边分别为3cm、4cm,与它相似的Rt△A/B/C/的斜边为20cm,那么Rt△A/B/C/的周长为()A.48cm B.28cm C.12cm D.10cm3.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:54.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.55.下列说法中正确的是()①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相..似.的是 ( )7.如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()对.A.2对B.3对C.4对D.5对8.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A. =B.C.D.9.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②B.①②C.③④D.②③④10.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm211.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下树高是( )A.3.25m B.4.25m C.4.45m D.4.75m12.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D 为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则PM:CN的值为()A.B.C.D.13.在一张比例尺为1:50000的地图上,如果一块多边形地的面积是100cm2,那么这块地的实际面积是________m2(用科学记数法表示).14.如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .15.如图278,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,则这两个四边形每组对应顶点到位似中心的距离之比是__________.16.如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度为 .17.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.18.如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1, A3A4=4OA1,….那么A2B2=________,A n B n=________.(n为正整数)三、解答题19.如图,已知在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E.(1)求证:BC=CE;(2)求证:AD:BD=AC:BC;20.如图,点C、D在线段AB上,△PCD是等边三角形,若∠APB=120°.求证:△ACP∽△PDB.21.如图,在△ABC中,点D在BC边上,∠DAC=∠B.点E在AD边上,CD=CE.(1)求证:△ABD∽△CAE;(2)若AB=6,AC=4.5,BD=2,求AE的长.22.如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC,N与边AD交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.23.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.24.如图,矩形OABC的顶点A.C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=错误!未找到引用源。
2019版中考数学三角形分类训练四相似三角形鲁教版相似三角形的几种基本图形:(1)如图1-10-63:称为“平行线型”的相似三角形.图1-10-63(2)如图1-10-64,其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形.图1-10-64(3)如图1-10-65:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形.图1-10-65(4)如图1-10-66,其他类型的相似三角形.图1-10-66典例诠释:考点一平行线分线段成比例定理的应用例1 (xx·平谷一模)如图1-10-67,在△ABC中,DE∥BC,AE∶EC=2∶3,DE=4,则BC 的长为( )图1-10-67A.10 B.8 C.6 D.5【答案】A【名师点评】此题通过两个三角形相似,找到对应边之比DE∶BC=AE∶AC,从而计算出BC的长.例2 (xx·东城一模)如图1-10-68,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED. 若量出DE=58米,则A,B间的距离为( )图1-10-68A.29米B.58米 C.60米D.116米【答案】B考点二相似三角形的判定和性质的应用例3 (xx·西城二模)利用复印机的缩放功能,将原图中边长为5 cm的一个等边三角形放大成边长为20 cm的等边三角形,则放大前后的两个三角形的面积比为( )A.1∶2B.1∶4C.1∶8D.1∶16【答案】D【名师点评】此题考查两个三角形相似的性质,即相似比的平方=面积比,从而得到答案.例4 (xx·东城二模)如图1-10-69,点P在△ABC的边AC上,请你添加一个条件,使得△ABP∽△ACB,这个条件可以是.图1-10-69【答案】∠ABP=∠C(答案不唯一)【名师点评】此题考查两个三角形相似的条件,注意图中隐含有一对公共角∠A,此题答案不唯一.考点三相似三角形的实际应用例5 (xx·房山一模)为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图1-10-70所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是( )图1-10-70A.75米B.25米C.100米D.120米【答案】C【名师点评】此题利用两个三角形相似来解决实际问题,学生要能准确地列出AB∶EC=BD∶DC,从而计算出河宽AB的长.基础精练11.(xx·燕山一模)为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5 m的大视力表制作一个测试距离为3 m的小视力表.如图1-10-71,如果大视力表中“E”的高度是3.5 cm,那么小视力表中相应“E”的高度是( )图1-10-7A.3 cm B.2.5 cm C.2.3 cm D.2.1 cm【答案】D2.(xx·房山二模)如图1-10-72,在△ABC中,点D,E分别在边AB,AC上,且∠AED= ∠ABC,DE=3,BC=5,AC=12.求AD的长.图1-10-72【解】∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,∴=.∵DE=3,BC=5,AC=12,∴=,∴AD=.3.(xx·海淀二模)据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如图1-10-73所示,木杆EF的长为2 m,它的影长FD为3 m,测得OA为201 m,则金字塔的高度BO为m.图1-10-73【答案】1344.(xx·石景山二模)如图1-10-74,为了估计河的宽度,在河的对岸选定一个目标点A,在近岸取点B,C,D,E,使点A,B,D在一条直线上,且AD⊥DE,点A,C,E也在一条直线上且DE∥BC.如果BC=24 m,BD=12 m,DE=40 m,则河的宽度AB约为( )图1-10-74A.20 m B.18 m C.28 m D.30 m【答案】B5.(xx·东城期末)如图1-10-75,在△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,求CD的长.图1-10-75【解】∵∠BAD=∠C,∠B=∠B,∴△ABC∽△DBA.∴=.∴=BD·BC.∴BC=9,∴CD=BC-BD=5.6.(xx ·丰台一模)如图1-10-76是小明设计用手电筒来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A发出经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )图1-10-76A.6米B.8米 C.18米 D.24米【答案】B7.如图1-10-77,在△ABC中,D,E分别是AB,AC上的点,DE∥BC,且AD=AB,则△ADE的周长与△ABC的周长的比为.图1-10-77【答案】1∶38.如图1-10-78,在△ABC中,D,E分别是AB,AC边上的点,且DE∥BC,如果DE∶BC=3∶5,那么AE∶AC的值为( )图1-10-78A.3∶2B.2∶3C.2∶5D.3∶5【答案】D9.如图1-10-79,点A(6,3),B(6,0)在直角坐标系内,以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为( )图1-10-79A.(3,1) B.(2,0) C.(3,3) D.(2,1)【答案】D10.(xx·房山期末)如图1-10-80,在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B 落在CD边上的点P处.图1-10-80(1)如图1-10-81,设折痕与边BC交于点O,连接OP,OA.已知△OCP与△PDA的面积比为1∶4,求边AB的长.图1-10-81(2)动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN,PB,交于点F,过点M作ME⊥BP于点E.①在图1-10-80中画出图形.②在△OCP与△PDA的面积比为1∶4不变的情况下,试问动点M,N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.【解】(1)如图1-10-82.图1-10-82∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°.∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°.∴∠2=∠3.又∵∠D=∠C,∴△OCP∽△PDA.∵△OCP与△PDA的面积比为1∶4,∴===,∴CP=AD=4.设OP=x,则CO=8-x.在Rt△PCO中,∠C=90°,由勾股定理得.解得x=5.∴AB=AP=2OP=10,∴边AB的长为10.(2)①如图1-10-83.图1-10-83②在△OCP与△PDA的面积比为1∶4这一条件不变的情况下,点M,N在移动过程中,线段EF的长度是不变的.过点M作MQ∥AN,交PB于点Q,如图1-10-84.∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ.图1-10-84又ME⊥PQ,∴点E是PQ的中点.∵BN=PM,∴BN=MQ.又MQ∥AN,∴∠QMF=∠N.在△MQF和△NBF中,∴△MQF≌△NBF,∴QF=BF.∴EF=PB.∵在△BCP中,∠C=90°,PC=4,BC=AD=8,∴PB=4为定值,∴EF=PB为定值.故在△OCP与△PDA的面积比为1∶4这一条件不变的情况下,点M,N在移动过程中,线段EF的长度是不变的,且EF=2.11.如图1-10-85,在四边形A BCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(点P不与A,D重合),PE⊥BP,PE交DC于点E.图1-10-85(1)求证:△ABP∽△DPE.(2)设AP=x,DE=y,求y与x之间的函数关系式,并写出x的取值范围.(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由.(1)【证明】∵∠A=90°,∴∠1+∠3=90°.∵PE⊥BP,∴∠1+∠2=90°,∴∠3=∠2.∵AB∥CD,∠A=90°,∴∠D=∠A=90°∴△ABP∽△DPE.图1-10-86(2)【解】由△ABP∽△DPE可得=.∵AB=2,AD=5,AP=x,DE=y,∴DP=5-x,∴=,整理,得y=-+x(0<x<5).(3)【解】能构成矩形.当DE=AB=2时,四边形ABED构成矩形,即DE=y=-+x=2,解得x=1或x=4,∴AP的长为1或4.真题演练:1.(xx·北京)如图1-10-87,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为m.图1-10-87【答案】32.阅读下面材料:小腾遇到这样一个问题:如图1-10-88,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.图1-10-88小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图1-10-89).图1-10-89请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图1-10-90,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD 交于点E,AE=2,BE=2ED,求BC的长.图1-10-90【解】∠ACE=75°,AC的长为3.如图1-10-91,过点D作DF⊥AC于点F.图1-10-91∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴===2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AF tan 30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.3.如图1-10-92,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE =40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB=m.精品-【答案】 5.5图1-10-924.如图1-10-93,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC等于( )图1-10-93A.3B.4C.6D.8【答案】D-精品。
2019年中考数学试卷重难题专题【相似三角形】(含答案)知识点睛借助相似整合信息的通常思路:利用相似时,往往可以将_______________等信息组合搭配在一起进行研究,并能实现三类信息之间的转化,进而达到整合信息、解决问题的目的.为了借助相似实现_______________等条件的综合应用,往往会通过___________或作_________的方式来构造相似模型.构造相似模型是我们整合多个比例信息时常用的一种手段.一、单选题1.(2018·浙江初三期中)如图,在中, 是线段上的点,且, 是线段ABC D AB :1:2AD BD F 上的点, , .小亮同学随机在内部区域投针,则针扎到(阴影)BC DE BC FE BA ABC DEF 区域内的概率是( )A .B .C .D .1329518492.(2018·四川中考真题)如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=AC .连接14DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则的值为( )S △ADGS △BGHA .B .C .D .11223343.(2019·湖北沙市中学初二期末)彼此相似的矩形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按如图所示的方式放置.点A 1,A 2,A 3,…,和点C 1,C 2,C 3,…,分别在直线y=kx+b (k >0)和x 轴上,已知点B 1、B 2的坐标分别为(1,2),(3,4),则Bn的坐标是( )A .(2n ﹣1,2n )B .(2n ﹣,2n )12C .(2n﹣1﹣,2n﹣1)D .(2n﹣1﹣1,2n﹣1)124.(2014·浙江初三期末)如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N .设△BPQ ,△DKM ,△CNH 的面积依次为S 1,S 2,S 3.若S 1+S 3=20,则S 2的值为( )A .6B .8C .10 D .125.(2018·全国初一单元测试)如图,是三个正方形拼成的一个长方形,则∠1+∠2+∠3=( )A .60°B .75°C .90°D .105°6.(2018·广东中考模拟)如图所示,在矩形ABCD 中,AB=6,BC=8,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则DE 的长是( )A .5B .C .D .32741547.(2018·广西中考真题)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(,1),(3,1),12(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作交y 轴于点B ,当点A 从M 运动AB ⊥AC 到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .B .C .D .−14≤b ≤1−54≤b ≤1−94≤b ≤12−94≤b ≤18.(2018·江西初三期末)如图,△ABC 是一块锐角三角形材料,高线AH 长8 cm ,底边BC 长10 cm ,要把它加工成一个矩形零件,使矩形DEFG 的一边EF 在BC 上,其余两个顶点D ,G 分别在AB ,AC 上,则四边形DEFG 的最大面积为( )A .40 cm 2B .20 cm 2C .25 cm 2D .10 cm 29.(2017·江阴初级中学初三期中)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上,则CE :CF 的值为( )A .B .C .D . 4535566710.(2017·安徽初三期中)如图,在正方形ABCD 中,点E 、F 分别在边BC ,DC 上,AE 、AF 分别交BD于点M 、N ,连接CN 、EN ,且CN =EN .下列结论:①AN =EN ,AN ⊥EN ;②BE+DF=EF ;③∠DFE =2∠AMN ;④;④图中有4对相似三角EF 2=2BM 2+2DN 2形.其中正确结论个数是( )A .5B .4C .3D .211.(2018·全国初三期末)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下列结论:①△AEF ∽△CAB ;②CF=2AF ;③tan ∠CAD=.其中正确的结论有 ( )2A .3个B .2个C .1个D .0个12.(2017·安徽中考模拟)如图,沿对角线AC 折叠正方形ABCD ,使得B 、D 重合,再折叠△ACD ,点D 恰好落在AC 上的点E 处,测得折痕AF 的长为3,则C 到AF 的距离CG 为:A .B .C .D .32235−113.(2019·全国初二单元测试)如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点P 为BC 上任意一点,连接PA,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为( )A .B .C .D .2651255314.(2019·广东中考模拟)如图,将边长为3的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH,点B 的对应点为M ,点A 的对应点为N ,那么折痕GH 的长为( )AB .C .D1037215.如图,在矩形ABCD 中,对角线AC 、BD 相交于G ,E 为AD 的中点,连接BE 交AC 于F ,连接FD ,若∠BFA=90°,则下列四对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABG ;④△ADF 与△EFD ,其中相似的为( )A.①④B.①②C.②③④D.①②③④二、填空题16.(2018·天津中考模拟)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D 的坐标为______.17.(2018·山东中考真题)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=5,∠EAF=45°,则AF的长为_____.218.(2018·湖北中考真题)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,2连接AP交BC于点E.若BE=,则AP的长为_____.19.(2017·湖北中考模拟)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、C n在直线y=- x+ 上,顶点D1、D2、D3、…、D n在x轴上,则第n个阴影小1 27 2正方形的面积为________.20.(2017·全国初三课时练习)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是______.21.(2018·安徽中考真题)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.22.(2018·江苏中考真题)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ =________.23.(2018·贵州中考模拟)如图,在△ABC 中,BC=8,高AD=6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为_____.24.(2017·湖北中考真题)如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,连接CF .若AC =8,AB =10,则CD 的长为__25.(2018·乌拉特前旗第六中学中考模拟)如图,点P 是矩形ABCD 内一点,连接PA 、PB 、PC 、PD,已知AB=3,BC=4,设△PAB, △PBC, △PCD, △PDA,的面积分别为,,, ,以下判断: ① PA+PB+PC+PD 的最小S 1S 2S 3S 4值为10;②若△PAB ≌△PCD,则△PAD ≌△PBC ;③若=,则=;④若△PAB ∽△PDA,则PA=2.4.其中正S 1S 2S 3S 4确的是_____________(把所有正确的结论的序号都填在横线上)26.(2018·广西中考真题)如图,点 C 为 Rt △ACB 与 Rt △DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD 、BE ,过点 C 作 CF ⊥AD 于点 F ,延长 FC 交 BE 于点 G .若 AC=BC=25,CE=15, DC=20,则的值为___________.EG BG参考答案1.B【解析】解:∵, ,∴, .DE BC 12AD BD =ADE ABC ∽13AD AE DE AB AC BC ===又∵,∴,∴, .FE BA CFE CBA ∽23CE CF CA CB ==21CF BF =设的面积,则,∴梯形面积.ADE ADE S S = 9ABC S S = DECB 8DECB S S =梯∵,∴,∴.DE BC 1112EDBF EFC S BF S FC == 平行四边形4EFC EDBF S S S == 平行四边形在平行四边形中,,∴.故BDEF 122BOF DEF BDEF S S S === 平行四边形29DEF ABC S S = 选.B 点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.2.C【解析】分析:首先证明AG :AB=CH :BC=1:3,推出GH ∥AC ,推出△BGH ∽△BAC ,可得,,由此即可解决问题.S △ADCS △BGH =S △BAC S △BGH =(BA BG )2=(32)2=94S △ADG S △ADC =13详解:∵四边形ABCD 是平行四边形∴AD=BC ,DC=AB ,∵AC=CA ,∴△ADC ≌△CBA ,∴S △ADC =S △ABC ,∵AE=CF=AC ,AG ∥CD ,CH ∥AD ,14∴AG :DC=AE :CE=1:3,CH :AD=CF :AF=1:3,∴AG :AB=CH :BC=1:3,∴GH ∥AC ,∴△BGH ∽△BAC ,∴,S △ADCS △BGH=S △BAC S △BGH =(BA BG )2=(32)2=94∵,S △ADG S △ADC =13∴.S △ADG S △BGH =94×13=34故选:C .点睛:本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.3.A【解析】【分析】根据矩形的性质求出点的坐标,然后利用待定系数法求一次函数解析式求出,12A A 、k b 、从而得到一次函数解析式,再根据一次函数图像上点的坐标特征求出的坐标,然后求出3A 的坐标,...,最后根据点的坐标特征的变化规律写出的坐标即可.3B n B 【详解】,()11,2B 相似矩形的长是宽的倍,∴2点的坐标分别为, 12B B 、()()1,23,4,,∴()()120,21,4A A ,点在直线上,12A A 、y kx b =+,∴24b k b =⎧⎨+=⎩解得,22k b =⎧⎨=⎩,∴22y x =+点在直线上,3A 22y x =+,∴2328y =⨯+=点的坐标为,∴3A ()3,8点的横坐标为,∴3B 13872+⨯=点,∴()37,8B …,的坐标为.n B ()21,2n n -故选:.A 【点睛】本题考查了相似多边形的性质,一次函数图象上点的坐标特征,根据点的系列坐标判断A 出相应矩形的长,再求出宽,然后得到点的系列坐标的变化规律是解题的关键.B 4.B【解析】试题分析:∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴四边形BEFD ,四边形DFGC 是平行四边形,∠BQP=∠DMK=∠CHN ,∴BE ∥DF ∥CG∴∠BPQ=∠DKM=∠CNH ,∵△ABQ ∽△ADM ,△ABQ ∽△ACH ,∴,,AB AD =BQ MD =12BQ CH =AB AC =13∴△BPQ ∽△DKM ∽△CNH∴,BQ MD=12BQ CH =13∴S 1S 2=14,S 1S 3=19∴S 2=4S 1,S 3=9S 1,∵S 1+S 3=20,∴S 1=2,∴S 2=8.故选B .考点:1.矩形的性质,2.三角形的面积,3.相似三角形的判定与性质.5.C【解析】【分析】容易看出∠3=45°,关键求出∠2与∠1的和是45°,根据证AI CI =IJ IA ∆AIJ~∆CIA,得∠2=∠CAI,再由∠1+∠2=∠CAI+∠CAD =45°可推出结果.【详解】如图设三个小正方形的边长为1个单位.在正方形ABCD 中∠3=45°,则∠AIC=135°,且∠1=∠CAD .∵∠AIJ=∠CIA ,,AI CI =22,IJ IA =22即,AI CI =IJ IA 所以∆AIJ~∆CIA,所以∠2=∠CAI,又∠1=∠CAD ,则∠1+∠2=∠CAI+∠CAD =45°,∴∠1+∠2+∠3=90°.故正确选项为:C【点睛】本题考查了相似三角形的判定与性质:如果两个三角形的两条对应边的比相等,且它们所夹的角也相等,那么这两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了勾股定理以及正方形的性质.6.C【解析】【分析】先利用勾股定理求出AC 的长,然后证明△AEO ∽△ACD ,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,12∵EO ⊥AC ,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD ,∴△AEO ∽△ACD ,∴,AE AC=AO AD 即 ,AE 10=58解得,AE=,254∴DE=8﹣=,25474故选:C .【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.7.A【解析】分析:分两种情形:当A 与点N 、M 重合时来确定b 的最大与最小值即可.详解:如图1,当点A 与点N 重合时,CA ⊥AB ,∴MN 是直线AB 的一部分,∵N (3,1)∴OB=1,此时b=1;当点A 与点M 重合时,如图2,延长NM 交y 轴于点D ,易证△MCN ∽△BMD∴BD MN =DM NC ∵MN=3-=,DM=,CN=1125212∴BD=DM·MN CN =54∴OB=BD-OD=-1=,即b=-,541414∴b 的取值范围是.-14≤b ≤1故选A.点睛:此题考查了坐标与图形,灵活运用相似三角形的判定与性质是解此题的关键..8.B【解析】【分析】设矩形DEFG 的宽DE=x ,根据相似三角形对应高的比等于相似比列式求出DG ,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG 的宽DE=x ,则AM=AH-HM=8-x ,∵矩形的对边DG ∥EF ,∴△ADG ∽△ABC ,∴,AM AH =DG BC即,8−x 8=DG 10解得DG=(8-x ),54四边形DEFG 的面积=(8-x )x=-(x 2-8x+16)+20=-(x-4)2+20,545454所以,当x=4,即DE=4时,四边形DEFG 最大面积为20cm 2.故选:B .【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG 的宽表示出长是解题的关键.9.A【解析】解:由折叠的性质可得,∠EDF =∠C =60º,CE =DE ,CF =DF .∵∠BDF +∠ADE =∠BDF +∠BFD =120º,∴∠ADE =∠BFD ,又∵∠A =∠B =60º,∴△AED ∽△BDF ,∴ ,设DE AD AE DF BF BD==AD =a ,BD =2a ,AB =BC =CA =3a ,再设CE ==DE =x ,CF ==DF =y ,则AE =3a -x ,BF =3a -y ,所以,整理可得ay =3ax -xy ,2ax =3ay -xy ,即xy =3ax -ay ①,xy =3ay -332x a a x y a y a-==-2ax ②;把①代入②可得3ax -ay =3ay -2ax ,所以5ax =4ay ,,即,4455x a y a ==45CE CF =故选A .点睛:主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的性质分别求出CE 、CF 的长度(用含有k 的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.10.B【解析】【详解】将△ABE 绕点A 逆时针旋转90°,得到△ADH ,因为四边形ABCD 是正方形,所以AB =BC =AD , ∠BAD =∠ABC =90°,∠ABD =∠CBD =45°,在△BNA 和△BNC 中,,{BN =BN∠NBA =∠BA =BC NBC所以△BNA ≌△BNC ,所以AN =CN ,∠NEC =∠NCE =∠BAN ,因为∠NEC +∠BEN =180°,所以∠BAN +∠BEN =180°,所以∠ABC +∠ANE =180°,所以∠ANE =90°,所以AN =NE ,AN ⊥NE ,故①正确,因为∠3=45°, ∠1=∠4,所以∠2+∠4=∠2+∠1=45°,所以∠3=∠FAH =45°,因为AF =AF ,AE =AH ,所以△AFE ≌△AFH ,所以EF =FH =DF +DH =DF +BE , ∠AFH =∠AFE ,故②正确,因为∠MAN =∠NDF =45°, ∠ANM =∠NDF ,所以∠AMN =∠AFD ,又因为∠AFE =∠AFD , ∠DFE=∠AFE +∠AFD所以∠DFE =2∠AMN ,故③正确,因为∠MAN =∠EAF , ∠AMN =∠AFE ,所以△AMN ∽△AFE ,所以,NMEF =AN AE =12所以MN ,EF =2如图2中,将△ABN 绕点A 逆时针旋转90°,得到△ADG ,易证△ANG ≌△ANM , △GDN 是直角三角形,所以MN =GN ,所以,MN 2=DN 2+DG 2=DN 2+BM 2所以,故④正确,EF 2=2DN 2+2BM 2图中相似三角形有△ANE ∽△BAD ∽△BCD , △ANM ∽△AEF , △ABN ∽△FDN ,△BEM ∽△DAM 等,故⑤错误,故选B.11.B【解析】【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出,由AE=AD=BC ,推出=,即AE BC =AF CF 1212AF CF 12CF=2AF ;④错误,设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有,即b=a ,可得ba =2ab 2tan ∠CAD==即可得.CD AD b 2a 【详解】如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴,AE BC =AF CF ∵AE=AD=BC ,1212∴=,AF CF 12∴CF=2AF ,故②正确;设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有,即b=a ,b a =2a b 2∴tan ∠CAD===,故③错误,CD AD b 2a 22所以正确的有2个,故选B .【点睛】本题考查了相似三角形的判定和性质,矩形的性质以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.12.A【解析】试题分析:设正方形ABCD 的边长=a ,根据勾股定理得到AC =a ,根据折叠的性质得到2AE =AD =a ,∠AEF =∠D =90°,根据等腰直角三角形的性质得到EF =CE =a –a ,根据勾股定2理得到a =AC =,EF =(–1)×32+22322+22232+22到结论.试题解析:设正方形ABCD 的边长=a ,则AC =a ,2∵折叠△ACD ,点D 恰好落在AC 上的点E 处,∴AE =AD =a ,∠AEF =∠D =90°,∴CE =a –a ,2∵∠ECF =45°,∴EF =CE =a –a ,2∵AF 2=AE 2+EF 2,∴32=a 2+(a –a )2,∴a =232+22∴AC =,EF =( –1)×,322+22232+22∵∠EAF =∠CAG ∠AEF =∠G =90°,∴△AEF ∽△AGC ,∴,∴CG =.ACAF =CG EF 32故选A .13.B【解析】【分析】记AC 与PQ 的交点为O ,由平行四边形的性质可知O 是AC 中点,PQ 最短也就是PO 最短;过O 作BC 的垂线P′O ,则PO 最短为P′O ;接下来可证明△P′OC 和△ABC 相似,进而利用相似三角形的性质即可求出PQ 的最小值.【详解】解:记AC 与PQ 的交点为O.∵∠BAC=90°,AB=3,AC=4,∴=5.∵四边形APCQ 是平行四边形,∴PO=QO ,CO=AO ,∴PQ 最短也就是PO 最短.过O 作BC 的垂线OP′.∵∠ACB=∠P′CO ,∠CP′O=∠CAB=90°,∴△CAB ∽△CP′O ,∴,'CO OP BCAB ∴OP′=,65∴则PQ 的最小值为2OP′=,125故答案为:.125【点睛】本题考查了勾股定理的运用、平行四边形的性质、相似三角形的判定和性质以及垂线段最短的性质,解题的关键是作高线,构造相似三角形.14.A【解析】【分析】利用翻折变换的性质结合勾股定理表示出CH 的长,得出△EDM ∽△MCH ,进而求出MC 的长,依据△GPH ≌△BCM ,可得GH=BM ,再利用勾股定理得出BM ,即可得到GH 的长.【详解】设CM =x ,设HC =y ,则BH =HM =3﹣y ,故y 2+x 2=(3﹣y )2,整理得:y =,21362x -+即CH =,21362x -+∵四边形ABCD 为正方形,∴∠B =∠C =∠D =90°,由题意可得:ED =1.5,DM =3﹣x ,∠EMH =∠B =90°,故∠HMC +∠EMD =90°,∵∠HMC +∠MHC =90°,∴∠EMD =∠MHC ,∴△EDM ∽△MCH ,∴ ,ED DM MC CH =即,21.531362x x x -=-+解得:x 1=1,x 2=3(不合题意),∴CM =1,如图,连接BM ,过点G 作GP ⊥BC ,垂足为P ,则BM ⊥GH ,∴∠PGH =∠HBM ,在△GPH 和△B CM 中,HGP CBM GP BC GPH C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GPH ≌△BCM (SAS ),∴GH =BM ,∴GH =BM.=故选:A .【点睛】此题主要考查了翻折变换的性质以及正方形的性质、相似三角形的判定与性质和勾股定理的综合运用,作辅助线构造全等三角形,正确应用相似三角形的判定与性质是解题关键.15.D【解析】【分析】根据判定三角形相似的条件对选项逐一进行判断.【详解】①根据题意得:,∠BAE =∠ADC =∠AFE =90°,∴∠AEF +∠EAF =90°,∠DAC +∠ACD =90°,∴∠AEF =∠ACD ①中两三角形相似;∴②,∵∠AEB =∠FEA,∠AFE =∠EAB =90°,∴△AFE ∽△BAE ,∴AE EF =EB AE 又,∵AE =ED ,∴ED EF =EB ED 而,∠BED =∠BED ,∴△FED ∽△DEB 故②正确;③,∵AB‖CD ,∴∠BAC =∠GCD ,且,∵∠ABE =∠DAF,∠EBD =∠EDF ∠ABG =∠ABE +∠EBD ,∴∠ABG =∠DAF +∠EDF =∠DFC ,∵∠ABG =∠DFC,∠BAG =∠DCF ,∴△CFD ∽△ABG 故③正确;④,∵△FED ∽△DEB ,∴∠EFD =∠EDB,∵AG =DG ,∴∠DAF =∠ADG ,∴∠DAF =∠EFD ,∴△ADF ∽△EFD 故④正确;故选:.D 【点睛】此题考查了相似三角形的判定:(1)有两个对应角相等的三角形相似;(2)有两个对应边的比相等,且其夹角相等,则两个三角形相似;(3)三组对应边的比相等,则两个三角形相似.16.(﹣,)45125【解析】【分析】首先过D 作DF ⊥AF 于F ,根据折叠可以证明△CDE ≌△AOE ,然后利用全等三角形的性质得到OE=DE ,OA=CD=1,设OE=x ,那么CE=3﹣x ,DE=x ,利用勾股定理即可求出OE 的长度,而利用已知条件可以证明△AEO ∽△ADF ,而AD=AB=3,接着利用相似三角形的性质即可求出DF 、AF 的长度,也就求出了D 的坐标.【详解】解:如图,过D 作DF ⊥AO 于F ,∵点B 的坐标为(1,3),∴BC=AO=1,AB=OC=3,根据折叠可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3,在△CDE 和△AOE 中,,{∠CDE =∠AOE∠CED =∠AEOCD =AO ∴△CDE ≌△AOE ,∴OE=DE ,OA=CD=1,AE=CE ,设OE=x ,那么CE=3﹣x ,DE=x ,∴在Rt △DCE 中,CE 2=DE 2+CD 2,∴(3﹣x )2=x 2+12,∴x=,43∴OE=,AE=CE=OC﹣OE=3﹣=,434353又∵DF ⊥AF ,∴DF ∥EO ,∴△AEO ∽△ADF ,∴AE :AD=EO :DF=AO :AF ,即:3=:DF=1:AF ,5343∴DF=,AF=,12595∴OF=﹣1= ,9545∴D 的坐标为:(﹣,).45125故答案为:(﹣,).45125【点睛】此题主要考查了图形的折叠问题、相似三角形的判定与性质、全等三角形的判定与性质以及坐标与图形的性质.解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.17.4103【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对2应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.详解:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,∵四边形ABCD 是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x ,AN=4﹣x ,2∵AB=2,∴AM=BM=1,∵AE=,AB=2,5∴BE=1,∴ME=,BM 2+BE 2=2∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF ,∴△AME ∽△FNA ,∴,AMFN=MEAN∴,12x =24-x 解得:x=43∴AF=AD 2+DF 2=4103故答案为:4103点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,18.1632【解析】【分析】设AB=a ,AD=b ,则ab=32,构建方程组求出a 、b 值即可解决问题.2【详解】设AB=a ,AD=b ,则ab=32,2由∽可得:,△ABE △DAB BEAB=ABAD∴,b =22a 2∴,a 3=64∴,,a =4b =82设PA 交BD 于O ,在中,,Rt △ABD BD =AB 2+AD 2=12∴OP =OA =AB ⋅AD BD=823∴,AP =1632故答案为:.1632【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.19.2223n -⎛⎫ ⎪⎝⎭【解析】由已知可得△ A 1B 1M ≌△DA 1N 1,∴B 1M=A 1N ,A 1M=D 1N ,又A 1D 1//B 1C 1,∴OA 1:OE=OD 1:OF ,由直线y=﹣可得E (0, ),1722x +72F (7,0),∴OD 1=2OA 1,由矩形OA 1ND 1,得A 1N =2D 1N ,∴可设B 1(b,3b ),代入y=﹣得b=1,∴A 1N=2,A 1M=1,∴S 1=1;1722x +由b=1,可得C 1(3,2),同理可知S 2=( )2= ;212-233⨯⨯223⎛⎫ ⎪⎝⎭同理可知C 2( , ),S 3=( )2== ;133434241-3333⨯⨯249⎛⎫ ⎪⎝⎭423⎛⎫ ⎪⎝⎭……∴S n = .2n-223⎛⎫⎪⎝⎭点睛:本题主要考查全等三角形的判定与性质,一次函数、图形的变化规律等,能正确地识图是解题的关键.20.5×()4030【解析】解:如图,∵四边形ABCD 是正方形,∴∠ABC=∠BAD=90°,AB=BC ,∴∠ABA1=90°,∠DAO+∠BAA 1=180°﹣90°=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA 1,在△AOD 和A1BA 中11AOD ABA ADO BAA ∠=∠⎧⎨∠=∠⎩∴△AOD ∽△A 1BA ,∴,∴BC=2A 1B.121OD AB AO A B ==∴A 1C=BC ,则A 2C 1=A 1C ,A 3C 2=A 2C 1,323232即后一个正方形的边长是前一个正方形的边长的倍.32∴第2016个正方形的边长为BC.201532⎛⎫ ⎪⎝⎭∵A 的坐标为(1,0),D 点坐标为(0,2),∴.=∴第2011个正方形的面积为.22015403033522BC ⎡⎤⎛⎫⎛⎫=⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦故答案为.4030352⎛⎫⨯ ⎪⎝⎭21.3或1.2【解析】【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.22.或154307【解析】分析:分两种情形分别求解:①如图1中,当AQ=PQ ,∠QPB=90°时,②当AQ=PQ ,∠PQB=90°时;详解:①如图1中,当AQ=PQ ,∠QPB=90°时,设AQ=PQ=x ,∵PQ ∥AC ,∴△BPQ ∽△BCA ,∴,BQBA=PQAC ∴,10−x 10=x6∴x=,154∴AQ=.154②当AQ=PQ ,∠PQB=90°时,如图2,设AQ=PQ=y .∵△BQP ∽△BCA ,∴,PQAC=BQBC ∴,y 6=10−y 8∴y=.307综上所述,满足条件的AQ 的值为或.154307点睛:本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.23.12【解析】【分析】设HG =x ,根据相似三角形的性质用x 表示出KD ,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.【详解】设HG =x .∵四边形EFGH 是矩形,∴HG ∥BC ,∴△AHG ∽△ABC ,∴=,即=,解得:HG BC AKAD x 86-KD6KD =6﹣x ,则矩形EFGH 的面积=x (6﹣x )=﹣x 2+6x =(x ﹣4)2+12,则矩形EFGH 的343434﹣34面积最大值为12.故答案为:12.【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.238【解析】分析:由对称性可知CF ⊥DE ,可得∠CDE=∠ECF=∠B ,得出CF=BF ,同理可得CF=AF ,由此可得F 是AB 的中点,求得CF=5,再判定△CDF ∽△CFA ,得到CF 2=CD×CA ,进而得出CD 的长.详解:由对称性可知CF ⊥DE ,又∵∠DCE=90°,∴∠CDE=∠ECF=∠B ,∴CF=BF ,同理可得CF=AF ,∴F 是AB 的中点,∴CF=AB=5,12又∵∠DFC=∠ACF=∠A ,∠DCF=∠FCA ,∴△CDF ∽△CFA ,∴CF 2=CD×CA ,即52=CD×8,∴CD=.258故答案是:.258点睛:考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到F 是AB 的中点.25.①②③④【解析】分析:①当点P 是矩形ABCD 两对角线的交点时,PA+PB+PC+PD 的值最小,根据勾股定理可得PA+PB+PC+PD 的最小值,即可判断;②根据全等三角形的性质可得PA=PC ,PB=PD ,那么P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,易证△PAD ≌△PBC ,即可判断;③易证S 1+S 3=S 2+S 4,所以若S 1=S 2,则S 3=S 4,即可判断;④根据相似三角形的性质可得∠PAB=∠PDA ,∠PAB+∠PAD=∠PDA+∠PAD=90°,利用三角形内角和定理得出∠APD=180°-(∠PDA+∠PAD )=90°,同理可得∠APB=90°,那么∠BPD=180°,即B 、P 、D 三点共线,根据三角形面积公式可得PA=2.4,即可判断.详解:①当点P 是矩形ABCD 两对角线的交点时,PA +PB +PC +PD 的值最小,根据勾股定理得,AC =BD =5,所以PA +PB +PC +PD 的最小值为10,故①正确;②若△PAB ≌△PCD ,则PA =PC ,PB =PD ,所以P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,所以△PAD ≌△PBC ,故②正确;③若=,易证+=+,则=,故③正确;S 1S 2S 1S 3S 2S 4S 3S 4④若△PAB ∼△PDA ,则∠PAB =∠PDA ,∠PAB +∠PAD =∠PDA +∠PAD =90°,∠APD =180°−(∠PDA +∠PAD )=90°,同理可得∠APB =90°,那么∠BPD =180°,B.P 、D 三点共线,P 是直角△BAD 斜边上的高,根据面积公式可得PA =2.4,故④正确.故答案为①②③④.点睛:本题考查了全等三角形的判定与性质,矩形的性质,相似三角形的性质.26.34【解析】【分析】过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于 P ,依据△EHG ∽△BPG ,可得=,再根据EG BG EHBP △DCF ∽△CEH ,△ACF ∽△CBP ,即可得到 EH=CF ,BP=CF ,进 而得出=.34EG BG 34【详解】如图,过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于P ,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP ,∴△EHG ∽△BPG ,∴=,EG BG EHBP ∵CF ⊥AD ,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF ,∠AFC=∠CPB , 又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH ,∠FAC=∠PCB ,∴△DCF ∽△CEH ,△ACF ∽△CBP ,∴,EHCF =CE DC ,BPCF =BCCA =1本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
第七节 相似三角形
要题随堂演练
1.(2018·凉州区中考)已知a 2=b 3
(a≠0,b≠0),下列变形错误的是( ) A.a b =23
B .2a =3b C.b a =32 D .3a =2b
2.如图的两个四边形相似,则∠α的度数是( )
A .87°
B .60°
C .75°
D .120°
3.(2018·自贡中考)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )
A .8
B .12
C .14
D .16
4.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )
A.22
B.32 C .1 D.62
5. (2018·云南中考)如图,已知AB∥CD,若AB CD =14,则OA OC
=________.
6.如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶16,则S △BDE 与S △CDE 的比是________.
7.(2018·泰安中考)如图,在菱形ABCD 中,AC 与BD 交于点O ,E 是BD 上一点,EF∥AB,∠EAB=∠EBA,过点B 作DA 的垂线,交DA 的延长线于点G.
(1)∠DEF 和∠AEF 是否相等?若相等,请证明;若不相等,请说明理由;
(2)找出图中与△AGB 相似的三角形,并证明;
(3)BF 的延长线交CD 的延长线于点H ,交AC 于点M.求证:BM 2=MF·MH.
参考答案
1.B 2.A 3.D 4.C 5.14
6.1∶3 7.解:(1)∠DEF=∠AEF.理由如下:
∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.
又∵∠EAB=∠EBA,∴∠DEF=∠AEF.
(2)△EOA∽△AGB,证明如下:
∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.
又∵∠AEO=∠ABE+∠BAE=2∠ABE,
∴∠GAB=∠AEO.
又∵∠AGB=∠AOE=90°,∴△EOA∽△AGB.
(3)如图,连接DM.
∵四边形ABCD是菱形,由对称性可知
BM=DM,
∠ADM=∠ABM.
∵AB∥CH,
∴∠ABM=∠H,
∴∠ADM=∠H.
又∵∠DMH=∠FM D,
∴△MFD∽△MDH,
∴DM
MH
=
MF
DM
,
∴DM2=MF·MH,∴BM2=MF·MH.。